Midterm Review

Topics we covered

Machine Learning
4/\>
Optimization Statistics

* Basics of probability
* Tail bounds

* Basics of optimization

* Convexity

 Unconstrained: GD, SGD * Density Estimation
 Constrained: Lagrange, KKT * Exponential Families
* Duality

* Linear Methods
* Perceptrons
e Support Vector Machines
* Kernels

Basics of Machine Learning

 Supervised/Unsupervised Learning?
* Classification, Regression, Clustering

* Training error/Test error?
* Model Complexity: Overfitting/Underfitting
* True error — Bayes Optimal Error

Bias-Variance Tradeoff

 When estimating a quantity 8, we evaluate the
performance of an estimator by computing its risk —
expected value of a loss function

. R(H, @) = F L(0, @), where L could be
 Mean Squared Error Loss
* 0/1 Loss
* Hinge Loss (used for SVMs)

* Bias-Variance Decomposition: Y = f(x) + ¢

Err(x) = E[f(x) - f(x)?]
~ ~ ~ 2
= (E[f@)] - F)*+E [f(x) — E[f@)]| + 0.2

Bias Variance

Bias-Variance Tradeoff

® The choice of hypothesis class
introduces a learning bias

@ More complex class: less bias and more
variance.

.. 'LII | l |
Jul HHEL

Il FHEE

Copied from: Junier Oliva

Training error

® Given a dataset

® Chose a loss function (L, for regression
for example)

@ Training set error:
Ntra.in

1
Tain j=1
Nt’r'ain
1 2
ETrTOT trqin = N Z (yi — W-Xi)
train .
g=1

Copied from: Junier Oliva

Training error as a function of
complexity

|—[ram 2rror

model complexity

Copied from: Junier Oliva

Prediction error

® Training error 1s not necessary a good
measure

® We care about the error over all inputs
points:
ETTOT e = I (I(y + h(:ﬂ)))

Copied from: Junier Oliva

Prediction error as a function of
complexity

——train error
prediction erral

model complexity

Copied from: Junier Oliva

Train-test

® In practice:

@ Randomly divide the dataset into test and
train.

@ Use training data to optimize parameters.

@ Test error:

ETTOTtESt —

Ntest -
1=1

Copied from: Junier Oliva

Test error as a function of
complexity

—train error
prediction erral
—test aro

model complexity

Copied from: Junier Oliva

Overfitting

® Overfitting happens when we obtain a
model h when there exist another
solution h’ such that:

lerrorirain(h) < erroriqain(h')] A [errorige(h) > erroriyye(h')]

Copied from: Junier Oliva

Error as a function of data size for
fixed complexity

/
.-"r
/

——train error
prediction errol
—test armo

1_ .

o [e]

e
-
——
/‘d--.-

s

nurnber of data points

Copied from: Junier Oliva

Regression

« Optimization Problem

flz) =
mlmmlze Z

(a z)+ b= (w,(x,1))

92)2

+ Solving it

) — ;)

m m
O—Zm2 T [Zfzf:]’wzzyz%
i=1 i=1

only requires a matrix inversion.

m

> o) ((w, o))

1=1

* Optimization Problem

flx)

* Solving it

[

only requires a matrix inversion.

Optimization

0 Convexity
@ Convex Sets

@ Convex Functions

9 Unconstrained Convex Optimization
@ First-order Methods
@ Newton’s Method

e Constrained Optimization
@ Primal and dual problems
@ KKT conditions

Copied from: Xuezhi Wang

Convex Sets

@ Definition
For x, x’ € X it follows that Ax + (1 — A\)x’ € X for A € [0,1]
@ Examples
e Empty set (), single point {xp}, the whole space R”
e Hyperplane: {x | a" x = b}, halfspaces {x | a’' x < b}
e Euclidean balls: {x | |[x — x¢||2 < r}
e Positive semidefinite matrices: S = {A<c S"|A > 0} (S"is
the set of symmetric n x n matrices)
@ Convex Set C,D
@ Translation {x + b | x € C}
@ Scaling {\x | x € C}
@ Affine function {Ax + b | x € C}
@ Intersection CN D

@ SetsumC+D={x+y|xeC,yeD}

Copied from: Xuezhi Wang

Convex Functions

L 160 dom f is convex, A € [0, 1]

(f())- M(X)+ (1 =Nf(y) > f(Ax+(1=A)y)

@ First-order condition: if f is differentiable,
f(y) > f(x) + V()T (y - x)
@ Second-order condition: if f is twice differentiable,
V2f(x) = 0

@ Strictly convex: V2f(x) = 0
Strongly convex: V2f(x) = dl with d > 0

Copied from: Xuezhi Wang

Convex Functions — Examples

@ Exponential. e#* convexon R, any a€ R
@ Powers. x2 convexonR,, whena > 1ora<0,and

concave for0 < a < 1.

Powers of absolute value. |x|P for p > 1, convex on R.
Logarithm. log x concave on R ..

Norms. Every norm on R" is convex.

f(x) = max{xi, ..., Xp} convex on R”

Log-sum-exp. f(x) = log(e** + ... +) convex on R".

Useful Observations

e A function is convex if and only if its epigraph is a convex set.
* Below-Sets of Convex Functions is a convex set

 Convex functions cannot have local minima

Gradient Descent

- given a starting point x € domf.
- /’—__ D 33 repeat

,/33’% 1. Ax := —VIf(x)

,423/-;/-'??5-747/’ 2. Choose step size t via exact or backtracking line search.
(=" 3. update. x := x + tAx.

- Until stopping criterion is satisfied.

@ Key idea

e Gradient points into descent direction
e Locally gradient is good approximation of objective function

Copied from: Xuezhi Wang

Newton’s Method

Goal: gb "R =R
¢(z*) =0
¥ =7

Linear Approximation (1st order Taylor approx):

¢(zt Az) = ¢(z) + ¢ (2) Az + o(|Az|)
,\r,_./ A/EGL;GA@(,E
d(x*) =0
Therefore, 0 ~ d)(x) _I_ Q’)’(ZE)ACC

AN _o(=z)
T || N e)

Th41 = Tf — :ff((x))

Copied from: Prof Barnabas

Newton’s Method

f:R" — R, f is differentiable.
min f(x)

a:eRﬂ

We need to find the roots of Vf(x) = Op,
Vf :R*"— R"

Newton system: Vf(z) + V2f(z)Az = 0y,

Newton step: Az = x4 71—z = —[V2f(2)] 1V f(x)

Iterate until convergence, or max number of iterations exceeded

Copied from: Prof Barnabas

Duality

Primal problem:
min f(z)
subject to h;(x) < 0,i=1,...,m

Lagrangian:

where v € R™ and u > 0.
Lagrange dual function:

Duality

Dual problem:
max g(u)

subject to u > 0

e Dual problem is a convex optimization problem, since g is always concave
(even if primal problem is not convex)

e The primal and dual optimal values always satisty weak duality: f* > g*

e Slater’s condition: for convex primal, if there is an x such that hq(x) <
0,....hm(x) < 0 and l1(x) = 0,...,1.(x) = 0 then strong duality holds:
f* = g*. Or equivalently Karlin’s or strict constraint qualification.

KKT Conditions

If z*,u*, v* are primal and dual solutions, with zero duality gap (strong
duality holds), then x*, u*, v* satisfy the KKT conditions:

e stationarity: 0 € Of(z*) + > uf0h;(x*)
e complementary slackness: u}h;(x*) = 0 for all ¢
e primal feasibility: hA;(x*) < 0 for all ¢

e dual feasibility: u; > 0 for all ¢

Perceptrons

initialize w =0 and b = 0
repeat
if y; [(w,z;) + 0] <0 then
w 4— w~+ y;x; and b < b+ y;
end if

until all classified correctly

* Nothing happens if classified correctly

- Weight vector is linear combination w=">) v,
- Classifier is linear combination of el

iInner products F@) =S i (wi,a) +b

el

Convergence of Perceptrons

If there exists some (w*,»*)With unit length and

yi [(zi, w*) + b*] > p for all i
then the perceptron converges to a linear
separator after a number of steps bounded by

(6*2 + 1) (r*+1) p where |z <r

Dimensionality independent
« Order independent (i.e. also worst case)
« Scales with ‘difficulty’ of problem

Back to Optimization

» A typical machine learning problem has a penalty/regularizer
+ loss form

. 1 <
min F(w) = g(w) + - Zl f(w; i, xi),
1=

xi,w € RP, y; € R, both g and f are convex

» Today we only consider differentiable f, and let g = 0 for
simplicity

» For example, let f(w;y;, x;) = — log p(vi|xi, w), we are trying
to maximize the log likelihood, which is

1 n
max ; log p(yilxi, w)

Gradient Descent

» choose initial w(0), repeat
wi(ttl) — (1) _ N - VF(w(t))

until stop

> 7)¢ Is the learning rate, and
F(w(t)) = ZV F(w®: v x;)

» How to stop? [[w(ttD) — w(®)| < ¢ or
IVE(w)| < e

Two dimensional
example:

Stochastic Gradient Descent

» We name %Z, f(w; yi, x;) the empirical loss, the thing we
hope to minimize is the expected loss

f(W) — EY;',X;'f(W; yf? X".)

» Suppose we receive an infinite stream of samples (y;, x;) from
the distribution, one way to optimize the objective is

W) = W) — . v F(w(®; v, x)

» On practice, we simulate the stream by randomly pick up
(yt, xt) from the samples we have

» Comparing the average gradient of GD %Z! wa(W(t);y;',Xi)

SGD and Perceptron

» Recall Perceptron: initialize w, repeat

W yixi if yilw,x;) <0
0 otherwise

» Fix learning rate n =1, let f(w; y, x) = max(0, —yi(w, x;)),
then

—yix; if yi{w,x;) <0

Vawf(w;y,x) =
(Wi y, x) {0 otherwise

we derive Perceptron from SGD

SVM Primal

Find maximum margin hyper-plane f(z) ={w,x) +b=0

Hard Margin

min ||w||2
w,b

subject to ((w,x;) +b)y; > 1

Copied from: Junier Oliva
3/3/2015 32

SVM Primal

Find maximum margin hyper-plane f(z) ={w,x) +b=0

Soft Margin

. 2 '
min]| +C) &

subject to ((w,x;) +b)y; > 1
& >0

Copied from: Junier Oliva
3/3/2015 33

SVM Dual

Find maximum margin hyper-plane f(z) ={w,x) +b=0

Dual for the hard margin SVM
1
Lw,a) = Sww)= Y a;|((w,az) +b)y: —1]
87 Z 0

— =0 — w:Zaiyimi
i

Copied from: Junier Oliva
3/3/2015 34

SVM Dual

Find maximum margin hyper-plane f(z) ={w,x) +b=0

Dual for the hard margin SVM

1
Liw,a) = Z(ww) = a|((w,z) +b)ys — 1
O{jzo
w = Zaiyj.:cj

(w,w) = Z(aiyixz’,&jyﬂﬂ

@]

Substituting a for w

= Zai@jyz’yj<xia$j>

@]

Copied from: Junier Oliva
3/3/2015 35

SVM Dual

Find maximum margin hyper-plane f(z) ={w,x) +b=0

Dual for the hard margin SVM

Llw.a) = Slww) =3 o |((w,z) + by — 1]
Z a; >0

The constraints are active for the support vectors

Vk s.t. ar >0 b=yr — (w,zk)

Copied from: Junier Oliva
3/3/2015 36

SVM Dual

Find maximum margin hyper-plane f(z) ={w,x) +b=0

Dual for the hard margin SVM

max —— g OO Y; Y .’L‘Z,iﬁj + E Q

Z:c)m;Z =0

(}fi>0

Copied from: Junier Oliva
3/3/2015 37

SVM — Computing w
Find maximum margin hyper-plane f(z) ={w,x) +b=0

Dual for the hard margin SVM

max —— Zozzozjyzyj zl:,“:cj + Za@
Z:OMJZ =0

(87 >0 50\\’e’

gﬁft(l\

<
w = 2 QY Ly
i

b = yp— (w,xx) Vk for which aj > 0

Copied from: Junier Oliva
3/3/2015 38

SVM — Computing w
Find maximum margin hyper-plane f(z) ={w,x) +b=0

Dual for the soft margin SVM

max —— g O Y; Y :L',L,ajj + E %

(8
Z aiy; =0
. L O
e O 0, > 0 sove: &
W= >
i
b = yp— (w,xx) Vk for which C > ay > 0

Copied from: Junier Oliva
3/3/2015 39

SVM — the feature map

Find maximum margin hyper-plane f(x) = (w,®(x)) +b=0

But data is not linearly separable ®

1
max == oiogyiy(R(a:), D)) +) a
i i
o
E a;y; =0
7
o
o
We obtain a linear separator in feature map
the feature space. inputs features
nM>>m x — ()
m M
(I)(g;') is expensive to compute! S R - R

Copied from: Junier Oliva
3/3/2015 40

Introducing the kernel

The dual formulation no longer depends on w, only on a dot product!

1
max —; Zaz‘%yiyj(@(%)a@(%)> + ZO@'
° Z&iyi =0
’ C>a; >0

But we don’t have to!

We obtain a linear separator in What we need is the dot product:

the feature space.
0 M >>m K(zi,xj) = (®(25), ()

Let’s call this a kernel
- 2-variable function
- can be written as a dot product

Copied from: Junier Oliva

P (5[;) is expensive to compute!

Kernel SVM

The dual formulation no longer depends on w, only on a dot product!

1
max) Za@-ajyiyjK(:Ei,xj) + Za@-
K(zi,z5) = (®(z;), D(z5))
> iy =0
closed form g

This is the famous ‘kernel trick’.

- never compute the feature map
- learn using the closed form K
- constant time for HD dot products

Copied from: Junier Oliva

Kernel SVM —Run time

What happens when we need to classify some x,?

Recall that w depends on a
w = Z iy () Our classifier for x, uses w
i sign({w, ®(zo)) + b)

b = yr— (w,®(xg))
Vk st. C > ar >0

Copied from: Junier Oliva

Kernel SVM —Run time

What happens when we need to classify some x,?

Recall that w depends on a

w = Z iy () Our classifier for x, uses w
i sign((w, ®(zo)) +0)

b = yr — (w, ®(z))

Vk st. C > ar >0

<’LU,(I)(.’EO)> Za’zyz 3307337,

Who needs w

when we’ve got b = yr— 2 ;Y K LCk, :Cr,,
dot products?

k— support vectors

Copied from: Junier Oliva

Kernel SVM Recap

Pick kernel

Solve the optimization to get a

1
max ~5 Z ;oYY K (2, x5) + Z o
K(zi, xj) = (®(z;), P(x;))

> iy =0

Compute b using the support vectors

— yk_E azyz mkamz

Classify as

sion (a0)+

Copied from: Junier Oliva

Reminder on Kernels

* Remember Kernels are nothing but implicit feature maps
¢: X = R?

e Gram Matrix

* of a set of vectors x, ... x, in the inner product space defined
by the kernel K

o Gij = K([Bz‘,l‘j) = <¢(£Ifz),¢($3)> Vi,jel...n
 Gram Matrix is always positive definite

Bayes Rule

» Joint Probability

Pr(X,Y) =Pr(X|Y)Pr(Y) = Pr(Y|X) Pr(X)
- Bayes Rule

Pr(Y|X) - Pr(X)

Pr(X|Y) = =5

» Hypothesis testing
* Reverse conditioning

Law of Large Numbers

- Random variables x; with mean ;= E[z;]
- Empirical average i, =13,
n =1

« Weak Law of Large Numbers

lim Pr (|, —p| <€) =1 for any € > 0

+ Strong Law of Large Numbers

Pr(lim ﬁn:u):l

n—oo

this means convergence in probability

Central Limit Theorem

* Independent random variables x; with mean i
and standard deviation o

 The random variable

Zn «— ZO‘E Z:C@'—/U,i]
| 2=1 1=1
converges to a Normal Distribution ~/(0,1)
- Special case - lID random variables & average

—1
2

o

@ —Z:{:Z]—>NO 1)

0 (n_) convergence

Tail Bounds

Markov Inequality: If X is any nonnegative integrable random variable
and a > 0, then
ELX]

Pr(X >a) <
a

Chebyshev Inequality: If X is any random variable with mean p and
variance o?. Then for any € > 0, we have

0.2

P]f(|X—,u|>e)§€—2

More Tail Bounds

The Chernoff Bound: Suppose Y7, ...,Y, are i.i.d. random variables, tak-
ing values in {0,1}. Let p = E|Y;] and > 0. Then

Pr (ZY > nq) < exp(—rD(ql|p))

Hoeffding’s Inequality: Suppose Yi,...,Y, are i.i.d. random variables,

.

Union Bound: set of events A, Ay, As, ..., we have

Pr (U A) < ZPT(A@)

> (Y; — E[Y]]

)

Find us on facehook

Revmre t el e 30w Viwena Seewt e b mdeak
L e L e Y)

A/B testin

