Deep Networks

Introduction to Machine Learning - 10-701/15-781

Slides in Keynote and PDF.

Content

  • Overview

    • CPU performance, data, and the sweet spot for algorithms

    • Perceptron and going nonlinear (wide or deep)

    • Backpropagation

  • Layers

    • Fully connected

    • Convolutions

    • Invariances for images

    • Whole system training

  • Objective functions

    • Classification and SoftMax

    • Regression

    • Autoencoder

    • Contrastive Estimation

    • Invariances

  • Optimization

    • Stochastic Gradient Descent

    • Learning rates, AdaGrad, Minibatches

    • Momentum

    • Dropout and DropConnect for regularization

  • Memory

    • Recurrent Networks

    • Hidden Markov Models

    • Long Short Term Memory

    • Memory Networks

Supplementary material

Video