Some Tricks

For efficient implementation

Logistic Regression

- Another popular classification model
- Usual setting
- Observe data $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$
- with labels $y_{i} \in\{-1,+1\}$
- Assume the label probability follows:

$$
\begin{aligned}
p(y=1 \mid x) & =g(\langle w, x\rangle) \\
& =\frac{1}{1+\exp (-\langle w, x\rangle)}
\end{aligned}
$$

Analysing further

- Probability for other class

$$
\begin{aligned}
p(y=-1 \mid x) & =1-p(y=1 \mid x) \\
& =1-\frac{1}{1+\exp (-\langle w, x\rangle)} \\
& =\frac{\exp (-\langle w, x\rangle)}{1+\exp (-\langle w, x\rangle)} \\
& =\frac{1}{1+\exp (\langle w, x\rangle)}
\end{aligned}
$$

- Thus, overall we have:

$$
p(y \mid x)=\frac{1}{1+\exp (-y\langle w, x\rangle)}
$$

Training LR

- Maximum Likelihood Estimation $\underset{w}{\operatorname{maximize}} \sum_{i} \log p\left(y_{i} \mid x_{i}, w\right)$
- Equivalently

$$
\underset{w}{\operatorname{minimize}} \sum_{i} \log \left[1+\exp \left(-y_{i}\left\langle w, x_{i}\right\rangle\right)\right]
$$

- Add L_{2} regularizer $\underset{w}{\operatorname{minimize}}$

$$
\sum_{i} \log \left[1+\exp \left(-y_{i}\left\langle w, x_{i}\right\rangle\right)\right]+\lambda\|w\|^{2}
$$

- Let's solve this optimization problem in an efficient manner!

Logistic Regression vs SVM

- Recall SVM basically solves

$$
\underset{w}{\operatorname{minimize}} \sum_{i} \max \left[0,1-y_{i}\left\langle w, x_{i}\right\rangle\right]+\lambda\|w\|^{2}
$$

- LR basically solves

$$
\underset{w}{\operatorname{minimize}} \sum_{i} \log \left[1+\exp \left(-y_{i}\left\langle w, x_{i}\right\rangle\right)\right]+\lambda\|w\|^{2}
$$

- That is just replace max with softmax!

Gradient Descent to solve LR

- The objective function is:

$$
J(w)=\sum_{i=1}^{n} \log \left[1+\exp \left(-y_{i} \sum_{j=1}^{d} w_{j} x_{i j}\right)\right]+\lambda \sum_{j=1}^{d} w_{j}^{2}
$$

- How to evaluate this?

```
J=0;
for i=1:n
    inner_product = 0;
    for j=1:d
        inner_product = inner_product + w(j)*x(i,j);
    end
    J = J + log(1 + exp( - y(i)*inner_product ) );
end
for j=1:d
    J = J + lambda*w(j)^2;
end
```


Computing Objective Function

- The objective function is:

$$
J(w)=\sum_{i=1}^{n} \log \left[1+\exp \left(-y_{i} \sum_{j=1}^{d} w_{j} x_{i j}\right)\right]+\lambda \sum_{j=1}^{d} w_{j}^{2}
$$

- How to evaluate this?

```
```

J=0;

```
```

J=0;
for i=1:n
for i=1:n
inner_product = 0;
inner_product = 0;
for j=1:d

```
    for j=1:d
```

```
        inner_product = inner_product + w(j)*X(i,j);
```

 inner_product = inner_product + w(j)*X(i,j);
 end
 end
 J = J + log(1 + exp(- y(i)*inner_product));
 J = J + log(1 + exp(- y(i)*inner_product));
 end
end
for j=1:d
for j=1:d
J = J + lambda*w(j)^2;
J = J + lambda*w(j)^2;
end

```
end
```

 Never!

Computing Objective Function

- The objective function is:

$$
J(w)=\sum_{i=1}^{n} \log \left[1+\exp \left(-y_{i} \sum_{j=1}^{d} w_{j} x_{i j}\right)\right]+\lambda \sum_{j=1}^{d} w_{j}^{2}
$$

- How to evaluate this?

$$
\text { Noteventhig! } \begin{aligned}
& \mathrm{f}=0 ; \\
& \text { for } i=1: n \\
& J=J+\log \left(1+\exp \left(-y(i) * x(i,:)^{*} w\right)\right) ; \\
& \text { end } \\
& J=J+\operatorname{sum}(w . \wedge 2) ;
\end{aligned}
$$

Computing Objective Function

- The objective function is:

$$
J(w)=\sum_{i=1}^{n} \log \left[1+\exp \left(-y_{i} \sum_{j=1}^{d} w_{j} x_{i j}\right)\right]+\lambda \sum_{j=1}^{d} w_{j}^{2}
$$

- How to evaluate this?

$$
J=\operatorname{sum}\left(\log \left(1+\exp \left(-\left(X^{*} w\right) \cdot{ }^{*} y\right)\right)\right)+\operatorname{lambda*} \operatorname{sum}^{*}(w \cdot \wedge 2) ;
$$

- Short code!
- Matrix-vector products and summing vectors are highly optimized

Matrix Multiplication

- Never write vector or matrix operations by yourself!
- Always use libraries
- 100x faster!
- MKL or BLAS maybe intimidating to use directly
- Good News:
- Matlab already does it for you
- Eigen as wrapper
- Almost matlab like API in C++
:- f:\manzilz\documents\visual studio 2013\Projects\MKL\Debug\MKL.exe
Initializing data for matrix multiplication $C=A \times B$ for matrix $\mathrm{A}(2000 \times 200)$ and matrix $\mathrm{B}(200 \times 1000)$

Allocating memory for matrices aligned on 64-byte boundary for better performance

Intializing matrix data
Measuring performance of matrix product using triple nested loop
== Matrix multiplication using triple nested loop completed =:
== at 4202.98626 milliseconds $==$
Measuring performance of matrix product using Intel(R) MKL dgemm function Uia CBLAS interface
== Matrix multiplication using Intel(R) MKL dgemm completed ==
== at 18.77745 milliseconds ==
Deallocating memory
Example completed.
Press any key to continue

Exercise: Computing Gradient

- For the gradient descent approach, next thing needed is the gradient!

$$
\frac{\partial J(w)}{\partial w_{k}}=\sum_{i=1}^{n} \frac{y_{i} x_{i k}}{1+\exp \left(y_{i} \sum_{j=1}^{d} w_{j} x_{i j}\right)}+2 \lambda w_{k}
$$

Exercise: Computing Gradient

- For the gradient descent approach, next thing needed is the gradient!

$$
\frac{\partial J(w)}{\partial w_{k}}=\sum_{i=1}^{n} \frac{y_{i} x_{i k}}{1+\exp \left(y_{i} \sum_{j=1}^{d} w_{j} x_{i j}\right)}+2 \lambda w_{k}
$$

- Get the entire gradient vector at one go!
- One way using repmat

$$
\begin{aligned}
& \left.b=\left(1+\exp \left(\left(X^{*} w\right) . .^{*}\right)\right)\right) . .^{*} y \\
& b=\operatorname{repmat}(b, 1,5) ; \\
& g=\operatorname{sum}(X . / b)^{\prime}+2^{*} \operatorname{lambda*} ;
\end{aligned}
$$

Exercise: Computing Gradient

- For the gradient descent approach, next thing needed is the gradient!

$$
\frac{\partial J(w)}{\partial w_{k}}=\sum_{i=1}^{n} \frac{y_{i} x_{i k}}{1+\exp \left(y_{i} \sum_{j=1}^{d} w_{j} x_{i j}\right)}+2 \lambda w_{k}
$$

- Get the entire gradient vector at one go!
- More memory efficient

$$
\begin{aligned}
& \left.\mathrm{b}=\left(1+\exp \left(\left(\mathrm{X}^{*} \mathrm{w}\right) . .^{*} \mathrm{y}\right)\right)\right) .^{*} \mathrm{y} \\
& \mathrm{~g}=\text { sum(bsxfun(@rdivide, X,b)); } \\
& \mathrm{g}=\mathrm{g}^{\prime}+2^{*} \text { lambda*}{ }^{*} \text {; }
\end{aligned}
$$

Computing Gram Matrices

$$
\begin{aligned}
& \quad K_{i j}=\exp \left(-\left\|x_{i}-x_{j}\right\|^{2}\right) \\
& \text { nsq=sum(X.^2,2); } \\
& \text { K=bsxfun(@minus,nsq,(2*X)*X.'); } \\
& \text { K=bsxfun(@plus,nsq.',K); } \\
& \text { K=exp(-K); }
\end{aligned}
$$

Algebraic Tricks

- Hopefully if you will solve HW5 bonus and get a multi-variate student t-distribution for the posterior predictive of Normal Inverse Wishart:

PDF of a general $t_{\nu}(\mathbf{x} ; \boldsymbol{\mu}, \boldsymbol{\Sigma})=\frac{\Gamma[(\nu+p) / 2]}{\Gamma(\nu / 2) \nu^{p / 2} \pi^{p / 2}|\boldsymbol{\Sigma}|^{1 / 2}\left[1+\frac{1}{\nu}(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right]^{(\nu+p) / 2}}$

- So you need the determinant and inverse of Σ - expensive $O\left(d^{3}\right)$
- Moreover, posterior predictive has to be computed many times for different \tilde{X}

Cholesky Decomposition

- The update in posterior predictive for Σ would be

$$
\tilde{\Sigma}=\Sigma_{n}+\frac{\kappa_{n}+1}{\kappa_{n}}\left(\tilde{x}-\mu_{n}\right)\left(\tilde{x}-\mu_{n}\right)^{T}
$$

- So instead of computing this update:
- Suppose we have cholesky decomposition of Σ_{n}
- Then we calculate only the rank-one update to obtain $\tilde{\Sigma}$

Cholesky Updates

- Suppose A is a positive definite matrix with L as its cholesky decomposition.
- Now if we obtain A^{\prime} from A by an update of the form

$$
A^{\prime}=A+x x^{T}
$$

- then the cholesky decomposition L^{\prime} of A^{\prime} can be obtained by an update operation on L. (Rank 1 update)
- Similarly if we have $A=A^{\prime}-x x^{T}$, then we can perform a Rank1 downdate to get L from L^{\prime}

Cholesky Update

```
function [L] = cholupdate(L,x)
    p = length(x);
    x = x';
    for k=1:p
        r = sqrt(L(k,k)^2 + x(k)^2);
        c = r / L(k, k);
        s = x(k) / L(k, k);
        L(k, k) = r;
        L(k,k+1:p) = (L(k,k+1:p) + s*x(k+1:p)) / c;
        x(k+1:p) = c*x(k+1:p) - s*L(k, k+1:p);
    end
end
```

- This algorithm is $O\left(D^{2}\right)$!

Nice Properties

- $|A|$ can be computed from L by

$$
\log (|A|)=2 * \sum_{i=1}^{D} \log (L(i, i))
$$

- Now lets try to compute $b^{T} A^{-1} b$

$$
\begin{aligned}
b^{T} A^{-1} b & =b^{T}\left(L L^{T}\right)^{-1} b \\
& =b^{T}\left(L^{-1}\right)^{T} L^{-1} b \\
& =\left(L^{-1} b\right)^{T}\left(L^{-1} b\right)
\end{aligned}
$$

- Therefore compute $\left(L^{-1} b\right)$ and multiply its transpose with itself

Triangular Solver

- $\left(L^{-1} b\right)$ is the solution of

$$
L x=b
$$

- Remember L is a lower triangular matrix, therefore the above equation can be solved very efficiently using forward substitution!

$$
\begin{array}{cccc}
l_{1,1} x_{1} & & & b_{1} \\
l_{2,1} x_{1} & +l_{2,2} x_{2} & & \\
\vdots & \vdots & \ddots & b_{2} \\
l_{m, 1} x_{1} & +l_{m, 2} x_{2} & +\cdots+l_{m, m} x_{m} & \\
& = & b_{m}
\end{array}
$$

Miscellaneous Tricks

- Finding the min/max of a matrix of N-d array
[MinValue, MinIndex] = $\min (A(:))$; \%find minimum element in A
MinSub = ind2sub(size(A), MinIndex); \%convert MinIndex to subscripts
- Try to avoid inverse of a matrix!
- Typically you only need $\mathrm{x}=A \backslash \mathrm{~b}$
- This invokes appropriate linear solver
- Much more efficient and numerically stable

