10-701 Recitation 2: Optimization

Jay-Yoon Lee 01/29/2015

Many of the slides are recycled form Dougal Sutherland's recitation

Motivation

- Much of the time in ML/stats, we're finding the best model to fit our data (MLE, MAP, ...)
 - MLE (Maximum Likelihood Estimator)

$$\hat{\theta} = \underset{\theta}{argmax} P(D|\theta)$$

Motivation

- Much of the time in ML/stats, we're finding the best model to fit our data (MLE, MAP, ...)
 - MLE (Maximum Likelihood Estimator)

$$\hat{\theta} = \underset{\theta}{argmax} P(D|\theta)$$

MAP (Maximum A-Posteriori Estimator)

$$\hat{\theta} = \underset{\theta}{argmax} P(\theta|D)$$

$$P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)}$$

Motivation

- General form of optimization:
 - Loss + Penalty

$$\underset{\text{models } M}{\operatorname{arg \, min}} \sum_{i=1}^{n} \ell(x_i; M) + \operatorname{penalty}(M)$$

- How we do that: optimization.
- When we can: convex optimization.

Analytic minima

Set gradient respect Beta to zero and solve

$$J_{\lambda}(\beta) = \frac{1}{2} ||X\beta - y||_{2}^{2} + \frac{1}{2} \lambda ||\beta||_{2}^{2}$$

Gradient descent

 Start at some point, follow the gradient towards (a) minimum

$$x \leftarrow x_0$$

while termination conditions don't hold do

$$x \leftarrow x - \eta \nabla f(x)$$

end while

Gradient descent interpretation

Approximate the function with a quadratic:

$$f(y) \approx \underbrace{f(x) + \nabla f(x)^T (y - x)}_{\text{linear approximation to } f} + \underbrace{\frac{1}{2\eta} \|y - x\|_2^2}_{\text{proximity to } x}$$

Choosing the step size

too small η_t , after 100 iterations

Lecture note on 10-725 Convex Optimization by Ryan Tibshirani

Backtracking

- Fix a backoff parameter $0 < \beta < 1$
- At each iteration:
 - Start with $\eta = 1$
 - While $f(x \eta \nabla f(x)) > f(x) \frac{\eta}{2} ||\nabla f(x)||^2$
 - Back off $\eta = \beta \eta$

Backtracking line search

A typical choice $\beta = 0.8$, converged after 13 iterations:

Lecture note on 10-725 Convex Optimization by Ryan Tibshirani

How to terminate

- When change in iterates is small
 - When gradient is small
 - When change in function value is small
 - When backtracking step size gets too small
- Or after a fixed time/steps budget

•

Stochastic gradient "descent"

Usually we're minimizing the empirical loss:

$$\frac{1}{n} \sum_{i} \ell(x_i; M) \qquad \qquad \frac{1}{n} \sum_{i} \nabla_M \ell(x_i; M)$$

We do this to approximate the expected loss:

$$\mathbb{E}_x \left[\ell(x; M) \right] \qquad \mathbb{E}_x \left[\nabla_M \ell(x_i; M) \right]$$

But we can also use rougher, cheaper approx.:

$$\ell(x_i; M)$$
 $\nabla_M \ell(x_i; M)$

SGD

- "Online" optimization
- Can do it based on a stream of samples
 - No need to remember old ones, then
- Iterations are much cheaper
- Requires more iterations
- One big problem: not a descent method!

SGD

- Iterations are **much** cheaper
- Requires more iterations
- But, objective does not "Descent" Always

Mini-batch gradient

- Like SGD, but calculate gradients over a subset of training points instead of just one
- Can be a nice medium between full gradient descent and SGD
 - Not a descent method, but "closer" to one
 - Iterations more expensive than SGD
 - Converges faster than SGD

When your optimization problem is convex but not differentiable

Lecture note on 10-725 Convex Optimization by Ryan Tibshirani

When your optimization problem is convex but not differentiable

Lasso problem can be parametrized as

$$\min_{x} \frac{1}{2} ||y - Ax||^2 + \lambda ||x||_1$$

where $\lambda \geq 0$. Consider simplified problem with A = I:

$$\min_{x} \frac{1}{2} ||y - x||^2 + \lambda ||x||_1$$

Claim: solution of simple problem is $x^* = S_{\lambda}(y)$, where S_{λ} is the soft-thresholding operator:

$$[S_{\lambda}(y)]_{i} = \begin{cases} y_{i} - \lambda & \text{if } y_{i} > \lambda \\ 0 & \text{if } -\lambda \leq y_{i} \leq \lambda \\ y_{i} + \lambda & \text{if } y_{i} < -\lambda \end{cases}$$

Lecture note on 10-725 Convex Optimization by Ryan Tibshirani

Why? Subgradients of $f(x) = \frac{1}{2} ||y - x||^2 + \lambda ||x||_1$ are

$$g = x - y + \lambda s,$$

where $s_i = \operatorname{sign}(x_i)$ if $x_i \neq 0$ and $s_i \in [-1, 1]$ if $x_i = 0$

Now just plug in $x = S_{\lambda}(y)$ and check we can get g = 0

Soft-thresholding in one variable:

- When your optimization problem is convex but not differentiable
- Subgradient descent:
 - same algorithm, but use any subgradient instead of the gradient

$$x^{(k)}=x^{(k-1)}-t_k\cdot g^{(k-1)},\quad k=1,2,3,\ldots,$$
 where $g^{(k-1)}$ is any subgradient of f at $x^{(k-1)}$

• This is slow.

Generalized gradient descent

• Objective is the sum of a convex, differentiable g and a convex h: $\min_{x} g(x) + h(x)$

$$x \leftarrow \operatorname{prox}_{\eta}\left(x - \eta \nabla g(x)\right)$$

$$\operatorname{prox}_{\eta}(x) = \arg\min_{z} \frac{1}{2\eta} \|x - z\|^2 + h(z)$$

• e.g. LASSO, projected gradient descent

Accelerated gradient method

At each step k:

$$\begin{aligned} y \leftarrow x^{(k-1)} + \frac{k-2}{k+1} \left(x^{(k-1)} - x^{(k-2)} \right) \\ x^{(k)} \leftarrow \operatorname{prox}_{\eta_k} \left(y - \eta_k \nabla g(y) \right) \end{aligned}$$

- y term carries "momentum"
- Provably better convergence
 - $O(1/k^2)$: optimal for first-order

Newton's method

Gradient descent minimizes

$$f(y) \approx f(x) + \nabla f(x)^{T} (y - x) + \frac{1}{2} (y - x)^{T} \frac{1}{\eta} I(y - x)$$

Newton's method: quadratic approximation

$$f(y) \approx f(x) + \nabla f(x)^{T} (y - x) + \frac{1}{2} (y - x)^{T} \nabla^{2} f(x) (y - x)$$

- Takes v. few iterations for v. accurate answer
 - Iterations are very expensive
 - Diverges with bad initialization
- Damped Newton: line search, trust region

Sort-of second-order methods

- Quasi-Newton methods
 - Approximate Hessian from the gradient
 - BFGS, L-BFGS
- Truncated Newton
 - Partially optimize quadratic with conjugate gradient

Standard problem forms

Linear programs (LPs)

$$\min c^T x$$
 subject to $Ax \le b, Ex = g$

Quadratic programs (QPs)

$$\min c^T x + \frac{1}{2} x^T H x \quad \text{subject to } Ax \le b, Ex = g$$

Cone programs

$$\min c^T x$$
 subject to $Ax + b \in K, x \in L$