Midterm Review

Topics we covered

Machine Learning

Optimization

- Basics of optimization
 - Convexity
 - Unconstrained: GD, SGD
 - Constrained: Lagrange, KKT
 - Duality
- Linear Methods
 - Perceptrons
 - Support Vector Machines
 - Kernels

Statistics

- Basics of probability
 - Tail bounds
 - Density Estimation
 - Exponential Families
- Graphical Models

Basics of Machine Learning

- Supervised/Unsupervised Learning?
 - Classification, Regression, Clustering
- Training error/Test error?
- Model Complexity: Overfitting/Underfitting
- True error Bayes Optimal Error

Bias-Variance Tradeoff

 When estimating a quantity θ, we evaluate the performance of an estimator by computing its risk – expected value of a loss function

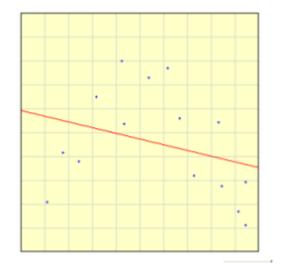
•
$$R(\theta, \hat{\theta}) = E L(\theta, \hat{\theta})$$
, where *L* could be

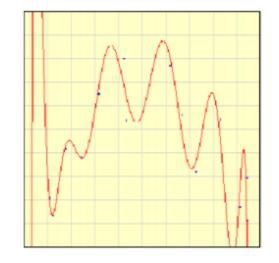
- Mean Squared Error Loss
- 0/1 Loss
- Hinge Loss (used for SVMs)
- Bias-Variance Decomposition: $Y = f(x) + \varepsilon$ $Err(x) = E[f(x) - \hat{f}(x)^2]$ $= (E[\hat{f}(x)] - f(x))^2 + E[\hat{f}(x) - E[\hat{f}(x)]]^2 + \sigma_{\varepsilon}^2$

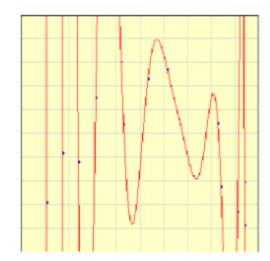
Bias-Variance Tradeoff

 The choice of hypothesis class introduces a learning bias
 More complex class: less bias and more

variance.







Training error

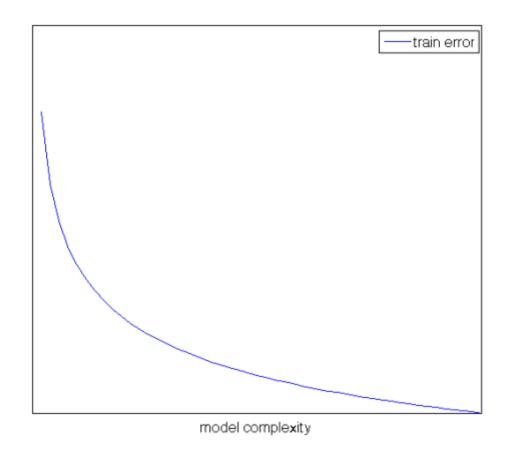
Given a dataset

Chose a loss function (L₂ for regression for example)

• Training set error:

$$error_{train} = \frac{1}{N_{train}} \sum_{\substack{j=1\\N_{train}}}^{N_{train}} \left(I(y_i \neq h(x)) \right)$$
$$error_{train} = \frac{1}{N_{train}} \sum_{\substack{j=1\\j=1}}^{N_{train}} \left(y_i - w.\mathbf{x_i} \right)^2$$

Training error as a function of complexity

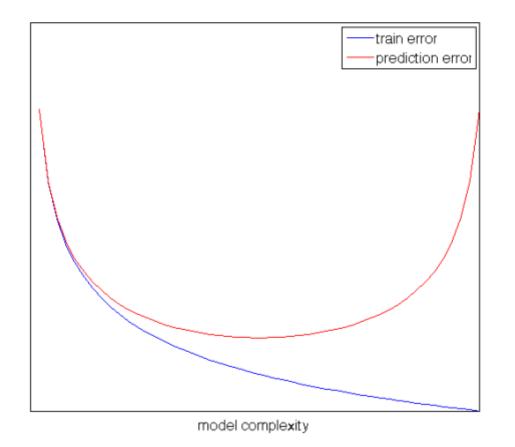


Prediction error

- Training error is not necessary a good measure
- We care about the error over all inputs points:

$$error_{true} = E_x \Big(I(y \neq h(x)) \Big)$$

Prediction error as a function of complexity



Train-test

In practice:

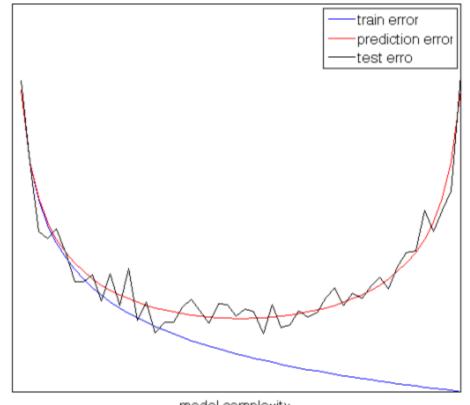
Randomly divide the dataset into test and train.

• Use training data to optimize parameters.

• Test error:

$$error_{test} = \frac{1}{N_{test}} \sum_{i=1}^{N_{test}} \left(I(y_i \neq h(x_i)) \right)$$

Test error as a function of complexity



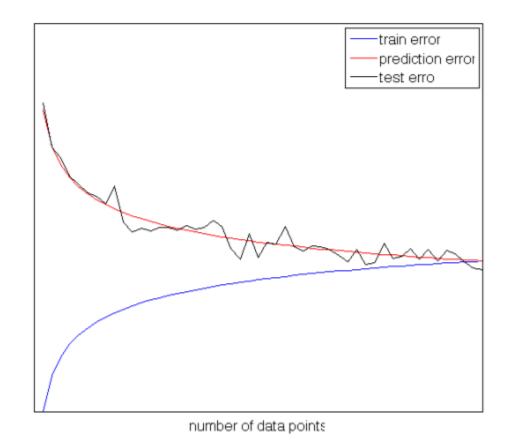
model complexity

Overfitting

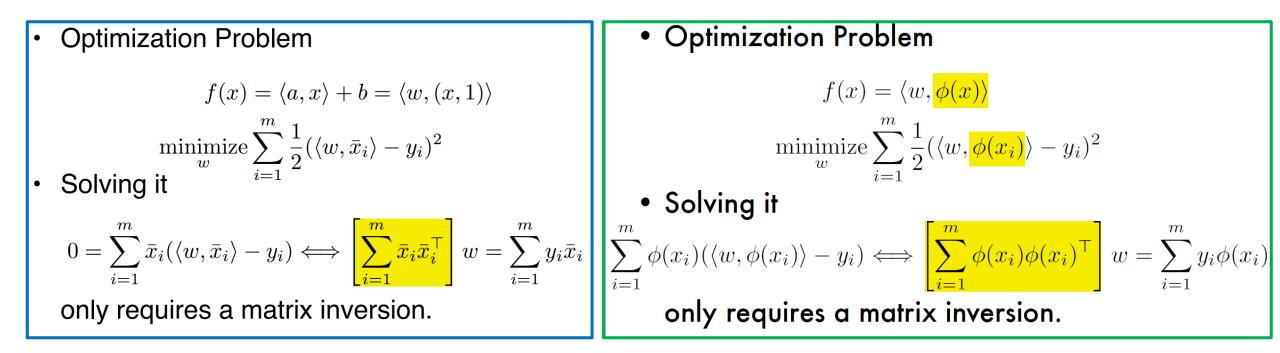
Overfitting happens when we obtain a model h when there exist another solution h' such that:

 $[error_{train}(h) < error_{train}(h')] \land [error_{true}(h) > error_{true}(h')]$

Error as a function of data size for fixed complexity



Regression



Optimization

Convexity

- Convex Sets
- Convex Functions
- 2 Unconstrained Convex Optimization
 - First-order Methods
 - Newton's Method
- Constrained Optimization
 - Primal and dual problems
 - KKT conditions

Convex Sets

Definition

For $x, x' \in X$ it follows that $\lambda x + (1 - \lambda)x' \in X$ for $\lambda \in [0, 1]$

- Examples
 - Empty set \emptyset , single point $\{x_0\}$, the whole space \mathbb{R}^n
 - Hyperplane: $\{x \mid a^{\top}x = b\}$, halfspaces $\{x \mid a^{\top}x \leq b\}$
 - Euclidean balls: $\{x \mid ||x x_c||_2 \le r\}$
 - Positive semidefinite matrices: Sⁿ₊ = {A ∈ Sⁿ | A ≥ 0} (Sⁿ is the set of symmetric n × n matrices)
- Convex Set C, D
 - Translation $\{x + b \mid x \in C\}$
 - Scaling $\{\lambda x \mid x \in C\}$
 - Affine function $\{Ax + b \mid x \in C\}$
 - Intersection $C \cap D$
 - Set sum $C + D = \{x + y \mid x \in C, y \in D\}$

Convex Functions

dom f is convex, $\lambda \in [0, 1]$ $\lambda f(x) + (1 - \lambda)f(y) \ge f(\lambda x + (1 - \lambda)y)$

• First-order condition: if f is differentiable,

 $f(y) \geq f(x) + \nabla f(x)^{\top}(y-x)$

• Second-order condition: if f is twice differentiable,

$$\nabla^2 f(x) \succeq 0$$

• Strictly convex: $\nabla^2 f(x) \succ 0$ Strongly convex: $\nabla^2 f(x) \succeq dI$ with d > 0

Copied from: Xuezhi Wang

Convex Functions – Examples

- Exponential. e^{ax} convex on \mathbb{R} , any $a \in \mathbb{R}$
- Powers. x^a convex on \mathbb{R}_{++} when $a \ge 1$ or $a \le 0$, and concave for $0 \le a \le 1$.
- Powers of absolute value. $|x|^p$ for $p \ge 1$, convex on \mathbb{R} .
- Logarithm. log x concave on \mathbb{R}_{++} .
- Norms. Every norm on \mathbb{R}^n is convex.
- $f(x) = \max\{x_1, ..., x_n\}$ convex on \mathbb{R}^n
- Log-sum-exp. $f(x) = \log(e^{x_1} + ... + e^{x_n})$ convex on \mathbb{R}^n .

Useful Observations

- A function is convex if and only if its epigraph is a convex set.
- Below-Sets of Convex Functions is a convex set
- Convex functions cannot have local minima

Gradient Descent

given a starting point $x \in \text{dom} f$.

repeat

- 1. $\Delta x := -\nabla f(x)$
- 2. Choose step size t via exact or backtracking line search.

3. update. $x := x + t\Delta x$.

Until stopping criterion is satisfied.

- Key idea
 - Gradient points into descent direction
 - Locally gradient is good approximation of objective function

Newton's Method

Goal:
$$\phi : \mathbb{R} \to \mathbb{R}$$

 $\phi(x^*) = 0$
 $x^* = ?$

Linear Approximation (1st order Taylor approx):

$$\phi(\underbrace{x + \Delta x}_{\mathsf{x}^*}) = \phi(x) + \phi'(x)\Delta x + o(|\Delta x|)$$

$$\underbrace{\mathsf{x}^*}_{\mathsf{\Phi}(\mathsf{x}^*) = 0}$$

Therefore,

$$0 \approx \phi(x) + \phi'(x) \Delta x$$
$$x^* - x = \Delta x = -\frac{\phi(x)}{\phi'(x)}$$
$$x_{k+1} = x_k - \frac{\phi(x)}{\phi'(x)}$$

Copied from: Prof Barnabas

Newton's Method

 $f: \mathbb{R}^n \to \mathbb{R}, \ f \text{ is differentiable.}$ $\min_{x \in \mathbb{R}^n} f(x)$

We need to find the roots of $\nabla f(x) = 0_n$ $\nabla f : \mathbb{R}^n \to \mathbb{R}^n$

Newton system: $\nabla f(x) + \nabla^2 f(x) \Delta x = 0_n$

Newton step: $\Delta x = x_{k+1} - x_k = -[\nabla^2 f(x)]^{-1} \nabla f(x)$

Iterate until convergence, or max number of iterations exceeded

Copied from: Prof Barnabas

Duality

Primal problem:

$$\min_{x \in \mathbb{R}^n} f(x)$$

subject to $h_i(x) \le 0, i = 1, \dots, m$

Lagrangian:

$$L(x, u) = f(x) + \sum_{i=1}^{m} u_i h_i(x)$$

where $u \in \mathbb{R}^m$ and $u \ge 0$. Lagrange dual function:

$$g(u) = \min_{x \in \mathbb{R}^n} L(x, u)$$

Duality

Dual problem:

 $\max_{u} g(u)$
subject to $u \ge 0$

- Dual problem is a convex optimization problem, since g is always concave (even if primal problem is not convex)
- The primal and dual optimal values always satisfy weak duality: $f^* \ge g^*$
- Slater's condition: for convex primal, if there is an x such that $h_1(x) < 0, ..., h_m(x) < 0$ and $l_1(x) = 0, ..., l_r(x) = 0$ then strong duality holds: $f^* = g^*$. Or equivalently Karlin's or strict constraint qualification.

KKT Conditions

If x^*, u^*, v^* are primal and dual solutions, with zero duality gap (strong duality holds), then x^*, u^*, v^* satisfy the KKT conditions:

- stationarity: $0 \in \partial f(x^*) + \sum u_i^* \partial h_i(x^*)$
- complementary slackness: $u_i^* h_i(x^*) = 0$ for all i
- primal feasibility: $h_i(x^*) \leq 0$ for all i
- dual feasibility: $u_i^* \ge 0$ for all i

Perceptrons

```
initialize w = 0 and b = 0
repeat
if y_i [\langle w, x_i \rangle + b] \le 0 then
w \leftarrow w + y_i x_i and b \leftarrow b + y_i
end if
until all classified correctly
```

- Nothing happens if classified correctly
- Weight vector is linear combination $w = \sum y_i x_i$

 $i \in I$

• Classifier is linear combination of inner products $f(x) = \sum_{i \in I} y_i \langle x_i, x \rangle + b$

Convergence of Perceptrons

• If there exists some (w^*, b^*) with unit length and $y_i [\langle x_i, w^* \rangle + b^*] \ge \rho$ for all *i*

then the perceptron converges to a linear separator after a number of steps bounded by

$$(b^{*2}+1)(r^2+1)\rho^{-2}$$
 where $||x_i|| \le r$

- Dimensionality independent
- Order independent (i.e. also worst case)
- Scales with 'difficulty' of problem

Back to Optimization

 A typical machine learning problem has a penalty/regularizer + loss form

$$\min_{w} F(w) = g(w) + \frac{1}{n} \sum_{i=1}^{n} f(w; y_i, x_i),$$

 $x_i, w \in \mathbb{R}^p$, $y_i \in \mathbb{R}$, both g and f are convex

- Today we only consider differentiable f, and let g = 0 for simplicity
- ► For example, let f(w; y_i, x_i) = log p(y_i|x_i, w), we are trying to maximize the log likelihood, which is

$$\max_{w} \frac{1}{n} \sum_{i=1}^{n} \log p(y_i | x_i, w)$$

Gradient Descent

• choose initial $w^{(0)}$, repeat

$$w^{(t+1)} = w^{(t)} - \eta_t \cdot \nabla F(w^{(t)})$$

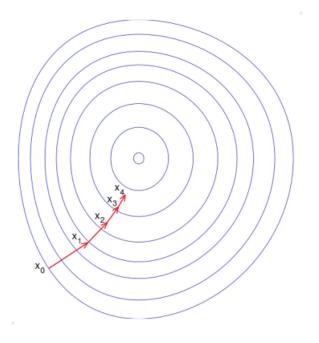
until stop

• η_t is the learning rate, and

$$\nabla F(w^{(t)}) = \frac{1}{n} \sum_{i} \nabla_{w} f(w^{(t)}; y_{i}, x_{i})$$

• How to stop? $||w^{(t+1)} - w^{(t)}|| \le \epsilon$ or $||\nabla F(w^{(t)})|| \le \epsilon$

Two dimensional example:



Stochastic Gradient Descent

We name ¹/_n ∑_i f(w; y_i, x_i) the empirical loss, the thing we hope to minimize is the expected loss

$$f(w) = \mathbb{E}_{y_i, x_i} f(w; y_i, x_i)$$

Suppose we receive an infinite stream of samples (y_t, x_t) from the distribution, one way to optimize the objective is

$$w^{(t+1)} = w^{(t)} - \eta_t \nabla_w f(w^{(t)}; y_t, x_t)$$

- On practice, we simulate the stream by randomly pick up (y_t, x_t) from the samples we have
- Comparing the average gradient of GD $\frac{1}{n} \sum_{i} \nabla_{w} f(w^{(t)}; y_{i}, x_{i})$

SGD and Perceptron

Recall Perceptron: initialize w, repeat

$$w = w + \begin{cases} y_i x_i & \text{if } y_i \langle w, x_i \rangle < 0 \\ 0 & \text{otherwise} \end{cases}$$

Fix learning rate $\eta = 1$, let $f(w; y, x) = \max(0, -y_i \langle w, x_i \rangle)$, then

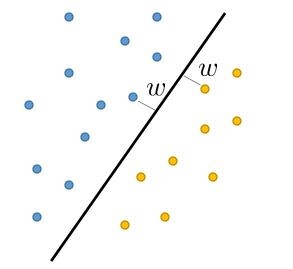
$$\nabla_w f(w; y, x) = \begin{cases} -y_i x_i & \text{if } y_i \langle w, x_i \rangle < 0\\ 0 & \text{otherwise} \end{cases}$$

we derive Perceptron from SGD

SVM Primal

Find maximum margin hyper-plane

$$f(x) = \langle w, x \rangle + b = 0$$



Hard Margin

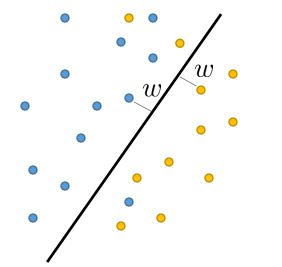
 $\min_{w,b} ||w||^2$ subject to $(\langle w, x_i \rangle + b)y_i \ge 1$

SVM Primal

Find maximum margin hyper-plane

$$f(x) = \langle w, x \rangle + b = 0$$

Soft Margin



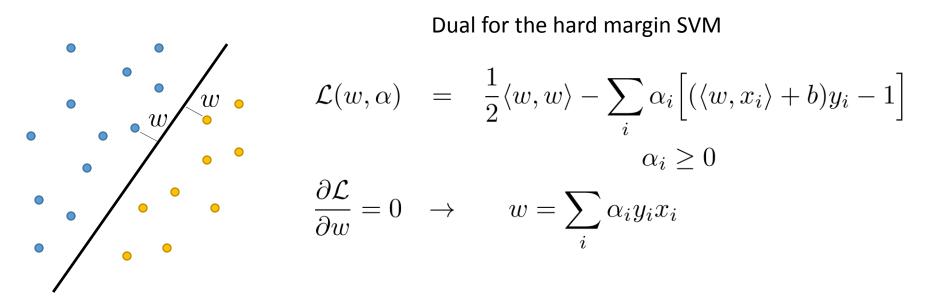
$$\min_{w,b} ||w||^2 + C \sum_i \xi_i$$

subject to $(\langle w, x_i \rangle + b)y_i \ge 1$
 $\xi_i \ge 0$

SVM Dual

Find maximum margin hyper-plane

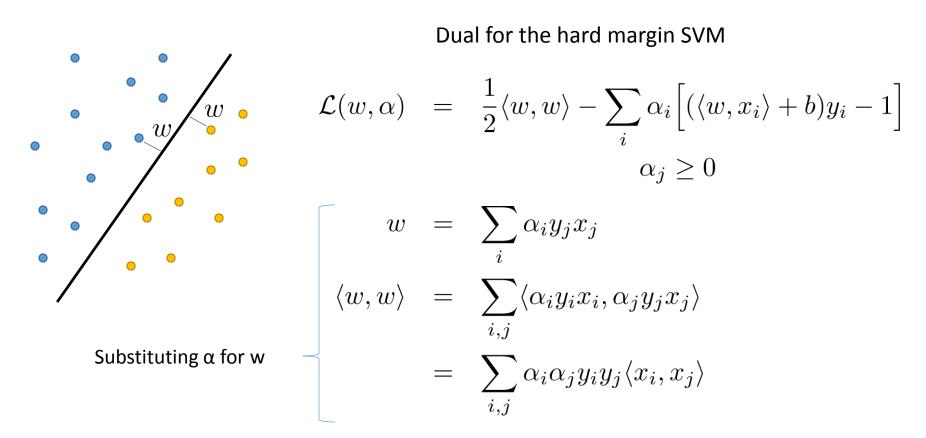
 $f(x) = \langle w, x \rangle + b = 0$



SVM Dual

Find maximum margin hyper-plane

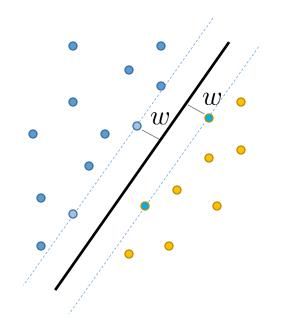
 $f(x) = \langle w, x \rangle + b = 0$



SVM Dual

Find maximum margin hyper-plane

 \mathcal{L}



$$f(x) = \langle w, x \rangle + b = 0$$

Dual for the hard margin SVM

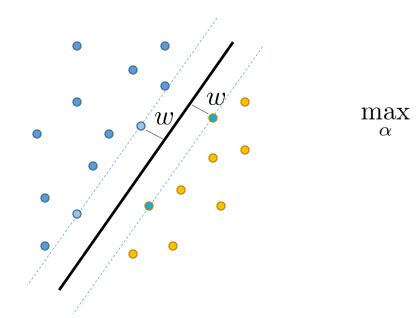
$$(w, \alpha) = \frac{1}{2} \langle w, w \rangle - \sum_{i} \alpha_{i} \Big[(\langle w, x_{i} \rangle + b) y_{i} - 1 \Big]$$
$$\alpha_{j} \ge 0$$

The constraints are active for the support vectors

$$\forall k \text{ s.t. } a_k > 0 \qquad b = y_k - \langle w, x_k \rangle$$

SVM Dual

Find maximum margin hyper-plane



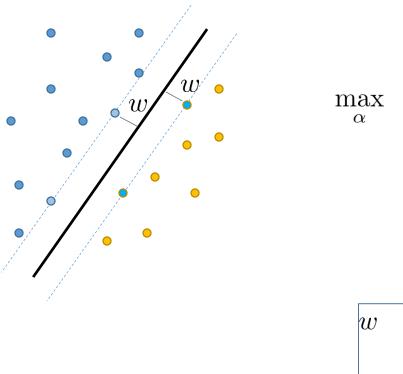
$$f(x) = \langle w, x \rangle + b = 0$$

Dual for the hard margin SVM

$$-\frac{1}{2}\sum_{i} \alpha_{i}\alpha_{j}y_{i}y_{j}\langle x_{i}, x_{j}\rangle + \sum_{i} \alpha_{i}$$
$$\sum_{i} \alpha_{i}y_{i} = 0$$
$$\alpha_{i} \ge 0$$

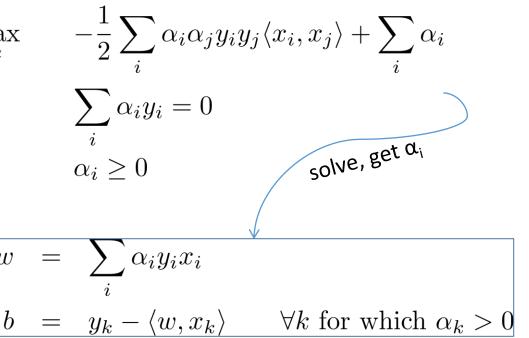
SVM – Computing w

Find maximum margin hyper-plane



 $f(x) = \langle w, x \rangle + b = 0$

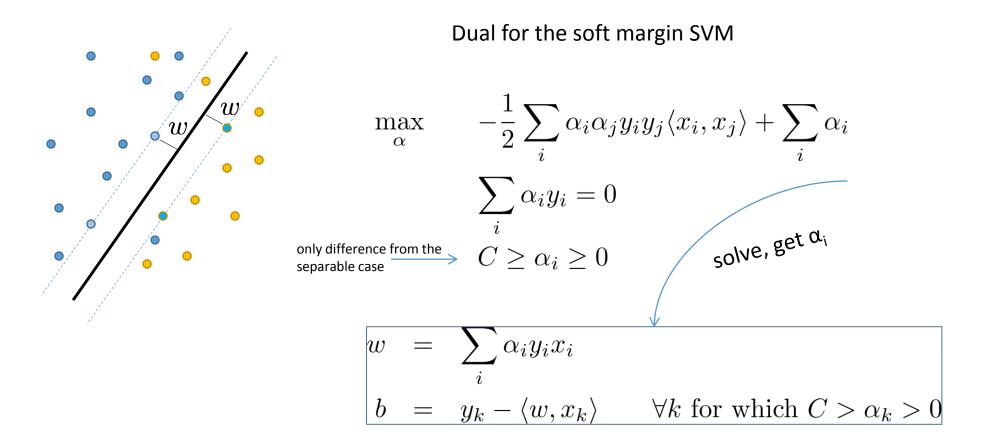
Dual for the hard margin SVM



SVM – Computing w

Find maximum margin hyper-plane

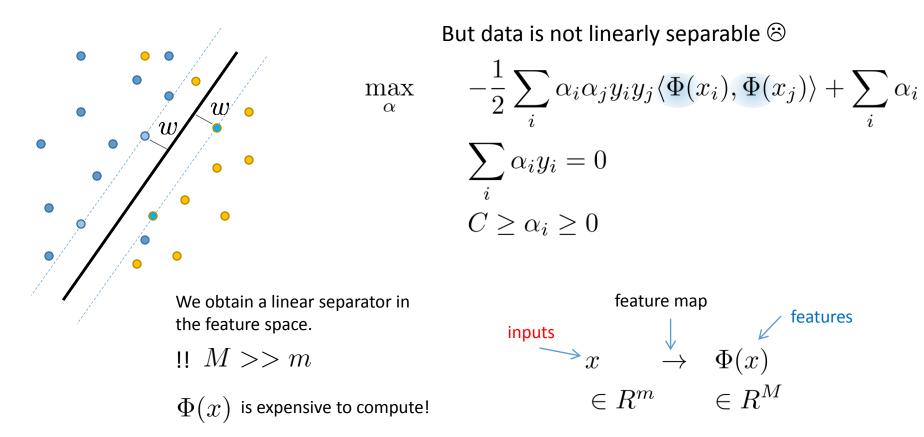
 $f(x) = \langle w, x \rangle + b = 0$



SVM – the feature map

Find maximum margin hyper-plane

 $f(x) = \langle w, \Phi(x) \rangle + b = 0$

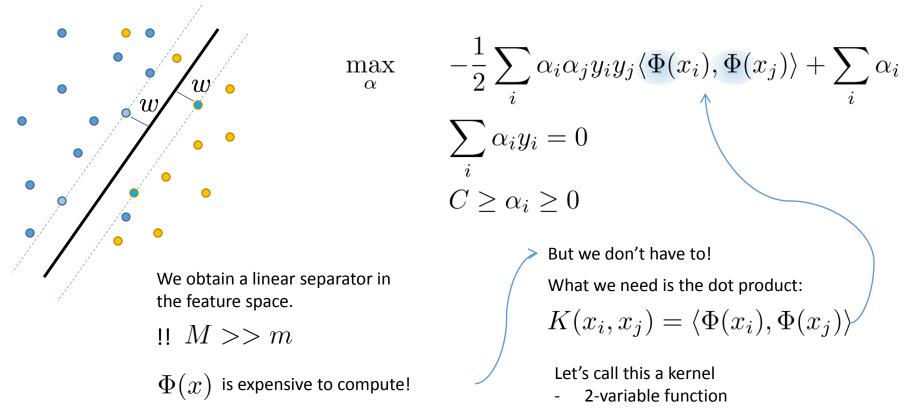


Copied from: Junier Oliva

40

Introducing the kernel

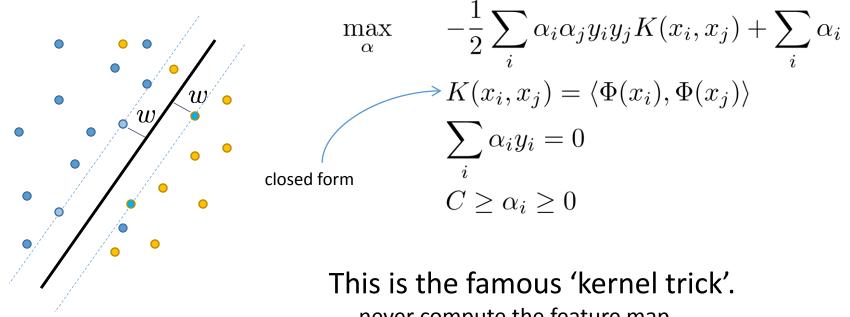
The dual formulation no longer depends on w, only on a dot product!



- can be written as a dot product

Kernel SVM

The dual formulation no longer depends on w, only on a dot product!



- never compute the feature map
- learn using the closed form K
- constant time for HD dot products

Kernel SVM – Run time

What happens when we need to classify some x_0 ?

Recall that w depends on $\boldsymbol{\alpha}$

$$w = \sum_{i} \alpha_{i} y_{i} \Phi(x_{i})$$

$$b = y_{k} - \langle w, \Phi(x_{k}) \rangle$$

$$\forall k \text{ s.t. } C > \alpha_{k} > 0$$

Our classifier for \mathbf{x}_0 uses w $sign(\langle w, \Phi(x_0) \rangle + b)$

Kernel SVM – Run time

What happens when we need to classify some x_0 ?

Recall that w depends on α

$$w = \sum_{i} \alpha_{i} y_{i} \Phi(x_{i})$$

$$b = y_{k} - \langle w, \Phi(x_{k}) \rangle$$

$$\forall k \text{ s.t. } C > \alpha_{k} > 0$$

Our classifier for x_0 uses w $sign(\langle w, \Phi(x_0) \rangle + b)$

Who needs w when we've got dot products?

$$w, \Phi(x_0)\rangle = \sum_i \alpha_i y_i K(x_0, x_i)$$

 $b = y_k - \sum_i \alpha_i y_i K(x_k, x_i)$
 $k \rightarrow \text{ support vectors}$

Kernel SVM Recap

Pick kernel

Solve the optimization to get $\boldsymbol{\alpha}$

$$\max_{\alpha} \quad -\frac{1}{2} \sum_{i} \alpha_{i} \alpha_{j} y_{i} y_{j} K(x_{i}, x_{j}) + \sum_{i} \alpha_{i}$$
$$K(x_{i}, x_{j}) = \langle \Phi(x_{i}), \Phi(x_{j}) \rangle$$
$$\sum_{i} \alpha_{i} y_{i} = 0$$
$$C \ge \alpha_{i} \ge 0$$

Compute b using the support vectors

$$b = y_k - \sum_i \alpha_i y_i K(x_k, x_i)$$

Classify as

$$sign\left(\sum_{i} \alpha_{i} y_{i} K(x_{0}, x_{i}) + b\right)$$

Reminder on Kernels

• Remember Kernels are nothing but implicit feature maps $\phi: \mathcal{X} \to \mathbb{R}^d$

• Gram Matrix

- of a set of vectors $x_1 \dots x_n$ in the inner product space defined by the kernel K
- $G_{ij} = K(x_i, x_j) = \langle \phi(x_i), \phi(x_j) \rangle \quad \forall i, j \in 1 \dots n$
- Gram Matrix is always positive definite

Bayes Rule

Joint Probability

 $\Pr(X, Y) = \Pr(X|Y) \Pr(Y) = \Pr(Y|X) \Pr(X)$

Bayes Rule

$$\Pr(X|Y) = \frac{\Pr(Y|X) \cdot \Pr(X)}{\Pr(Y)}$$

- Hypothesis testing
- Reverse conditioning

Law of Large Numbers

- Random variables x_i with mean $\mu = \mathbf{E}[x_i]$
- Empirical average $\hat{\mu}_n := \frac{1}{n} \sum_{i=1}^n x_i$
- Weak Law of Large Numbers

 $\lim_{n \to \infty} \Pr\left(|\hat{\mu}_n - \mu| \le \epsilon\right) = 1 \text{ for any } \epsilon > 0$

Strong Law of Large Numbers

$$\Pr\left(\lim_{n \to \infty} \hat{\mu}_n = \mu\right) = 1$$

this means convergence in probability

Central Limit Theorem

- Independent random variables x_i with mean μ_i and standard deviation σ_i
- The random variable $z_n := \left[\sum_{i=1}^n \sigma_i^2\right]^{-\frac{1}{2}} \left[\sum_{i=1}^n x_i - \mu_i\right]$ converges to a Normal Distribution $\mathcal{N}(0, 1)$
- Special case IID random variables & average

$$\frac{\sqrt{n}}{\sigma} \left[\frac{1}{n} \sum_{i=1}^{n} x_i - \mu \right] \to \mathcal{N}(0, 1)$$
$$O\left(n^{-\frac{1}{2}} \right) \text{convergence}$$

Tail Bounds

Markov Inequality: If X is any nonnegative integrable random variable and a > 0, then

$$\Pr\left(X > a\right) \le \frac{\mathbb{E}[X]}{a}$$

Chebyshev Inequality: If X is any random variable with mean μ and variance σ^2 . Then for any $\epsilon > 0$, we have

$$\Pr\left(|X - \mu| > \epsilon\right) \le \frac{\sigma^2}{\epsilon^2}$$

More Tail Bounds

The Chernoff Bound: Suppose $Y_1, ..., Y_r$ are i.i.d. random variables, taking values in $\{0, 1\}$. Let $p = E[Y_i]$ and > 0. Then

$$\Pr\left(\sum_{i} Y_i > nq\right) \le \exp(-rD(q||p))$$

Hoeffding's Inequality: Suppose $Y_1, ..., Y_r$ are i.i.d. random variables, taking values in (a_i, b_i) . Then

$$\Pr\left(\left|\sum_{i} (Y_i - \mathbb{E}[Y_i] \right| > t\right) \le 2 \exp\left(-\frac{2t^2}{\sum_{i=1}^r (b_i - a_i)^2}\right)$$

Union Bound: set of events $A_1, A_2, A_3, ...,$ we have

$$\Pr\left(\bigcup_{i} A\right) \le \sum_{i} \Pr(A_i)$$

A/B testing