10-/701 Recitation 2:
Optimization

Jay-Yoon Lee
01/29/2015

Motivation

 Much of the time in ML/stats, we’re finding
the best model to fit our data (MLE, MAP, ...)

— MLE (Maximum Likelihood Estimator)

0 = argmazP(D|0)
Z

Motivation

 Much of the time in ML/stats, we’re finding
the best model to fit our data (MLE, MAP, ...)

— MLE (Maximum Likelihood Estimator)
0 = argmazP(D|0)
0
— MAP (Maximum A-Posteriori Estimator)
0 = argmazP(0|D)
0

P(D|9)P(6)
P(D)

P(6|D)

Motivation

* General form of optimization:
— Loss + Penalty

arg min Z ((x;; M) 4 penalty (M)
models M . _1

* How we do that: optimization.
 When we can: convex optimization.

Analytic minima

* Set gradient respect Beta to zero and solve

1 1
IA(B) = 51XB — yll3 + S MBI

Gradient descent

e Start at some point, follow the gradient
towards (a) minimum

T <— I

while termination conditions don’t hold do
r < x—nVf(x)

end while

Gradient descent interpretation

Approximate t

fly) = f(x) -

linear

ne function with a quadratic:

-V () (y —)+ oy =zl
approximation to f —

proximity to x

Choosing the step size

too small n;, after 100

ne = t, it is too big _ _
Iterations

o _ .
™~
o _|
—

o *

=]

1

o

N
I I I I T
20 =10 0 10 20

Backtracking

* Fix a backoff parameter0<B < 1

e At each iteration:
— Start withn=1

- While f (¢ = 1V f(x)) > f(x) = S|V /(@)
e Backoff n =P n

Backtracking line search

AR

b

N

How to terminate

* When change in iterates is small
— When gradient is small
— When change in function value is small

— When backtracking step size gets too small

* Or after a fixed time/steps budget

Stochastic gradient “descent”

* Usually we’re minimizing the empirical loss:

—ZE xi; M lE:VMK (i3 M

e We do this to approximate the expected loss:

E, [6(z; M) o [Varl(xi; M)

 But we can also use rougher, cheaper approx.:

SGD

“Online” optimization

Can do it based on a stream of samples
— No need to remember old ones, then
Iterations are much cheaper

Requires more iterations

One big problem: not a descent method!

black line = LMS trajectory towards LS soln (red cross)

w0 0

5 10 15 20 25

Iterations are much cheaper
Requires more iterations

But, objective does not “Descent” Always

Mini-batch gradient

* Like SGD, but calculate gradients over a subset
of training points instead of just one

* Can be a nice medium between full gradient
descent and SGD
— Not a descent method, but “closer” to one
— Iterations more expensive than SGD
— Converges faster than SGD

Subgradients

* When your optimization problem is convex
but not differentiable

»
.
\

Subgradients

* When your optimization problem is convex
but not differentiable

Lasso problem can be parametrized as
1 9
min -y — Az|” + Allz||1
r 2
where A > 0. Consider simplified problem with A = I:

o1
min - ly — 212 + Al
e

Claim: solution of simple problem is * = S\(y), where S is the
soft-thresholding operator:

yi—)\ ifyi>)\
[Sx(y)]i = 0 if — A<y <A

y¢+/\ ifyi<—)\

Subgradients

Why? Subgradients of f(z) = |y — z|*> + Aljz||; are
g=1z—Yy+As,
where s; = sign(x;) if x; #0 and s; € [—-1,1] if z; =0

Now just plug in £ = S)(y) and check we can get g =0

1.0

0.5

Soft-thresholding in
one variable:

0.0

-0.5
|

-1.0

-1.0 -0.5 0.0 0.5 1.0

Subgradients

* When your optimization problem is convex
but not differentiable
e Subgradient descent:

— same algorithm, but use any subgradient
instead of the gradient

k) = (=1 _ tx - g(k_l), k=1,2,3,...,

where ¢*=1) is any subgradient of f at z(*—1)

 This is slow.

Generalized gradient descent

e Objective is the sum of a convex,
differentiable g and a convex h: mming(x) + h(x)

T < prox, (z —nVg(z))
1

prox, (z) = arg;nin Q—Hx — z||? + h(2)

e e.g. LASSO, projected gradient descent

Accelerated gradient method

* At each step k:

g ok=D) Z;i (x(k—l) 3 w(k—Q))

™)« prox, (y—niVy(y))

e yterm carries “momentum”

* Provably better convergence
— O(1/k?): optimal for first-order

Newton’s method

e Gradient descent minimizes

1 1

fly) = f2) + V@) (y =) + 5y - w)Tﬁl(y — 1)

 Newton’s method: quadratic approximation

Fo) ~ £(2) + V(@) (g~) + 5y —)7 V2f(@) (y —)

e Takes v. few iterations for v. accurate answer
— |terations are very expensive
— Diverges with bad initialization

* Damped Newton: line search, trust region

Sort-of second-order methods

e Quasi-Newton methods

— Approximate Hessian from the gradient
— BFGS, L-BFGS

* Truncated Newton
— Partially optimize quadratic with conjugate gradient

Standard problem forms

* Linear programs (LPs)

minclz subject to Az < b, Ex =g

e Quadratic programs (QPs)
min ¢l x + §$TH£E subject to Ax < b, Fxr =g

* Cone programs
minclz subject to Az +be K,z € L

