| 
Deep NetworksIntroduction to Machine Learning - 10-701/15-781  Slides in Keynote and PDF.  Content
Overview 
CPU performance, data, and the sweet spot for algorithmsPerceptron and going nonlinear (wide or deep)BackpropagationLayers 
Fully connectedConvolutionsInvariances for imagesWhole system trainingObjective functionsOptimization 
Stochastic Gradient DescentLearning rates, AdaGrad, MinibatchesMomentumDropout and DropConnect for regularizationMemory 
Recurrent NetworksHidden Markov ModelsLong Short Term MemoryMemory Networks Supplementary material
Nair and Hinton, 2010, Rectified Linear UnitesSimonyan and Zisserman, 2014, Narrow and deep beats wide and shallowSzegedy et al., 2014 Inception Layer in GoogLeNetLe Cun, Bottou, Bengio, Haffner, 2001 Whole system trainingGrefenstette et al, 2014 Autoencoder between domainsSenior, Heigold, Ranzato and Yang, 2013 Learning Rate ComparisonDuchi, Hazan, Singer, 2010 AdaGradSrivastava, Hinton, Krizhevski, Sutskever, Salakhutdinov, 2015 DropoutGraves, 2013 LSTM TutorialGraves, Wayne, Danihelka, 2014, Neural Turing MachineWeston, Chopra, Bordes, 2014, Memory Networks Video
 
 |