Linear Methods
Introduction to Machine Learning - 10-701/15-781
Slides in Keynote and PDF.
Content
Perceptron
Neurons and Learning
Perceptron learning rule
Convergence Analysis
Nonlinearity and Kernels
Support Vector machines
Efficient Implementation
Supplementary material
F. Rosenblatt, The perceptron: A probabilistic model for information storage and organization in the brain, Psychological Review, Vol 65(6), Nov 1958, 386-408.
Y. Freund and R. Schapire, Large margin classification using the perceptron algorithm, In Machine Learning 37(3):277-296, 1999.
N. Aronszajn, Theory of reproducing Kernels, Trans. Amer. Math. Soc. 68 (1950), 337-404
G. Wahba, Spline Models for Observational Data, SIAM 1990
B. Scholkopf, A. Smola, K. Muller, Nonlinear Component Analysis as Kernel Eigenvalue Problem, Neural Computation, 10:1299-1319, 1998
S. Mika et al, Kernel-PCA and Denoising in Feature Spaces, NIPS 1999
B. Scholkopf et al, Support Vector Method for Novelty Detection, Neural Computation, 2000
A. Smola, L. Song, C.H. Teo, Relative Novelty Detection, NIPS 2009
B. Scholkopf et al., Shrinking the Tube: A New Support Vector Regression Algorithm, Neural Computation, 1999
Videos
|