A Primer on
Graphical Models

Almost completely built from materials of
Prof Noah Smith (CMU)
Prof David Sontag (NYU)
Prof Eric Xing (CMU)



General ML Strategy

@ Represent the world as a collection of random variables Xi, ..., X,
with joint distribution p(Xi,...,X},)

@ Learn the distribution from data

© Perform “inference” (compute conditional distributions

p(Xf | X1 = X1y .- :uXm — Xm))
© Compute “Likelihood” of observed data/variables p( X, ..., Xj,)

Copied from:
http://cs.nyu.edu/~dsonta
g/courses/pgm13/slides/le
cturel.pdf



Example:

@ Consider three binary-valued random variables

X1, X0, X3 Val(X;) = {0,1}

@ Let outcome space (2 be the cross-product of their states:
Q = Val(Xl) X Val(Xg) X Val(X3)

@ Xi(w) is the value for X; in the assignment w € 2
@ Specify p(w) for each outcome w € Q2 by a big table:

X1 X2 X3 p(xlv X2, X3)
0O 0 O |.11
0O 0 1 |.02

1 1 1 |.05

@ How many parameters do we need to specify? Copied from:
http://cs.nyu.edu/~dsonta
23 1 g/courses/pgm13/slides/le

cturel.pdf



Marginalization

@ Suppose X and Y are random variables with distribution p(X, Y)
X: Intelligence, Val(X) = {"“Very High", "High" }
Y: Grade, Val(Y)={"a", "b"}

@ Joint distribution specified by:

X
vh | h
Y a|07]0.15
b|0.1]0.05
o p(Y=2a)=17=0.85
@ More generally, suppose we have a joint distribution p(Xi,..., Xy).

Then,

= X;) = ZZ ZZ ZP XLy« - Copied from:

—1 Xj+1 http://cs.nyu.edu/~dsonta
" g/courses/pgm13/slides/le
cturel.pdf



Conditioning

@ Suppose X and Y are random variables with distribution p(X, Y)
X: Intelligence, Val(X) = {"Very High", “High"}
Y: Grade, Val(Y)={"a", “b"}

X
vh | h
Y a|0.7]0.15
b| 0.1/ 0.05

@ Can compute the conditional probability

p(Y = a, X = vh)
p(X = vh)
p(Y = a, X = vh)
p(Y =a,X =vh)+p(Y = b,X = vh)

p(Y=a|X=vh) =

0.7 Copied from:
— — 0.875h. http://cs.nyu.edu/~dsonta
0.7+ 0.1 g/courses/pgm13/slides/le

cturel.pdf



Example: Medical Diagonsis

@ Variable for each symptom (e.g. “fever”, “cough”, “fast breathing”,
“shaking”, “nausea”, “vomiting”)

@ Variable for each disease (e.g. “pneumonia”, “flu”, “common cold”,
“bronchitis”, “tuberculosis”)

@ Diagnosis is performed by inference in the model:

p(pneumonia = 1 | cough = 1, fever = 1, vomiting = 0)

@ One famous model, Quick Medical Reference (QMR-DT), has 600
diseases and 4000 findings

Copied from:
http://cs.nyu.edu/~dsonta
g/courses/pgm13/slides/le
cturel.pdf



Representing the distribution

Naively, could represent multivariate distributions with table of

probabilities for each outcome (assignment)

How many outcomes are there in QMR-DT? 24600

Estimation of joint distribution would require a huge amount of data

Inference of conditional probabilities, e.g.
p(pneumonia = 1 | cough = 1, fever = 1, vomiting = 0)

would require summing over exponentially many variables’ values

Copied from:
http://cs.nyu.edu/~dsonta
g/courses/pgm13/slides/le
cturel.pdf



Structure through independence

o If Xi,...,X, are independent, then

p(x1,- -5 xn) = p(x1)p(x2) - - - p(xn)

@ 2" entries can be described by just n numbers (if |Val(X;)| = 2)!

@ However, this is not a very useful model — observing a variable X;
cannot influence our predictions of X;

o If Xi,...,X, are conditionally independent given Y, denoted as
X; L X_; | Y, then

p(.}/axlan'axn) — p(.}/)p(xl|Y)Hp(xf‘xla“'axf—la.)/)

=2
n
= p(y)pCa | y) [ p(xi | y)- Copiet rom:
i—o http://cs.nyu.edu/~dsonta

g/courses/pgm13/slides/le
cturel.pdf



Revisit: naive Bayes for spam

@ Classify e-mails as spam (Y = 1) or not spam (Y = 0)
o Let 1: n index the words in our vocabulary (e.g., English)

e X; =1 if word i appears in an e-mail, and 0 otherwise
o E-mails are drawn according to some distribution p(Y, Xi,..., X,)

@ Suppose that the words are conditionally independent given Y. Then,

p(y,x1s- - xa) = p(y) | | p(xi | y)
=1

Estimate the model with maximum likelihood. Predict with:

p(Y =1 ]limipxi | Y =1)
2y={013 P(Y =) [[mp(xi | Y =y)

p(Y =1]|x1,...x,) =



As an Aside

* Are the independence assumptions made here
reasonable?

* Philosophy: Nearly all probabilistic models are
“wrong”, but many are nonetheless useful



Observation

Any probability distribution p(Xy, ..., X,,) can always be expressed as follows:

n

p(X1,.... Xn) = | | p(X:| Xc,)

1=1

for some set C; C |n].

We call this set parent of 2 and henceforth denote by pa;.



Visualization always helps!

Algebra is boring, so let’s draw this

@ Let's represent variables as circles

@ Let's draw an arrow from jto / if j € pa;
@ The resulting drawing will be a Directed Graph
@ Moreover it will be Acyclic (no directed cycles)

Llatent

variable /
latent

parameter
Observed
variable
Constant /
hyper const

parameter




Bayesian Network

e A Bayesian network is specified by a directed acyclic graph
G = (V, E) with:
© One node j € V for each random variable X;
@ One conditional probability distribution (CPD) per node, p(x; | Xpa(i)),
specifying the variable’'s probability conditioned on its parents’ values

@ Corresponds 1-1 with a particular factorization of the joint
distribution:

p(x1,...xn) = H p(xi | Xpa(i))

eV

@ Powerful framework for designing algorithms to perform probability
computations

Copied from:
http://cs.nyu.edu/~dsonta
g/courses/pgm13/slides/le
cturel.pdf



Examples

p(x1,...Xxp) = H p(xi | xPa(f))
3%

Will my car start this morning?

Starter

Alternator

FuelPump

Distributor Leak

Enginegtanks

BattetyState

SparkPlugs
BaleryAge FanpBelt
GasInTank

Heckerman et al., Decision-Theoretic Troubleshooting, 1995



Conditional Parameterization

* Grade is determined by Intelligence.

O—@

very high 0.85
high 0.15

Copied from:
https://www.ark.cs.cmu.e
du/PGM/index.php/Curre
nt_events_(2010)



Conditional Parameterization

* Grade and SAT score are determined by
Intelligence: G LS| |

very high
high

0.85

)

P(G|1) very | high

high
A
B
P{S|1) very | high
high
very high
high

Copied from:
https://www.ark.cs.cmu.e
du/PGM/index.php/Curre
nt_events_(2010)



More drawing skills

* Drawing these figures can get messy for large models!
* How do we compactly represent repeated structure?

.

/

Copied from:
https://www.ark.cs.cmu.e
du/PGM/index.php/Curre
nt_events_(2010)



Plate Model

N, -

/ N

©-

Copied from:
https://www.ark.cs.cmu.e
du/PGM/index.php/Curre
nt_events_(2010)



Students and their Grades

N

Example: A =student, B = grade

Copied from:
https://www.ark.cs.cmu.e
du/PGM/index.php/Curre
nt_events_(2010)



Student, Course, Grade, Difficulty

Each student takes only one course

\ /

T

Example: A, = course difficulty, A, = student aptitude for the area, B = grade

Copied from:
https://www.ark.cs.cmu.e
du/PGM/index.php/Curre
nt_events_(2010)



Student, Course, Grade, Difficulty

Multiple courses per student

\

Intersecting \ ‘/

%

N

Example: A, = assignment difficulty, A, = intelligence, B = grade

Copied from:
https://www.ark.cs.cmu.e
du/PGM/index.php/Curre
nt_events_(2010)



Detailed Example

@ Consider the following Bayesian network:

d(]

axl

0.6

‘;{},dtl
f{},d]
i%d" o9 | o008 0.02
i%d" |05 |03 |02

@ What is its joint distribution?

H p(xi | xPa(i))

p(x1,...Xp)

p(d,i,g,s,I)

eV

p(d)p(i)p(g | i,d)p(s | i)p(!| g)

0.95

0.2

0.99

0.01

Copied from:
http://cs.nyu.edu/~dsonta
g/courses/pgm13/slides/le
cturel.pdf



Independencies

Intelligence

@ The joint distribution corresponding to the above BN factors as

p(d,i.g,s,1) = p(d)p(i)p(g | i,d)p(s | i)p(/| &)

@ However, by the chain rule, any distribution can be written as

p(d,i,g,s,1)=p(d)p(i | d)p(g |i,d)p(s|i,d,g)p(l|g,d,i g,s)

@ Thus, we are assuming the following additional independencies:
D11, S1{D,G}|I, L 1{I,D,S}|G. What else? Copied from:

http://cs.nyu.edu/~dsonta
g/courses/pgm13/slides/le
cturel.pdf



Generalizing

@ Generalizing the above arguments, we obtain that a variable is
iIndependent from its non-descendants given its parents

‘&
@ Common parent — fixing B decouples A and C > O



Generalizing

@ Generalizing the above arguments, we obtain that a variable is
iIndependent from its non-descendants given its parents

‘&
@ Common parent — fixing B decouples A and C Ud>S &5

Proof: From the graph we have p(A, B,C) = p(B)p(A|B)p(C|B).
Now we can evaluate using Bayes rule as:

A, B,C)

p(B)

_ p(B)p(A|B)p(C|B)
; p(B)

= p(A[B)p(C|B)

p(A, OlB) — p(

Thus showing the conditional independence.



Generalizing

@ Generalizing the above arguments, we obtain that a variable is
iIndependent from its non-descendants given its parents

‘&
@ Common parent — fixing B decouples A and C Ud>S O

@ Cascade — knowing B decouples A and C
I . A

@ V-structure — Knowing C couples A and B

e This important phenomona is called explaining away and is what
makes Bayesian networks so powerful



More properties

Local semantics: each node is conditionally independent
of its nondescendants given its parents

Copied from:
http://courses.cs.washingt
on.edu/courses/cse515/15
wi/slides/bnets.pdf




More Properties

Each node is conditionally independent of all others given its
Markov blanket: parents + children + children’s parents

Copied from:
http://courses.cs.washingt
on.edu/courses/cse515/15
wi/slides/bnets.pdf



Bayes Ball

@ Algorithm to calculate whether X L Z | Y by looking at graph
separation

@ Look to see if there is active path between X and Z when variables
Y are observed:

Y Y

(a) (b) Copied from:
http://cs.nyu.edu/~dsonta

g/courses/pgm13/slides/le
cturel.pdf



Bayes Ball

@ Algorithm to calculate whether X 1. Z | Y by looking at graph
separation

@ Look to see if there is active path between X and Z when variables
Y are observed:

X VA X Z
\_A, / /
%“ X ’
Y Y
(El) (b) Copied from:
http://cs.nyu.edu/~dsonta

g/courses/pgm13/slides/le
cturel.pdf



Bayes Ball

@ Algorithm to calculate whether X | Z | Y by looking at graph
separation

@ Look to see if there is active path between X and Z when variables
Y are observed:

Copied from:
http://cs.nyu.edu/~dsonta
g/courses/pgm13/slides/le
cturel.pdf



Bayes Ball

* If no such path, then X and Z are conditionally independent given Y

* This reduces statistical independencies (hard) queries to connectivity
in graphs (easy)

* Important because it allows us to quickly prune the Bayesian network,
finding just the relevant variables for answering a query



Causal Structure

The flu causes sinus
inflammation

Allergies also cause
sinus inflammation

Sinus inflammation
causes a runny nose

Sinus inflammation
causes headaches

Copied from:
https://www.ark.cs.cmu.e
du/PGM/index.php/Curre
nt_events_(2010)



Causal Structure

The flu causes sinus Flu Al

inflammation

S.l.

Allergies also cause
sinus inflammation B

R.N.

Sinus inflammation
causes a runny nose

Sinus inflammation
causes headaches

Copied from:
https://www.ark.cs.cmu.e
du/PGM/index.php/Curre
nt_events_(2010)



Querying the Model

* Inference (e.g., do Fl AlL
you have allergies?) | |

S.l.

* What's the best
explanation?

R.N. H.

* Active data collection
(what is the next best
r.v. to observe?)

Copied from:
https://www.ark.cs.cmu.e
du/PGM/index.php/Curre
nt_events_(2010)



Factored Joint Distribution

* Want: ey () ey (o
P(F, A, S, R, H) ,
= P(F) PSR A) St
P(A)
D(S | F’ A) P(R|S) R.;. P(H | S) ;
P(R | S)
P(H | S)

Copied from:
https://www.ark.cs.cmu.e
du/PGM/index.php/Curre
nt_events_(2010)



Factored Joint Distribution

* Want: ey () ey (o
P(F, A, S, R, H) ,
= P(F) P(S|FA) | St
P(A)
D(S | F’ A) P(R|S) R.;. P(H | S) ;
P(R | S)
P(H | S)

* How many parameters?

Copied from:
https://www.ark.cs.cmu.e
du/PGM/index.php/Curre
nt_events_(2010)



Independence Assumptions

* Notice: knOWing the p(F) | Fl P(A) Al
value of S separates the
other variables from P(S | F, A) O

each other in the graph.

4 =

P(R | S) R.N. P(H | S) H.

Copied from:
https://www.ark.cs.cmu.e
du/PGM/index.php/Curre
nt_events_(2010)



Independence Assumptions

* In this model,-RLH

Copied from:
https://www.ark.cs.cmu.e
du/PGM/index.php/Curre
nt_events_(2010)



Independence Assumptions

* In this model,-RLH
e But: RLH|S

Copied from:
https://www.ark.cs.cmu.e
du/PGM/index.php/Curre
nt_events_(2010)



Independence Assumptions

In this model, -R L H p(F) | Fu p(a) | Al

But: RLH|S :
P(S | F, A)

S

P(R|S) | RN. P(H | S)

Also: = A1l H
But: ALH|S

s

H.

Copied from:
https://www.ark.cs.cmu.e
du/PGM/index.php/Curre
nt_events_(2010)



Marginal Independence

* |n this model, F L A
* P(F, A) =P(F) P(A)

Copied from:
https://www.ark.cs.cmu.e
du/PGM/index.php/Curre
nt_events_(2010)



Marginal Independence

In this model, F L A Py ) pea)
P(F, A) = P(F) P(A)

PS|FA) | >

. i PR|S) [ RN P(H | S)
Marginal independence

of a set:
VYEX ZEX Y LZ

Let X = {A, F}

All.

Copied from:
https://www.ark.cs.cmu.e
du/PGM/index.php/Curre
nt_events_(2010)



Conditional Independence

* |n this model, -F 1 H P(F) | Flu p(a) | Al

 P(F, H)=P(F | H) P(H) ,
# P(F) P(H), in general PSTRA) | 3

P(R | S) R.N. P(H | S) H.

Copied from:
https://www.ark.cs.cmu.e
du/PGM/index.php/Curre
nt_events_(2010)



Conditional Independence

* |n this model, -F 1 H Py | ) sy (AT
* P(F, H)=P(F | H) P(H)

# P(F) P(H), in general P IFA) | St
Given S, however ... PRIS) | RN P | S) [ *.
* FLH]|S

* P(RH|S)=P(F|S)P(H]|S)

— How do we know this?

Copied from:
https://www.ark.cs.cmu.e
du/PGM/index.php/Curre
nt_events_(2010)



What's Independent?

* FLA|®

Copied from:
https://www.ark.cs.cmu.e
du/PGM/index.php/Curre
nt_events_(2010)



What's Independent?

*FLA|®
* ALF |2

Copied from:
https://www.ark.cs.cmu.e
du/PGM/index.php/Curre
nt_events_(2010)



What's Independent?

* FLA | L P(F) | P ) ey (A
« ALF|®

P(S|FA) | >

* RL{F A H}|S : »

P(R | S) R.N. P(H | S) H.

Copied from:
https://www.ark.cs.cmu.e
du/PGM/index.php/Curre
nt_events_(2010)



What's Independent?

FLA|@ P(F) | Fu ) pea)
ALF|o2
PSIRA) | 3
RL{F A H}|S .
P(R|S) | RN P(H | S)

HL{FAR}|S

All.

Copied from:
https://www.ark.cs.cmu.e
du/PGM/index.php/Curre
nt_events_(2010)



New Edge: What’s Independent?

F J_ A | & P(F) Flu | P(A) \AII.
ALF|2

P IfFA) | 3
RL{~A H}|S,F .
H | {F A R} | S P(R[S,F) | RN PH|S) | H

Copied from:
https://www.ark.cs.cmu.e
du/PGM/index.php/Curre
nt_events_(2010)



A Puzzle

'FJ.A'S? P(F)

Copied from:
https://www.ark.cs.cmu.e
du/PGM/index.php/Curre
nt_events_(2010)



A Puzzle

. F J_ A | S ? P(F) Flu | P(A) | All.

PS|FA) | >
* In general, no.

— This independence P
statement does not PR|S) | RN. PH|S) [ H
follow from the Local
Markov assumption.

* -(FLA]|YS)

Copied from:
https://www.ark.cs.cmu.e
du/PGM/index.php/Curre
nt_events_(2010)



A More Complex Example

Copied from:
https://www.ark.cs.cmu.e
du/PGM/index.php/Curre
nt_events_(2010)



A More Complex Example

Local Markov Assumption for G!

Copied from:
https://www.ark.cs.cmu.e
du/PGM/index.php/Curre
nt_events_(2010)



A More Complex Example

Easy:
e —(I LJ]|K)

Copied from:
https://www.ark.cs.cmu.e
du/PGM/index.php/Curre
nt_events_(2010)

V-Structure!



A More Complex Example

Harder:
e -(ELF|K)

Copied from:
https://www.ark.cs.cmu.e
du/PGM/index.php/Curre
nt_events_(2010)

“Flow of influence” along chains



A More Complex Example

Harder:
e -(ELF|K)

Copied from:

L | Markov A on for K https://www.ark.cs.cmu.e
ocal Markov Assumption for K du/PGM/index.php/Curre

nt_events_(2010)



A More Complex Example

Harder:

« -(E_LF|K)

Easy:

e (FLK|I)

Claim:

e (ELF|IK)

Copied from:

interaction? Corparindoephafame

nt_events_(2010)



A More Complex Example

Local Markov Assumption (A, B)!

Copied from:
https://www.ark.cs.cmu.e
du/PGM/index.php/Curre
nt_events_(2010)



A More Complex Example

Easy:
« -(ALB|D)

Copied from:
https://www.ark.cs.cmu.e
du/PGM/index.php/Curre
nt_events_(2010)

V-Structure!



A More Complex Example

Easy:
« -(ALB|D)

Harder:
 -(FLG | D)

Copied from:
“ ) ” ] https://www.ark.cs.cmu.e
Flow of influence” again. du/PGM/index.php/Curre
nt_events_(2010)



A More Complex Example

Easy:

« -(ALB| D)
Harder:

* -(FLG| D)
e -(FLG|H)

Copied from:
https://www.ark.cs.cmu.e
du/PGM/index.php/Curre
nt_events_(2010)

Flow of influence, again?



A More Complex Example

More flow of influence!

H)

H, K)

Copied from:
https://www.ark.cs.cmu.e
du/PGM/index.php/Curre
nt_events_(2010)



A More Complex Example

Easy:
_ _*~(ALB]|D)
OO

Haraer:

« -(FL G| D)

. _,(: 1 G -|)

e «(FLG|H,K)

* (FLG|H,A)

Copied from:
Observing A can “block” flow! gtt/p;c-;«/lm/lmveirﬁhc;/cct]:rs

nt_events_(2010)



Another Example
0-0-00-0-9 9@

&

&

* If | observe nothing, then A 1 H.

Copied from:
https://www.ark.cs.cmu.e
du/PGM/index.php/Curre
nt_events_(2010)



Another Example
0-0-00-0-¢9 9@

&

&

* If| observe C, then A L H.

Copied from:
https://www.ark.cs.cmu.e
du/PGM/index.php/Curre
nt_events_(2010)



Another Example
0-0-00-0-9 9@

&

&

* |f | observe C and F, then =(A L H).

Copied from:
https://www.ark.cs.cmu.e
du/PGM/index.php/Curre
nt_events_(2010)



Another Example
0-0-0-0-0-9 9@

&

&

* |f | observe C and F, then =(A L H).
— But if | observe B, D, E, and/or G, then A L H.

Copied from:
https://www.ark.cs.cmu.e
du/PGM/index.php/Curre
nt_events_(2010)



Another Example
0-0-00-0-9 9@

&

&

* |f | observe C and F, then =(A L H).

Copied from:
https://www.ark.cs.cmu.e
du/PGM/index.php/Curre
nt_events_(2010)



Another Example
0-0-00-0-¢9 9@

o

&

* |f| observe Cand F, then -(A L H).

Copied from:
https://www.ark.cs.cmu.e
du/PGM/index.php/Curre
nt_events_(2010)



Another Example
0-0-00-0-¢9 9@

&

&

* |f | observe C and F”, then -(A L H).

Copied from:
https://www.ark.cs.cmu.e
du/PGM/index.php/Curre
nt_events_(2010)



The Real Inference Problem

* Given a Bayesian network over X, and a value
X € Val(X.), compute P(X, = x).

PXj=x)= »  PXi=uaz1,..X;=2,..X,
a:_iEVa](X_i)

 Assume we are given a graphical model.

* Want:

PX |E = e P(X.E =e)

P(E =e)
x P(X,E =¢e)

= Y PX,E=eY =y)
yeVal(Y)

Tp)



Such exact inference is hopeless
In general.

Let’s just try it anyway.



Markov Chain

* Let’s calculate P(B) from
things we have.

: Hl °

Copied from:
https://www.ark.cs.cmu.e
du/PGM/index.php/Curre
nt_events_(2010)



Markov Chain

A
* Let’s calculate P(B) from
things we have. .
P(B) = Y P(A=a)P(B|A=a)
aeVal(A) 4
C
D

Copied from:
https://www.ark.cs.cmu.e
du/PGM/index.php/Curre
nt_events_(2010)



Markov Chain

* Let’s calculate P(B) from
things we have.

P(A=a)P(B| A=a)

F(Aft,ﬁ

* Note that C and D do not
matter.

a€Val(A)

Copied from:
https://www.ark.cs.cmu.e
du/PGM/index.php/Curre
nt_events_(2010)



Markov Chain

* Let’s calculate P(B) from
things we have.

P(B) = Y P(A=a)P(B|A=a)
a€Val(A)
.
0 PB|A) [0]1
1 0 = .
1 1

Copied from:
https://www.ark.cs.cmu.e
du/PGM/index.php/Curre
nt_events_(2010)



Markov Chain

* We now have a Bayesian
network for the marginal
distribution P(B, C, D).

P(C|B)

Copied from:
https://www.ark.cs.cmu.e
du/PGM/index.php/Curre
nt_events_(2010)



Markov Chain

* We can repeat the same
process to calculate P(C).

B
P(C) = ) PB=bP{C|B=0
beVal(B) v
C
* We already have P(B)!
D

Copied from:
https://www.ark.cs.cmu.e
du/PGM/index.php/Curre
nt_events_(2010)



Markov Chain

* We can repeat the same
process to calculate P(C).

P(C) = ) PB=bP{C|B=0
beVal(B)

0 Pic|B) |0 |1

O—CC

Copied from:
https://www.ark.cs.cmu.e
du/PGM/index.php/Curre
nt_events_(2010)



Markov Chain

* We now have P(C, D).

* Marginalizing out Aand B
happened in two steps,
and we seem to be 0
exploiting the Bayesian 1
network structure.

P(D|C) [0 |1 D

Copied from:

1 https://www.ark.cs.cmu.e
du/PGM/index.php/Curre
nt_events_(2010)




Markov Chain

* Last step to get P(D):

P(D) = Z P(C=c¢)P(D|C=c)

cEVal
-
0 PD|C) (0 |1
1 0 = .
1 1

Copied from:
https://www.ark.cs.cmu.e
du/PGM/index.php/Curre
nt_events_(2010)



Markov Chain

* Notice that the same step happened for each
random variable:

— We created a new CPD over the variable and its
“successor”

— We summed out (marginalized) the variable.

POy = Y Y Y PA=aPB=b|A=a)P(C=c|B=bPD|C=c)
asVal(A} beVal(B} ceVal(C)

= > PD|C=c¢ Y PlC=c|B=b > PlA=a)P(B=b|A=a)

ceVal{(C) beVal( B) acVal( A)

Copied from:
https://www.ark.cs.cmu.e
du/PGM/index.php/Curre
nt_events_(2010)



That Was Variable Elimination

We reused computation from previous steps and
avoided doing the same work more than once.

— Dynamic programming!

We exploited the Bayesian network structure

(each subexpression only depends on a small
number of variables).

Exponential blowup avoided!

But: is there a general technique for any
graphical model?



A more complex example

A food web

What is the probability that hawks are leaving given that the grass condition is poor?

Copied from Prof Eric Xing at http://www.cs.cmu.edu/~epxing/Class/10708/slides/lecture7-ExactInference.pdf



e Needtoeliminate: BCD EFGH

JJJJJJ

Initial factors: 0 0

P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f |a)P(g|e)P(h]e, f) CE> CF>
Choose an elimination order: H6 FED,CB G 0
Step 1:

e Conditioning (fix the evidence node (i.e., h) on its observed value (i.e., Zj):

my,(e, f)=p(h=h|e,f)

e This step is isomorphic to a marginalization step: (S O

m, (e, f) = Zp(hmf)é(h = h) G

(&)

Copied from Prof Eric Xing at http://www.cs.cmu.edu/~epxing/Class/10708/slides/lecture7-ExactInference.pdf



Query: P(B |h) o

e Need to eliminate: BC D EF 6

Initial factors: 6 0

P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f |a)P(g|e)P(h]e, [) CE)
= P(a)P(b)P(c|b)P(d|a)P(e|c.d)P(f|a)P(g|e)m, e, f)

Step 2: Eliminate &

compute |
mg(e)=» p(gle)=1
(©=3 _
= P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)m,(e)m,(e, f) (L
= P(a)P(b)P(c|b)P(d|a)P(e|c.d)P(f |a)m, (e, [) &

Keep eliminating F,E,D,C,B in order

Copied from Prof Eric Xing at http://www.cs.cmu.edu/~epxing/Class/10708/slides/lecture7-ExactInference.pdf



® Query: P(B |h) I o

e Need to eliminate: B

e [nitial factors: G 0

P(a)P(b)P(c|d)P(d|a)P(e|c,d)P(f|a)P(g|e)P(hle, )

= P(a)P(b)P(c| d)P(d |a)P(e|c.d)P(f | a)P(g | e)m,(e. f) £ L

= P(a)P(b)P(c|d)P(d|a)P(e|c,d)P(f |a)m, (e, f) e 0

= P(a)P(b)P(c|d)P(d |a)P(e|c,d)m(a,e)

= P(a)P(b)P(c|d)P(d|a)ym (a,c,d)
)
)
)

= P(a)P(b)P(c|d)m,(a,c)
= P(a)P(b)m (a,b)

= P(a)m,(a)

ﬁ\ﬁ\ﬁ_\ﬁ\ﬁ\ﬁ\

e Final Step: Wrap-up p(a.h) = p(a)ym,(a), p(h)= E p(a)m,(a)
playm,(a)
=Pl - 5 am@

Copied from Prof Eric Xing at http://www.cs.cmu.edu/~epxing/Class/10708/slides/lecture7-ExactInference.pdf



Cumbersome

* Maybe graph way could be easier

* Begin by moralizing the Bayesian network
* Get parent nodes married if they have a common child
* |Ignore directedness of the graph

e W & W
0 W CO—)



S @& & g
® @ ® @ ® @ ® @D
GO S—& '
S @& @
m, (e, f) m,(e) m,(e,a) m,(a,c,d)

@ @ (@ = @ = @
=)
@S5 e,

}nd(a: C) n/l{‘(aﬂb) n?b(a)

Copied from Prof Eric Xing at http://www.cs.cmu.edu/~epxing/Class/10708/slides/lecture7-ExactInference.pdf



m,(a,c,d)

= Y ple

L'.l

c,d)m,(e)m,(a,e)

Copied from Prof Eric Xing at http://www.cs.cmu.edu/~epxing/Class/10708/slides/lecture7-ExactInference.pdf



Hopefully by now you can decipher

_'O_'O‘

Z d,n

Wan
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O
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And maybe even ...
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