Some Tricks

For efficient implementation

Logistic Regression

- Another popular classification model
- Usual setting
 - Observe data $x_1,...,x_n \in \mathbb{R}^d$
 - with labels $y_i \in \{-1, +1\}$
- Assume the label probability follows:

$$p(y = 1|x) = g(\langle w, x \rangle)$$
$$= \frac{1}{1 + \exp(-\langle w, x \rangle)}$$

Analysing further

• Probability for other class p(y = -1|x) = 1 - p(y = 1|x)

 $= 1 - \frac{1}{1 + \exp(-\langle w, x \rangle)}$ $= \frac{\exp(-\langle w, x \rangle)}{1 + \exp(-\langle w, x \rangle)}$ $= \frac{1}{1 + \exp(\langle w, x \rangle)}$ $p(y|x) = \frac{1}{1 + \exp(-y\langle w, x \rangle)}$

• Thus, overall we have:

Training LR

- Maximum Likelihood Estimation $\max_{w} \sum_{i} \log p(y_i | x_i, w)$ • Equivalently $\min_{w} \sum_{i} \log[1 + \exp(-y_i \langle w, x_i \rangle)]$ • Add L_2 regularizer $\min_{w} \sum_{i} \log[1 + \exp(-y_i \langle w, x_i \rangle)] + \lambda ||w||^2$
- Let's solve this optimization problem in an efficient manner!

Logistic Regression vs SVM

• Recall SVM basically solves

$$\underset{w}{\text{minimize}} \quad \sum_{i} \max[0, 1 - y_i \langle w, x_i \rangle] + \lambda \|w\|^2$$

• LR basically solves

$$\underset{w}{\text{minimize}} \quad \sum_{i} \log[1 + \exp(-y_i \langle w, x_i \rangle)] + \lambda \|w\|^2$$

• That is just replace max with softmax!

Gradient Descent to solve LR

• The objective function is:

$$J(w) = \sum_{i=1}^{n} \log \left[1 + \exp\left(-y_i \sum_{j=1}^{d} w_j x_{ij}\right) \right] + \lambda \sum_{j=1}^{d} w_j^2$$

• How to evaluate this?

J=0; for i=1:n inner_product = 0; for j=1:d inner_product = inner_product + w(j)*x(i,j); end J = J + log(1 + exp(- y(i)*inner_product)); end for j=1:d J = J + lambda*w(j)^2; end

Computing Objective Function

• The objective function is:

$$J(w) = \sum_{i=1}^{n} \log \left[1 + \exp\left(-y_i \sum_{j=1}^{d} w_j x_{ij}\right) \right] + \lambda \sum_{j=1}^{d} w_j^2$$

• How to evaluate this?

Never!

J=0; for i=1:n inner_product = 0; for j=1:d inner_product = inner_product + w(j)*X(i,j); end J = J + log(1 + exp(- y(i)*inner_product)); end for j=1:d J = J + lambda*w(j)^2; end

Computing Objective Function

• The objective function is:

$$J(w) = \sum_{i=1}^{n} \log \left[1 + \exp\left(-y_i \sum_{j=1}^{d} w_j x_{ij}\right) \right] + \lambda \sum_{j=1}^{d} w_j^2$$

• How to evaluate this?

Not even this!

J = 0; for i=1:n J = J + log(1 + exp(- y(i)*X(i,:)*w)); end J = J + sum(w.^2);

Computing Objective Function

• The objective function is:

$$J(w) = \sum_{i=1}^{n} \log \left[1 + \exp\left(-y_i \sum_{j=1}^{d} w_j x_{ij}\right) \right] + \lambda \sum_{j=1}^{d} w_j^2$$

• How to evaluate this?

J = sum(log(1 + exp(- (X*w).*y))) + lambda*sum(w.^2);

- Short code!
- Matrix-vector products and summing vectors are highly optimized

Matrix Multiplication

- Never write vector or matrix operations by yourself!
- Always use libraries
 - 100x faster!
- MKL or BLAS maybe intimidating to use directly
- Good News:
 - Matlab already does it for you
 - Eigen as wrapper
 - Almost matlab like API in C++

	f:\manzilz\documents\visual studio 2013\Projects\MKL\Debug\MKL.exe
	Initializing data for matrix multiplication C=A×B for matrix A(2000x200) and matrix B(200x1000)
	Allocating memory for matrices aligned on 64-byte boundary for better performance
	Intializing matrix data
h	leasuring performance of matrix product using triple nested loop
	== Matrix multiplication using triple nested loop completed == == at 4202.98626 milliseconds ==
	Measuring performance of matrix product using Intel(R) MKL dgemm function Dia CBLAS interface
	== Matrix multiplication using Intel(R) MKL dgemm completed == == at 18.77745 milliseconds ==
1	Deallocating memory
E	Example completed.
Pr	ress any key to continue

Exercise: Computing Gradient

• For the gradient descent approach, next thing needed is the gradient!

$$\frac{\partial J(w)}{\partial w_k} = \sum_{i=1}^n \frac{y_i x_{ik}}{1 + \exp\left(y_i \sum_{j=1}^d w_j x_{ij}\right)} + 2\lambda w_k$$

Exercise: Computing Gradient

• For the gradient descent approach, next thing needed is the gradient!

$$\frac{\partial J(w)}{\partial w_k} = \sum_{i=1}^n \frac{y_i x_{ik}}{1 + \exp\left(y_i \sum_{j=1}^d w_j x_{ij}\right)} + 2\lambda w_k$$

- Get the entire gradient vector at one go!
- One way using repmat

Exercise: Computing Gradient

• For the gradient descent approach, next thing needed is the gradient!

$$\frac{\partial J(w)}{\partial w_k} = \sum_{i=1}^n \frac{y_i x_{ik}}{1 + \exp\left(y_i \sum_{j=1}^d w_j x_{ij}\right)} + 2\lambda w_k$$

- Get the entire gradient vector at one go!
- More memory efficient

b = (1 + exp((X*w).*y))) .* y
g = sum(bsxfun(@rdivide, X,b));
g = g' + 2*lambda*w;

Computing Gram Matrices

$$K_{ij} = \exp(-\|x_i - x_j\|^2)$$

nsq=sum(X.^2,2);

K=bsxfun(@minus,nsq,(2*X)*X.'); K=bsxfun(@plus,nsq.',K); K=exp(-K);

Algebraic Tricks

• Hopefully if you will solve HW5 bonus and get a multi-variate student t-distribution for the posterior predictive of Normal Inverse Wishart:

PDF of a general
$$t_{\nu}(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{\Gamma[(\nu+p)/2]}{\Gamma(\nu/2)\nu^{p/2}\pi^{p/2} |\boldsymbol{\Sigma}|^{1/2} \left[1 + \frac{1}{\nu}(\mathbf{x}-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right]^{(\nu+p)/2}}$$

- So you need the determinant and inverse of Σ expensive $O(d^3)$
- Moreover, posterior predictive has to be computed many times for different $\tilde{\boldsymbol{x}}$

Cholesky Decomposition

• The update in posterior predictive for Σ would be

$$\tilde{\Sigma} = \Sigma_n + \frac{\kappa_n + 1}{\kappa_n} (\tilde{x} - \mu_n) (\tilde{x} - \mu_n)^T$$

- So instead of computing this update:
 - Suppose we have cholesky decomposition of Σ_n
 - Then we calculate only the rank-one update to obtain $\tilde{\Sigma}$

Cholesky Updates

- Suppose A is a positive definite matrix with L as its cholesky decomposition.
- Now if we obtain A' from A by an update of the form

$$A' = A + xx^T$$

- then the cholesky decomposition L' of A' can be obtained by an update operation on L. (Rank 1 update)
- Similarly if we have $A = A' xx^T$, then we can perform a Rank1 downdate to get L from L'

Cholesky Update

```
function [L] = cholupdate(L,x)
    p = length(x);
    x = x';
    for k=1:p
        r = sqrt(L(k,k)^2 + x(k)^2);
        c = r / L(k, k);
        s = x(k) / L(k, k);
        L(k, k) = r;
        L(k,k+1:p) = (L(k,k+1:p) + s*x(k+1:p)) / c;
        x(k+1:p) = c*x(k+1:p) - s*L(k, k+1:p);
    end
end
end
```

This algorithm is O(D²)!

Nice Properties

• |A| can be computed from L by

$$log(|A|) = 2 * \sum_{i=1}^{D} log(L(i, i))$$

• Now lets try to compute
$$b^T A^{-1} b$$

$$b^{T} A^{-1} b = b^{T} (LL^{T})^{-1} b$$

= $b^{T} (L^{-1})^{T} L^{-1} b$
= $(L^{-1} b)^{T} (L^{-1} b)^{T}$

 Therefore compute (L⁻¹b) and multiply its transpose with itself

Triangular Solver

• $(L^{-1}b)$ is the solution of

$$Lx = b$$

 Remember L is a lower triangular matrix, therefore the above equation can be solved very efficiently using forward substitution!

Miscellaneous Tricks

• Finding the min/max of a matrix of N-d array

[MinValue, MinIndex] = min(A(:)); %find minimum element in A MinSub = ind2sub(size(A), MinIndex); %convert MinIndex to subscripts

- Try to avoid inverse of a matrix!
 - Typically you only need $x = A \setminus b$
 - This invokes appropriate linear solver
 - Much more efficient and numerically stable