MACHINE LEARNING DEPARTMENT

4.1 Perceptron
 4 (Generalized) Linear Methods

Alexander Smola

Introduction to Machine Learning 10-701 http://alex.smola.org/teaching/10-701-15

Neurons and Learning

Carnegie Mellon University

Biology and Learning

- Basic Idea
- Good behavior should be rewarded, bad behavior punished (or not rewarded). This improves system fitness.
- Killing a sabertooth tiger should be rewarded ...
- Correlated events should be combined.
- Pavlov's salivating dog.
- Training mechanisms
- Behavioral modification of individuals (learning) Successful behavior is rewarded (e.g. food).
- Hard-coded behavior in the genes (instinct) The wrongly coded animal does not reproduce.

Neurons

- Soma (CPU)

Cell body - combines signals

- Dendrite (input bus)

Combines the inputs from several other nerve cells

- Synapse (interface)
 Interface and parameter store between neurons
- Axon (cable)

May be up to 1 m long and will transport the activation signal to neurons at different locations

Neurons

$$
f(x)=\sum_{i} w_{i} x_{i}=\langle w, x\rangle
$$

Perceptron

- Weighted linear combination
- Nonlinear decision function
- Linear offset (bias)

- Linear separating hyperplanes (spam/ham, novel/typical, click/no click)
- Learning

Estimating the parameters w and b

Perceptron

The Perceptron

initialize $w=0$ and $b=0$
repeat

$$
\begin{aligned}
& \text { if } y_{i}\left[\left\langle w, x_{i}\right\rangle+b\right] \leq 0 \text { then } \\
& \quad w \leftarrow w+y_{i} x_{i} \text { and } b \leftarrow b+y_{i}
\end{aligned}
$$

end if
until all classified correctly

- Nothing happens if classified correctly
- Weight vector is linear combination $w=\sum_{i \in I} y_{i} x_{i}$
- Classifier is linear combination of inner products

$$
f(x)=\sum_{i \in I} y_{i}\left\langle x_{i}, x\right\rangle+b
$$

Convergence Theorem

- If there exists some $\left(w^{*}, b^{*}\right)$ with unit length and

$$
y_{i}\left[\left\langle x_{i}, w^{*}\right\rangle+b^{*}\right] \geq \rho \text { for all } i
$$

then the perceptron converges to a linear separator after a number of steps bounded by

$$
\left(b^{* 2}+1\right)\left(r^{2}+1\right) \rho^{-2} \text { where }\left\|x_{i}\right\| \leq r
$$

- Dimensionality independent
- Order independent (i.e. also worst case)
- Scales with ‘difficulty’ of problem

Proof

Starting Point

We start from $w_{1}=0$ and $b_{1}=0$.
Step 1: Bound on the increase of alignment
Denote by w_{i} the value of w at step i (analogously b_{i}).

Alignment: $\left\langle\left(w_{i}, b_{i}\right),\left(w^{*}, b^{*}\right)\right\rangle$

For error in observation $\left(x_{i}, y_{i}\right)$ we get

$$
\begin{aligned}
& \left\langle\left(w_{j+1}, b_{j+1}\right) \cdot\left(w^{*}, b^{*}\right)\right\rangle \\
& =\left\langle\left[\left(w_{j}, b_{j}\right)+y_{i}\left(x_{i}, 1\right)\right],\left(w^{*}, b^{*}\right)\right\rangle \\
& =\left\langle\left(w_{j}, b_{j}\right),\left(w^{*}, b^{*}\right)\right\rangle+y_{i}\left\langle\left(x_{i}, 1\right) \cdot\left(w^{*}, b^{*}\right)\right\rangle \\
& \geq\left\langle\left(w_{j}, b_{j}\right),\left(w^{*}, b^{*}\right)\right\rangle+\rho \\
& \geq j \rho .
\end{aligned}
$$

Alignment increases with number of errors.

Proof

Step 2: Cauchy-Schwartz for the Dot Product

$$
\begin{aligned}
\left\langle\left(w_{j+1}, b_{j+1}\right) \cdot\left(w^{*}, b^{*}\right)\right\rangle & \leq\left\|\left(w_{j+1}, b_{j+1}\right)\right\|\left\|\left(w^{*}, b^{*}\right)\right\| \\
& =\sqrt{1+\left(b^{*}\right)^{2}}\left\|\left(w_{j+1}, b_{j+1}\right)\right\|
\end{aligned}
$$

Step 3: Upper Bound on $\left\|\left(w_{j}, b_{j}\right)\right\|$
If we make a mistake we have

$$
\begin{aligned}
\left\|\left(w_{j+1}, b_{j+1}\right)\right\|^{2} & =\left\|\left(w_{j}, b_{j}\right)+y_{i}\left(x_{i}, 1\right)\right\|^{2} \\
& =\left\|\left(w_{j}, b_{j}\right)\right\|^{2}+2 y_{i}\left\langle\left(x_{i}, 1\right),\left(w_{j}, b_{j}\right)\right\rangle+\left\|\left(x_{i}, 1\right)\right\|^{2} \\
& \leq\left\|\left(w_{j}, b_{j}\right)\right\|^{2}+\left\|\left(x_{i}, 1\right)\right\|^{2} \\
& \leq j\left(R^{2}+1\right)
\end{aligned}
$$

Step 4: Combination of first three steps

$$
j \rho \leq \sqrt{1+\left(b^{*}\right)^{2}}\left\|\left(w_{j+1}, b_{j+1}\right)\right\| \leq \sqrt{j\left(R^{2}+1\right)\left(\left(b^{*}\right)^{2}+1\right)}
$$

Solving for j proves the theorem.

Consequences

- Only need to store errors.

This gives a compression bound for perceptron.

- Stochastic gradient descent on hinge loss

$$
l\left(x_{i}, y_{i}, w, b\right)=\max \left(0,1-y_{i}\left[\left\langle w, x_{i}\right\rangle+b\right]\right)
$$

- Fails with noisy data
do NOT train your avatar with perceptrons

Hardness

$\begin{array}{cc}1 & 1 \\ 1 & 11 \\ 1 & 1 \\ 11 & 1 \\ 11 & 1 \\ 1 & 1 \\ \text { hard } \\ \text { hat }\end{array}$

Carnegie Mellon University

$$
\text { * * } \quad \text { * }
$$

*

$$
\text { * * } \quad \text { * }
$$

MACHINE LEARNING DEPARTMENT

4.2 Nonlinearity and Kernels 4 (Generalized) Linear Methods

Alexander Smola

Introduction to Machine Learning 10-701 http://alex.smola.org/teaching/10-701-15

Preprocessing

Carnegie Mellon University

Nonlinear Features

- Regression

We got nonlinear functions by preprocessing

- Perceptron
- Map data into feature space $x \rightarrow \phi(x)$
- Solve problem in this space
- Query replace $\left\langle x, x^{\prime}\right\rangle$ by $\left\langle\phi(x), \phi\left(x^{\prime}\right)\right\rangle$ for code
- Feature Perceptron
- Solution in span of $\phi\left(x_{i}\right)$

Quadratic Features

- Separating surfaces are Circles, hyperbolae, parabolae

Constructing Features

	1	2	3	4	5	6	7	8	9	0
Loops	0	0	0	1	0	1	0	2	1	1
3 Joints	0	0	0	0	0	1	0	0	1	0
4 Joints	0	0	0	1	0	0	0	1	0	0
Angles	0	1	1	1	1	0	1	0	0	0
Ink	1	2	2	2	2	2	1	3	2	2

Carnegie Mellon University

Delivered-To: alex.smola@amail.com
Received: by 10.216 .47 .73 with SMTP id s51cs361171web;
Tue, 3 Jan 2012 14:17:53 -0800 (PST)
Received: by 10.213.17.145 with SMTP id s17mr2519891eba.147.1325629071725; Tue, 03 Jan 2012 14:17:51-0800 (PST)
Return-Path: alex+caf_=alex.smola=gmail.com@smola.org
Received: from mail-ey0-f175.google.com (mail-ey0-f175.google.com [209.85.215.175]) by mx.google.com with ESMTPS id n4si29264232eef.57.2012.01.03.14.17.51 (version=TLSv1/SSLv3 cipher=OTHER);
Tue, 03 Jan 2012 14:17:51-0800 (PST)
Received-SPF: neutral (google.com: 209.85.215.175 is neither permitted nor denied by best guess record for domain of alex+caf_=alex.smola=gmail.com@smola.org) client-
ip=209.85.215.175;
Authentication-Results: mx.google.com; spf=neutral (google.com: 209.85.215.175 is neither permitted nor denied by best guess record for domain of alex
$+c a f=a l e x . s m o l a=g m a i l$.com@smola.org) smtp.mail=alex+caf_=alex.smola=gmail.com@smola.org; dkim=pass (test mode) header. $\mathrm{i}=@$ googlemail.com
Received: by eaal1 with SMTP id 11so15092746eaa. 6
for alex.smola@gmail.com; Tue, 03 Jan 2012 14:17:51-0800 (PST)
Received: by 10.205.135.18 with SMTP id ie18mr5325064bkc.72.1325629071362;
Tue, 03 Jan 2012 14:17:51-0800 (PST)
X-Forwarded-To: alex.smola@gmail.com
X-Forwarded-For: alex@smola.org alex.smola@gmail.com
Delivered-To: alex@smola.org
Received: by 10.204 .65 .198 with SMTP id k6cs206093bki;
Tue, 3 Jan 2012 14:17:50 -0800 (PST)
Received: by 10.52 .88 .179 with SMTP id bh19mr10729402vdb.38.1325629068795;
Tue, 03 Jan 2012 14:17:48 -0800 (PST)
Return-Path: althoff.tim@googlemail.com
Received: from mail-vx0-f179.google.com (mail-vx0-f179.google.com [209.85.220.179])
by $m x . g o o g l e . c o m$ with ESMTPS id dt4si11767074vdb.93.2012.01.03.14.17.48 (version=TLSv1/SSLv3 cipher=OTHER);
Tue, 03 Jan 2012 14:17:48 -0800 (PST)
Received-SPF: pass (google.com: domain of althoff.tim@googlemail.com designates
209.85.220.179 as permitted sender) client-ip=209.85.220.179;

Received: by vcbf13 with SMTP id f13so11295098vcb. 10
for alex@smola.org; Tue, 03 Jan 2012 14:17:48-0800 (PST)
DKIM-Signature: $v=1$; $a=r s a-s h a 256 ; ~ c=r e l a x e d / r e l a x e d ;$
d=googlemail.com; s=gamma;
$h=m i m e-v e r s i o n: s e n d e r: d a t e: x-g o o g l e-s e n d e r-a u t h: m e s s a g e-i d: s u b j e c t ~$:from:to:content-type;
bh=WCbdZ5sXac25dpH02XcRyDOdts993hKwsAVXpGrFh0w=;
$b=W K 2 B 2+E x W n f / g v T k w 6 u U v K u P 4 X e o K n l J q 3 U S Y T m 0 R A R K 8 d S F j y 0 Q s I H e A P 9 Y s s x p 60$
7ngGoTzYqd+ZsyJfvQcLAWp1PCJhG8AMcnqWkx0NMeoFvIp2HQooZwxSOCx5ZRgY+7qX uIbbdna4lUDXj6UFe16SpLDCkptd80Z3gr7+o=
MIME-Version: 1.0
Received: by 10.220.108.81 with SMTP id e17mr24104004vcp.67.1325629067787;
Tue, 03 Jan 2012 14:17:47 -0800 (PST)
Sender: althoff.tim@googlemail.com
Received: by 10.220.17.129 with HTTP; Tue, 3 Jan 2012 14:17:47-0800 (PST) Date: Tue, 3 Jan 2012 14:17:47 -0800
X-Google-Sender-Auth: 6bwi6D17HjZIkxOEol38NZzyeHs
Message-ID: CAFJJHDGPBW+SdZg0MdAABiAKydDk9tpeMoDijYGjoG0-WC7osg@mail.gmail.com
Subject: CS 281B. Advanced Topics in Learning and Decision Making
From: Tim Althoff althoff@eecs.berkeley.edu
To: alex@smola.org
Content-Type: multipart/alternative; boundary=f46d043c7af4b07e8d04b5a7113a

Feature Engineering for Spam Filtering

- bag of words
- pairs of words
- date \& time
- recipient path
- IP number
- sender
- encoding
- links
- ... secret sauce ...

More feature engineering

- Two Interlocking Spirals

Transform the data into a radial and angular part

$$
\left(x_{1}, x_{2}\right)=(r \sin \phi, r \cos \phi)
$$

- Handwritten Japanese Character Recognition
- Break down the images into strokes and recognize it
- Lookup based on stroke order
- Medical Diagnosis
- Physician's comments
- Blood status / ECG / height / weight / temperature ...
- Medical knowledge
- Preprocessing
- Zero mean, unit variance to fix scale issue (e.g. weight vs. income)
- Probability integral transform (inverse CDF) as alternative

The Perceptron on features

initialize $w, b=0$ repeat

Pick $\left(x_{i}, y_{i}\right)$ from data

$$
\text { if } \begin{gathered}
y_{i}\left(w \cdot \Phi\left(x_{i}\right)+b\right) \leq 0 \text { then } \\
w^{\prime}=w+y_{i} \Phi\left(x_{i}\right) \\
b^{\prime}=b+y_{i}
\end{gathered}
$$

until $y_{i}\left(w \cdot \Phi\left(x_{i}\right)+b\right)>0$ for all i

- Nothing happens if classified correctly
- Weight vector is linear combination $w=\sum_{i \in I} y_{i} \phi\left(x_{i}\right)$
- Classifier is linear combination of inner products

$$
f(x)=\sum_{i \in I} y_{i}\left\langle\phi\left(x_{i}\right), \phi(x)\right\rangle+b
$$

Problems

- Problems
- Need domain expert (e.g. Chinese OCR)
- Often expensive to compute
- Difficult to transfer engineering knowledge
- Shotgun Solution
- Compute many features
- Hope that this contains good ones
- Do this efficiently
- Nonlinear methods (needs lots of data \& cpu) learn the features and the classifier

Kernels

Solving XOR

$$
\left(x_{1}, x_{2}\right)
$$

$$
\left(x_{1}, x_{2}, x_{1} x_{2}\right)
$$

- XOR not linearly separable
- Mapping into 3 dimensions makes it easily solvable

Carnegie Mellon University

Quadratic Features

Quadratic Features in \mathbb{R}^{2}

$$
\Phi(x):=\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right)
$$

Dot Product

$$
\begin{aligned}
\left\langle\Phi(x), \Phi\left(x^{\prime}\right)\right\rangle & =\left\langle\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right),\left(x_{1}^{\prime 2}, \sqrt{2} x_{1}^{\prime} x_{2}^{\prime}, x_{2}^{\prime 2}\right)\right\rangle \\
& =\left\langle x, x^{\prime}\right\rangle^{2}
\end{aligned}
$$

Insight
Trick works for any polynomials of order d via $\left\langle x, x^{\prime}\right\rangle^{d}$.

SVM with a polynomial Kernel visualization

> Created by:
> Udi Aharoni

SVM with a polynomial Kernel visualization

> Created by:
> Udi Aharoni

Computational Efficiency

Problem

- Extracting features can sometimes be very costly.
- Example: second order features in 1000 dimensions. This leads to $5 \cdot 10^{5}$ numbers. For higher order polynomial features much worse.

Solution

Don't compute the features, try to compute dot products implicitly. For some features this works ...
Definition
A kernel function $k: X \times X \rightarrow \mathbb{R}$ is a symmetric function in its arguments for which the following property holds

$$
k\left(x, x^{\prime}\right)=\left\langle\Phi(x), \Phi\left(x^{\prime}\right)\right\rangle \text { for some feature map } \Phi .
$$

If $k\left(x, x^{\prime}\right)$ is much cheaper to compute than $\Phi(x) \ldots$

The Kernel Perceptron

initialize $f=0$
repeat
Pick $\left(x_{i}, y_{i}\right)$ from data
if $y_{i} f\left(x_{i}\right) \leq 0$ then

$$
f(\cdot) \leftarrow f(\cdot)+y_{i} k\left(x_{i}, \cdot\right)+y_{i}
$$

until $y_{i} f\left(x_{i}\right)>0$ for all i

- Nothing happens if classified correctly
- Weight vector is linear combination $w=\sum_{i} y_{i} \phi\left(x_{i}\right)$
- Classifier is linear combination of inner products

$$
f(x)=\sum_{i \in I} y_{i}\left\langle\phi\left(x_{i}\right), \phi(x)\right\rangle+b=\sum_{i \in I} y_{i} k\left(x_{i}, x\right)+b
$$

Processing Pipeline

- Original data
- Data in feature space (implicit)
- Solve in feature space using kernels

Polynomial Kernels

Idea

- We want to extend $k\left(x, x^{\prime}\right)=\left\langle x, x^{\prime}\right\rangle^{2}$ to

$$
k\left(x, x^{\prime}\right)=\left(\left\langle x, x^{\prime}\right\rangle+c\right)^{d} \text { where } c>0 \text { and } d \in \mathbb{N} .
$$

- Prove that such a kernel corresponds to a dot product.

Proof strategy
Simple and straightforward: compute the explicit sum given by the kernel, i.e.

$$
k\left(x, x^{\prime}\right)=\left(\left\langle x, x^{\prime}\right\rangle+c\right)^{d}=\sum_{i=0}^{m}\binom{d}{i}\left(\left\langle x, x^{\prime}\right\rangle\right)^{i} c^{d-i}
$$

Individual terms $\left(\left\langle x, x^{\prime}\right\rangle\right)^{i}$ are dot products for some $\Phi_{i}(x)$.

Kernel Conditions

Computability

We have to be able to compute $k\left(x, x^{\prime}\right)$ efficiently (much cheaper than dot products themselves).
"Nice and Useful" Functions
The features themselves have to be useful for the learning problem at hand. Quite often this means smooth functions.
Symmetry
Obviously $k\left(x, x^{\prime}\right)=k\left(x^{\prime}, x\right)$ due to the symmetry of the dot product $\left\langle\Phi(x), \Phi\left(x^{\prime}\right)\right\rangle=\left\langle\Phi\left(x^{\prime}\right), \Phi(x)\right\rangle$.
Dot Product in Feature Space
Is there always a Φ such that k really is a dot product?

Mercer's Theorem

The Theorem

For any symmetric function $k: X \times X \rightarrow \mathbb{R}$ which is square integrable in $X \times X$ and which satisfies

$$
\int_{x_{\times x}} k\left(x, x^{\prime}\right) f(x) f\left(x^{\prime}\right) d x d x^{\prime} \geq 0 \text { for all } f \in L_{2}(X)
$$

there exist $\phi_{i}: \mathcal{X} \rightarrow \mathbb{R}$ and numbers $\lambda_{i} \geq 0$ where

$$
k\left(x, x^{\prime}\right)=\sum_{i} \lambda_{i} \phi_{i}(x) \phi_{i}\left(x^{\prime}\right) \text { for all } x, x^{\prime} \in X .
$$

Interpretation

Double integral is the continuous version of a vector-matrix-vector multiplication. For positive semidefinite matrices we have

$$
\sum \sum k\left(x_{i}, x_{j}\right) \alpha_{i} \alpha_{j} \geq 0
$$

Properties

Distance in Feature Space

Distance between points in feature space via

$$
\begin{aligned}
d\left(x, x^{\prime}\right)^{2} & :=\left\|\Phi(x)-\Phi\left(x^{\prime}\right)\right\|^{2} \\
& =\langle\Phi(x), \Phi(x)\rangle-2\left\langle\Phi(x), \Phi\left(x^{\prime}\right)\right\rangle+\left\langle\Phi\left(x^{\prime}\right), \Phi\left(x^{\prime}\right)\right\rangle \\
& =k(x, x)+k\left(x^{\prime}, x^{\prime}\right)-2 k(x, x)
\end{aligned}
$$

Kernel Matrix
To compare observations we compute dot products, so we study the matrix K given by

$$
K_{i j}=\left\langle\Phi\left(x_{i}\right), \Phi\left(x_{j}\right)\right\rangle=k\left(x_{i}, x_{j}\right)
$$

where x_{i} are the training patterns.

Similarity Measure

The entries $K_{i j}$ tell us the overlap between $\Phi\left(x_{i}\right)$ and $\Phi\left(x_{j}\right)$, so $k\left(x_{i}, x_{j}\right)$ is a similarity measure.

Properties

K is Positive Semidefinite

Claim: $\alpha^{\top} K \alpha \geq 0$ for all $\alpha \in \mathbb{R}^{m}$ and all kernel matrices $K \in \mathbb{R}^{m \times m}$. Proof:

$$
\begin{aligned}
\sum_{i, j}^{m} \alpha_{i} \alpha_{j} K_{i j} & =\sum_{i, j}^{m} \alpha_{i} \alpha_{j}\left\langle\Phi\left(x_{i}\right), \Phi\left(x_{j}\right)\right\rangle \\
& =\left\langle\sum_{i}^{m} \alpha_{i} \Phi\left(x_{i}\right), \sum_{j}^{m} \alpha_{j} \Phi\left(x_{j}\right)\right\rangle=\left\|\sum_{i=1}^{m} \alpha_{i} \Phi\left(x_{i}\right)\right\|^{2}
\end{aligned}
$$

Kernel Expansion

If w is given by a linear combination of $\Phi\left(x_{i}\right)$ we get

$$
\langle w, \Phi(x)\rangle=\left\langle\sum_{i=1}^{m} \alpha_{i} \Phi\left(x_{i}\right), \Phi(x)\right\rangle=\sum_{i=1}^{m} \alpha_{i} k\left(x_{i}, x\right) .
$$

A Counterexample

A Candidate for a Kernel

$$
k\left(x, x^{\prime}\right)= \begin{cases}1 & \text { if }\left\|x-x^{\prime}\right\| \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

This is symmetric and gives us some information about the proximity of points, yet it is not a proper kernel ...
Kernel Matrix
We use three points, $x_{1}=1, x_{2}=2, x_{3}=3$ and compute the resulting "kernelmatrix" K. This yields
$K=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1\end{array}\right]$ and eigenvalues $(\sqrt{2}-1)^{-1}, 1$ and $(1-\sqrt{2})$.
as eigensystem. Hence k is not a kernel.

Examples

Examples of kernels $k\left(x, x^{\prime}\right)$
Linear
$\left\langle x, x^{\prime}\right\rangle$
Laplacian RBF
$\exp \left(-\lambda\left\|x-x^{\prime}\right\|\right)$
Gaussian RBF
Polynomial
$\exp \left(-\lambda\left\|x-x^{\prime}\right\|^{2}\right)$
$\left.\left(\left\langle x, x^{\prime}\right\rangle+c\right\rangle\right)^{d}, c \geq 0, d \in \mathbb{N}$
B-Spline
$B_{2 n+1}\left(x-x^{\prime}\right)$
Cond. Expectation $\quad \mathbf{E}_{c}\left[p(x \mid c) p\left(x^{\prime} \mid c\right)\right]$

Simple trick for checking Mercer's condition
Compute the Fourier transform of the kernel and check that it is nonnegative.

Linear Kernel

Laplacian Kernel

Gaussian Kernel

Polynomial of order 3

B3 Spline Kernel

MACHINE LEARNING DEPARTMENT

4.3 Support Vector Machines 4 (Generalized) Linear Methods

Alexander Smola

Introduction to Machine Learning 10-701 http://alex.smola.org/teaching/10-701-15

Support Vector Machines

Linear Separator

Carnegie Mellon University

Linear Separator

Carnegie Mellon University

Linear Separator

Linear Separator

Linear Separator

Linear Separator

Carnegie Mellon University

Linear Separator

Carnegie Mellon University

Large Margin Classifier

$$
\begin{aligned}
& \text { linear function } \\
& f(x)=\langle w, x\rangle+b
\end{aligned}
$$

Carnegie Mellon University

Large Margin Classifier

$$
\frac{\left\langle x_{+}-x_{-}, w\right\rangle}{2\|w\|}=\frac{1}{2\|w\|}\left[\left[\left\langle x_{+}, w\right\rangle+b\right]-\left[\left\langle x_{-}, w\right\rangle+b\right]\right]=\frac{1}{\|w\|}
$$

Carnegie Mellon University

Large Margin Classifier

$$
\underset{w, b}{\operatorname{maximize}} \frac{1}{\|w\|} \text { subject to } y_{i}\left[\left\langle x_{i}, w\right\rangle+b\right] \geq 1
$$

Carnegie Mellon University

Large Margin Classifier

$$
\underset{w, b}{\operatorname{minimize}} \frac{1}{2}\|w\|^{2} \text { subject to } y_{i}\left[\left\langle x_{i}, w\right\rangle+b\right] \geq 1
$$

Dual Problem

- Primal optimization problem

$$
\underset{w, b}{\operatorname{minimize}} \frac{1}{2}\|w\|^{2} \text { subject to } y_{i}\left[\left\langle x_{i}, w\right\rangle+b\right] \geq 1
$$

- Lagrange function

$$
L(w, b, \alpha)=\frac{1}{2}\|w\|^{2}-\sum_{i} \alpha_{i}\left[y_{i}\left[\left\langle x_{i}, w\right\rangle+b\right]-1\right]
$$

Optimality in w, b is at saddle point with a

- Derivatives in w, b need to vanish

Dual Problem

- Lagrange function

$$
L(w, b, \alpha)=\frac{1}{2}\|w\|^{2}-\sum_{i} \alpha_{i}\left[y_{i}\left[\left\langle x_{i}, w\right\rangle+b\right]-1\right]
$$

- Derivatives in w, b need to vanish

$$
\begin{aligned}
\partial_{w} L(w, b, a) & =w-\sum_{i} \alpha_{i} y_{i} x_{i}=0 \\
\partial_{b} L(w, b, a) & =\sum_{i} \alpha_{i} y_{i}=0
\end{aligned}
$$

- Plugging terms back into L yields

$$
\underset{\alpha}{\operatorname{maximize}}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j}\left\langle x_{i}, x_{j}\right\rangle+\sum_{i} \alpha_{i}
$$

$$
\text { subject to } \sum_{i} \alpha_{i} y_{i}=0 \text { and } \alpha_{i} \geq 0
$$

Support Vector Machines

$\underset{w, b}{\operatorname{minimize}} \frac{1}{2}\|w\|^{2}$ subject to $y_{i}\left[\left\langle x_{i}, w\right\rangle+b\right] \geq 1$

subject to $\sum \alpha_{i} y_{i}=0$ and $\alpha_{i} \geq 0$
Carnegie Mellon University

Support Vectors

$\underset{w, b}{\operatorname{minimize}} \frac{1}{2}\|w\|^{2}$ subject to $y_{i}\left[\left\langle x_{i}, w\right\rangle+b\right] \geq 1$ $w=\sum_{i} y_{i} \alpha_{i} x_{i}$

Karush Kuhn Tucker
Optimality condition

$$
\begin{aligned}
& \alpha_{i}=0 \\
& \alpha_{i}>0 \Longrightarrow y_{i}\left[\left\langle w, x_{i}\right\rangle+b\right]=1
\end{aligned}
$$

$$
\alpha_{i}\left[y_{i}\left[\left\langle w, x_{i}\right\rangle+b\right]-1\right]=0
$$

Carnegie Mellon University

Properties

$$
w=\sum_{i} y_{i} \alpha_{i} x_{i}
$$

- Weight vector w as weighted linear combination of instances
- Only points on margin matter (ignore the rest and get same solution)
- Only inner products matter
- Quadratic program
- We can replace the inner product by a kernel
- Keeps instances away from the margin

Example

liversity

Example

Number of Support Vectors: 3 (-ve: 2,+ve: 1) Total number of points: 15

Why large margins?

Carnegie Mellon University

Large Margin Classifier

$$
\begin{aligned}
& \text { linear function } \\
& f(x)=\langle w, x\rangle+b
\end{aligned}
$$

Carnegie Mellon University

Large Margin Classifier

$$
\begin{aligned}
& \text { linear function } \\
& f(x)=\langle w, x\rangle+b
\end{aligned}
$$

Large Margin Classifier

Carnegie Mellon University

Large Margin Classifier

Theorem (Minsky \& Papert)
Finding the minimum error separating hyperplane is NP hard

Large Margin Classifier

Theorem (Minsky \& Papert)
Finding the minimum error separating hyperplane is NP hard

Large Margin Classifier

Finding the minimum error separating hyperplane is NP hard

Adding slack variables

Convex optimization problem

Adding slack variables

Convex optimization problem

Adding slack variables

minimize amount of slack

Intermezzo

Convex Programs for Dummies

- Primal optimization problem minimize $f(x)$ subject to $c_{i}(x) \leq 0$

x

- Lagrange function

$$
L(x, \alpha)=f(x)+\sum_{i} \alpha_{i} c_{i}(x)
$$

- First order optimality conditions in \mathbf{x}

$$
\partial_{x} L(x, \alpha)=\partial_{x} f(x)+\sum_{i} \alpha_{i} \partial_{x} c_{i}(x)=0
$$

- Solve for x and plug it back into L
$\underset{\alpha}{\operatorname{maximize}} L(x(\alpha), \alpha)$
(keep explicit constraints)

Adding slack variables

Convex optimization problem

Adding slack variables

Convex optimization problem

Adding slack variables

Carnegie Mellon University

Adding slack variables

- Hard margin problem

$$
\underset{w, b}{\operatorname{minimize}} \frac{1}{2}\|w\|^{2} \text { subject to } y_{i}\left[\left\langle w, x_{i}\right\rangle+b\right] \geq 1
$$

- With slack variables

$$
\begin{array}{ll}
\underset{w, b}{\operatorname{minimize}} & \frac{1}{2}\|w\|^{2}+C \sum_{i} \xi_{i} \\
\text { subject to } y_{i}\left[\left\langle w, x_{i}\right\rangle+b\right] \geq 1-\xi_{i} \text { and } \xi_{i} \geq 0
\end{array}
$$

Problem is always feasible. $w=0$ and $b=0$ and $\xi_{i}=1$

Dual Problem

- Primal optimization problem

$$
\underset{w, b}{\operatorname{minimize}} \frac{1}{2}\|w\|^{2}+C \sum_{i} \xi_{i}
$$

subject to $y_{i}\left[\left\langle w, x_{i}\right\rangle+b\right] \geq 1-\xi_{i}$ and $\xi_{i} \geq 0$

- Lagrange function
$L(w, b, \alpha)=\frac{1}{2}\|w\|^{2}+C \sum_{i} \xi_{i}-\sum_{i} \alpha_{i}\left[y_{i}\left[\left\langle x_{i}, w\right\rangle+b\right]+\xi_{i}-1\right]-\sum_{i} \eta_{i} \xi_{i}$
Optimality in w, b, ξ is at saddle point with α, η
- Derivatives in w, b, ξ need to vanish

Dual Problem

- Lagrange function

$$
L(w, b, \alpha)=\frac{1}{2}\|w\|^{2}+C \sum_{i} \xi_{i}-\sum_{i} \alpha_{i}\left[y_{i}\left[\left\langle x_{i}, w\right\rangle+b\right]+\xi_{i}-1\right]-\sum_{i} \eta_{i} \xi_{i}
$$

- Derivatives in w, b need to vanish

$$
\begin{aligned}
\partial_{w} L(w, b, \xi, \alpha, \eta) & =w-\sum_{i} \alpha_{i} y_{i} x_{i}=0 \\
\partial_{b} L(w, b, \xi, \alpha, \eta) & =\sum_{i} \alpha_{i} y_{i}=0 \\
\partial_{\xi_{i}} L(w, b, \xi, \alpha, \eta) & =C-\alpha_{i}-\eta_{i}=0
\end{aligned}
$$

- Plugging terms back into L yields

$$
\underset{\alpha}{\operatorname{maximize}}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j}\left\langle x_{i}, x_{j}\right\rangle+\sum_{i} \alpha_{i}
$$

Karush Kuhn Tucker Conditions

$$
\left.\begin{array}{rl}
\alpha_{i}\left[y_{i}\left[\left\langle w, x_{i}\right\rangle+b\right]+\xi_{i}-1\right] & =0 \\
\eta_{i} \xi_{i} & =0
\end{array} \quad \begin{array}{rl}
0<\alpha_{i}<C & \Longrightarrow y_{i}\left[\left\langle w, x_{i}\right\rangle+b\right]
\end{array}\right)=1
$$

Solving the optimization problem

- Dual problem

$$
\begin{aligned}
& \underset{\alpha}{\operatorname{maximize}}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j}\left\langle x_{i}, x_{j}\right\rangle+\sum_{i} \alpha_{i} \\
& \text { subject to } \sum_{i} \alpha_{i} y_{i}=0 \text { and } \alpha_{i} \in[0, C]
\end{aligned}
$$

- If problem is small enough (1000s of variables) we can use off-the-shelf solver (CVXOPT, CPLEX, OOQP, LOQO)
- For larger problem use fact that only SVs matter and solve in blocks (active set method).

The Kernel Trick

- Linear soft margin problem

$$
\underset{w, b}{\operatorname{minimize}} \frac{1}{2}\|w\|^{2}+C \sum_{i} \xi_{i}
$$

subject to $y_{i}\left[\left\langle w, x_{i}\right\rangle+b\right] \geq 1-\xi_{i}$ and $\xi_{i} \geq 0$

- Dual problem
$\underset{\alpha}{\operatorname{maximize}}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j}\left\langle x_{i}, x_{j}\right\rangle+\sum_{i} \alpha_{i}$
subject to $\sum_{i} \alpha_{i} y_{i}=0$ and $\alpha_{i} \in[0, C]$
- Support vector expansion

$$
f(x)=\sum_{i} \alpha_{i} y_{i}\left\langle x_{i}, x\right\rangle+b
$$

The Kernel Trick

- Linear soft margin problem

$$
\begin{array}{ll}
\underset{w, b}{\operatorname{minimize}} & \frac{1}{2}\|w\|^{2}+C \sum_{i} \xi_{i} \\
\text { subject to } y_{i}\left[\left\langle w, \phi\left(x_{i}\right)\right\rangle+b\right] \geq 1-\xi_{i} \text { and } \xi_{i} \geq 0
\end{array}
$$

- Dual problem

$$
\underset{\alpha}{\operatorname{maximize}}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j} k\left(x_{i}, x_{j}\right)+\sum_{i} \alpha_{i}
$$

$$
\text { subject to } \sum_{i} \alpha_{i} y_{i}=0 \text { and } \alpha_{i} \in[0, C]
$$

- Support vector expansion

$$
f(x)=\sum_{i} \alpha_{i} y_{i} k\left(x_{i}, x\right)+b
$$

And now with a narrower kernel

And now with a very wide kernel

Nonlinear separation

- Increasing C allows for more nonlinearities
- Decreases number of errors
- SV boundary need not be contiguous
- Kernel width adjusts function class

Reproduction rights;obtäinable from www Cartoonstock:com

"Under hypnosis you revealed that in your last eight lives you were ... er ... a cat."

Regression Estimation

- Find function f minimizing regression error

$$
R[f]:=\mathbf{E}_{x, y \sim p(x, y)}[l(y, f(x))]
$$

- Compute empirical average

$$
R_{\mathrm{emp}}[f]:=\frac{1}{m} \sum_{i=1}^{m} l\left(y_{i}, f\left(x_{i}\right)\right)
$$

Overfitting as we minimize empirical error

- Add regularization for capacity control

$$
R_{\mathrm{reg}}[f]:=\frac{1}{m} \sum_{i=1}^{m} l\left(y_{i}, f\left(x_{i}\right)\right)+\lambda \Omega[f]
$$

Squared loss

liversity

I1 loss

niversity

ε-insensitive Loss

Penalized least mean squares

- Optimization problem

$$
\underset{w}{\operatorname{minimize}} \frac{1}{2 m} \sum_{i=1}^{m}\left(y_{i}-\left\langle x_{i}, w\right\rangle\right)^{2}+\frac{\lambda}{2}\|w\|^{2}
$$

- Solution

$$
\begin{aligned}
\partial_{w}[\ldots] & =\frac{1}{m} \sum_{i=1}^{m}\left[x_{i} x_{i}^{\top} w-x_{i} y_{i}\right]+\lambda w \\
& =\left[\frac{1}{m} X X^{\top}+\lambda \mathbf{1}\right] w-\frac{1}{m} X y=0 \\
\text { hence } w & =\left[X X^{\top}+\lambda m \mathbf{1}\right]^{-1} X y
\end{aligned}
$$

Penalized least mean squares ... now with kernels

- Optimization problem

$$
\underset{w}{\operatorname{minimize}} \frac{1}{2 m} \sum_{i=1}^{m}\left(y_{i}-\left\langle\phi\left(x_{i}\right), w\right\rangle\right)^{2}+\frac{\lambda}{2}\|w\|^{2}
$$

- Representer Theorem (Kimeldorf \& Wahba, 1971)

Penalized least mean squares ... now with kernels

- Optimization problem

$$
\underset{w}{\operatorname{minimize}} \frac{1}{2 m} \sum_{i=1}^{m}\left(y_{i}-\left\langle\phi\left(x_{i}\right), w\right\rangle\right)^{2}+\frac{\lambda}{2}\|w\|^{2}
$$

- Representer Theorem (Kimeldorf \& Wahba, 1971)
- Optimal solution is in span of data $w=\sum \alpha_{i} \phi\left(x_{i}\right)$
- Proof - risk term only depends on data vía $\phi\left(x_{i}\right)$
- Regularization ensures that orthogonal part is 0
- Optimization problem in terms of w

$$
\underset{\alpha}{\operatorname{minimize}} \frac{1}{2 m} \sum_{i=1}^{m}\left(y_{i}-\sum_{j} K_{i j} \alpha_{j}\right)^{2}+\frac{\lambda}{2} \sum_{i, j} \alpha_{i} \alpha_{j} K_{i j}
$$

solve for $\alpha=(K+m \lambda 1)^{-1} y$ as linear system

SVM Regression

don't care about deviations within the tube
Carnegie Mellon University

SVM Regression (e-insensitive loss)

- Optimization Problem (as constrained QP)

$$
\begin{aligned}
\underset{w, b}{\operatorname{minimize}} & \frac{1}{2}\|w\|^{2}+C \sum_{i=1}^{m}\left[\xi_{i}+\xi_{i}^{*}\right] \\
\text { subject to } & \left\langle w, x_{i}\right\rangle+b \leq y_{i}+\epsilon+\xi_{i} \text { and } \xi_{i} \geq 0 \\
& \left\langle w, x_{i}\right\rangle+b \geq y_{i}-\epsilon-\xi_{i}^{*} \text { and } \xi_{i}^{*} \geq 0
\end{aligned}
$$

- Lagrange Function
$L=\frac{1}{2}\|w\|^{2}+C \sum_{i=1}^{m}\left[\xi_{i}+\xi_{i}^{*}\right]-\sum_{i=1}^{m}\left[\eta_{i} \xi_{i}+\eta_{i}^{*} \xi_{i}^{*}\right]+$
$\sum_{i=1}^{m} \alpha_{i}\left[\left\langle w, x_{i}\right\rangle+b-y_{i}-\epsilon-\xi_{i}\right]+\sum_{i=1}^{m} \alpha_{i}^{*}\left[y_{i}-\epsilon-\xi_{i}^{*}-\left\langle w, x_{i}\right\rangle-b\right]$

SVM Regression (e-insensitive loss)

- First order conditions

$$
\begin{aligned}
& \partial_{w} L=0 \\
&=w+\sum_{i}\left[\alpha_{i}-\alpha_{i}^{*}\right] x_{i} \\
& \partial_{b} L=0=\sum_{i}\left[\alpha_{i}-\alpha_{i}^{*}\right] \\
& \partial_{\xi_{i}} L=0=C-\eta_{i}-\alpha_{i} \\
& \partial_{\xi_{i}^{*}} L=0=C-\eta_{i}^{*}-\alpha_{i}^{*}
\end{aligned}
$$

- Dual problem

$$
\begin{aligned}
& \underset{\alpha, \alpha^{*}}{\operatorname{minimize}} \\
& \frac{1}{2}\left(\alpha-\alpha^{*}\right)^{\top} K\left(\alpha-\alpha^{*}\right)+\epsilon 1^{\top}\left(\alpha+\alpha^{*}\right)+y^{\top}\left(\alpha-\alpha^{*}\right) \\
& \text { subject to } 1^{\top}\left(\alpha-\alpha^{*}\right)=0 \text { and } \alpha_{i}, \alpha_{i}^{*} \in[0, C]
\end{aligned}
$$

Properties

- Ignores 'typical' instances with small error
- Only upper or lower bound active at any time
- QP in $2 n$ variables as cheap as SVM problem
- Robustness with respect to outliers
- I_{1} loss yields same problem without epsilon
- Huber's robust loss yields similar problem but with added quadratic penalty on coefficients

Regression example

Regression example

Regression example

Regression example

Carnegie Mellon University

Huber's robust loss

$$
l(y, f(x))= \begin{cases}\frac{1}{2}(y-f(x))^{2} & \text { if }|y-f(x)|<1 \\ |y-f(x)|-\frac{1}{2} & \text { otherwise }\end{cases}
$$

Ilon University

Novelty Detection

Carnegie Mellon University

Basic Idea

Data

Observations $\left(x_{i}\right)$ generated from some $\mathrm{P}(x)$, e.g.,

- network usage patterns
- handwritten digits
- alarm sensors
- factory status

Task
Find unusual events, clean database, distinguish typical examples.

Applications

Network Intrusion Detection

Detect whether someone is trying to hack the network, downloading tons of MP3s, or doing anything else unusual on the network.
Jet Engine Failure Detection
You can't destroy jet engines just to see how they fail.
Database Cleaning
We want to find out whether someone stored bogus information in a database (typos, etc.), mislabelled digits, ugly digits, bad photographs in an electronic album.
Fraud Detection
Credit Cards, Telephone Bills, Medical Records Self calibrating alarm devices

Car alarms (adjusts itself to where the car is parked), home alarm (furniture, temperature, windows, etç)

Novelty Detection via

Key Idea

- Novel data is one that we don't see frequently.
- It must lie in low density regions.

Step 1: Estimate density

- Observations x_{1}, \ldots, x_{m}
- Density estimate via Parzen windows

Step 2: Thresholding the density

- Sort data according to density and use it for rejection
- Practical implementation: compute

$$
p\left(x_{i}\right)=\frac{1}{m} \sum_{j} k\left(x_{i}, x_{j}\right) \text { for all } i
$$

and sort according to magnitude.

- Pick smallest $p\left(x_{i}\right)$ as novel points.

Order Statistics of Densities

iversity
Typical Data
34861136
00471442
60433741
35002100
17920600

Outliers

A better way

Problems

- We do not care about estimating the density properly in regions of high density (waste of capacity).
- We only care about the relative density for thresholding purposes.
- We want to eliminate a certain fraction of observations and tune our estimator specifically for this fraction.

Solution

- Areas of low density can be approximated as the level set of an auxiliary function. No need to estimate $p(x)$ directly - use proxy of $p(x)$.
- Specifically: find $f(x)$ such that x is novel if $f(x) \leq$ c where c is some constant, i.e. $f(x)$ describes the amount of novelty.

Problems with density estimation

- Exponential Family for density estimation

$$
p(x \mid \theta)=\exp (\langle\phi(x), \theta\rangle-g(\theta))
$$

- MAP estimation

$$
\underset{\theta}{\operatorname{minimize}} \sum_{i} g(\theta)-\left\langle\phi\left(x_{i}\right), \theta\right\rangle+\frac{1}{2 \sigma^{2}}\|\theta\|^{2}
$$

Advantages

- Convex optimization problem
- Concentration of measure

Problems

- Normalization $g(\theta)$ may be painful to compute
- For density estimation we need no normalized $p(x \mid \theta)$
- No need to perform particularly well in high density regions

Thresholding

Optimization Problem

Optimization Problem

$$
\begin{aligned}
\text { MAP } & \sum_{i=1}^{m}-\log p\left(x_{i} \mid \theta\right)+\frac{1}{2 \sigma^{2}}\|\theta\|^{2} \\
\text { Novelty } & \sum_{i=1}^{m} \max \left(-\log \frac{p\left(x_{i} \mid \theta\right)}{\exp (\rho-g(\theta))}, 0\right)+\frac{1}{2}\|\theta\|^{2} \\
& \sum_{i=1}^{m} \max \left(\rho-\left\langle\phi\left(x_{i}\right), \theta\right\rangle, 0\right)+\frac{1}{2}\|\theta\|^{2}
\end{aligned}
$$

Advantages

- No normalization $g(\theta)$ needed
- No need to perform particularly well in high density regions (estimator focuses on low-density regions)
- Quadratic program

Maximum Distance

Idea Find hyperplane, given by $f(x)=\langle w, x\rangle+b=0$ that has maximum distance from origin yet is still closer to the origin than the observations.

Hard Margin

$$
\begin{aligned}
\operatorname{minimize} & \frac{1}{2}\|w\|^{2} \\
\text { subject to } & \left\langle w, x_{i}\right\rangle \geq 1
\end{aligned}
$$

Soft Margin

$$
\begin{aligned}
\text { minimize } & \frac{1}{2}\|w\|^{2}+C \sum_{i=1}^{m} \xi_{i} \\
\text { subject to } & \left\langle w, x_{i}\right\rangle \geq 1-\xi_{i} \\
& \xi_{i} \geq 0 \\
& \text { Carnegie Mellon University }
\end{aligned}
$$

Optimization Problem

Primal Problem

$$
\operatorname{minimize} \quad \frac{1}{2}\|w\|^{2}+C \sum_{i=1}^{m} \xi_{i}
$$

subject to

$$
\left\langle w, x_{i}\right\rangle-1+\xi_{i} \geq 0 \text { and } \xi_{i} \geq 0
$$

Lagrange Function L

- Subtract constraints, multiplied by Lagrange multipliers (α_{i} and η_{i}), from Primal Objective Function.
- Lagrange function L has saddlepoint at optimum.

$$
L=\frac{1}{2}\|w\|^{2}+C \sum_{i=1}^{m} \xi_{i}-\sum_{i=1}^{m} \alpha_{i}\left(\left\langle w, x_{i}\right\rangle-1+\xi_{i}\right)-\sum_{i=1}^{m} \eta_{i} \xi_{i}
$$

subject to $\alpha_{i}, \eta_{i} \geq 0$.

Dual Problem

Optimality Conditions

$$
\begin{aligned}
& \partial_{w} L=w-\sum_{i=1}^{m} \alpha_{i} x_{i}=0 \Longrightarrow w=\sum_{i=1}^{m} \alpha_{i} x_{i} \\
& \partial_{\xi_{i}} L=C-\alpha_{i}-\eta_{i}=0 \Longrightarrow \alpha_{i} \in[0, C]
\end{aligned}
$$

Now substitute the optimality conditions back into L. Dual Problem
minimize $\frac{1}{2} \sum_{i=1}^{m} \alpha_{i} \alpha_{j}\left\langle x_{i}, x_{j}\right\rangle-\sum_{i=1}^{m} \alpha_{i}$
subject to $\quad \alpha_{i} \in[0, C]$
All this is only possible due to the convexity of the primal problem.

Minimum enclosing ball

- Observations on surface of ball
- Find minimum enclosing ball
- Equivalent to single class SVM

Adaptive thresholds

Problem

- Depending on C, the number of novel points will vary.
- We would like to specify the fraction ν beforehand.

Solution

Use hyperplane separating data from the origin

$$
H:=\{x \mid\langle w, x\rangle=\rho\}
$$

where the threshold ρ is adaptive.

Intuition

- Let the hyperplane shift by shifting ρ
- Adjust it such that the 'right' number of observations is considered novel.
- Do this automatically

Optimization Problem

Primal Problem

$$
\begin{aligned}
& \text { minimize } \frac{1}{2}\|w\|^{2}+\sum_{i=1}^{m} \xi_{i}-m \nu \rho \\
& \text { where }\left\langle w, x_{i}\right\rangle-\rho+\xi_{i} \geq 0 \\
& \xi_{i} \geq 0
\end{aligned}
$$

Dual Problem

$$
\operatorname{minimize} \frac{1}{2} \sum_{i=1}^{m} \alpha_{i} \alpha_{j}\left\langle x_{i}, x_{j}\right\rangle
$$

$$
\text { where } \alpha_{i} \in[0,1] \text { and } \sum_{i=1}^{m} \alpha_{i}=\nu m
$$

Carnegie Mellon University

The v-property theorem

- Optimization problem

$$
\begin{array}{ll}
\underset{w}{\operatorname{minimize}} & \frac{1}{2}\|w\|^{2}+\sum_{i=1}^{m} \xi_{i}-m \nu \rho \\
\text { subject to }\left\langle w, x_{i}\right\rangle \geq \rho-\xi_{i} \text { and } \xi_{i} \geq 0
\end{array}
$$

- Solution satisfies
- At most a fraction of v points are novel
- At most a fraction of ($1-\mathrm{v}$) points aren't novel
- Fraction of points on boundary vanishes for large m (for non-pathological kernels)

Proof

- Move boundary at optimality
- For smaller threshold m - points on wrong side of margin contribute $\delta\left(m_{-}-\nu m\right) \leq 0$
- For larger threshold $m+$ points not on 'good' side of margin yield

$$
\delta\left(m_{+}-\nu m\right) \geq 0
$$

- Combining inequalities

$$
\frac{m_{-}}{m} \leq \nu \leq \frac{m_{+}}{m}
$$

- Margin set of measure 0

Toy example

threshold and smoothness requirements

Carnegie Mellon University

Novelty detection for OCR

- Better estimates since we only optimize in low density regions.
- Specifically tuned for small number of outliers.
- Only estimates of a level-set.
- For $\nu=1$ we get the Parzen-windows estimator back.

Classification with the v -

changing kernel width and threshold

MACHINE LEARNING DEPARTMENT

4.4 Optimization
 4 (Generalized) Linear Methods

Alexander Smola

Introduction to Machine Learning 10-701 http://alex.smola.org/teaching/10-701-15

Efficient Convex Optimization

Constrained Quadratic Program

- Optimization Problem

$$
\underset{\alpha}{\operatorname{minimize}} \frac{1}{2} \alpha^{\top} Q \alpha+l^{\top} \alpha \text { subject to } C \alpha+b \leq 0
$$

- Support Vector classification
- Support Vector regression
- Novelty detection
- Solving it
- Off the shelf solvers for small problems
- Solve sequence of subproblems
- Optimization in primal space (the w space)

Subproblems

- Original optimization problem

$$
\underset{\alpha}{\operatorname{minimize}} \frac{1}{2} \alpha^{\top} Q \alpha+l^{\top} \alpha \text { subject to } C \alpha+b \leq 0
$$

- Key Idea - solve subproblems one at a time and decompose into active and fixed set $\alpha=\left(\alpha_{a}, \alpha_{f}\right)$

$$
\begin{array}{ll}
\underset{\alpha}{\operatorname{minimize}} & \frac{1}{2} \alpha_{a}^{\top} Q_{a a} \alpha_{a}+\left[l_{a}+Q_{a f} \alpha_{f}\right]^{\top} \alpha_{a} \\
\text { subject to } & C_{a} \alpha_{a}+\left[b+C_{f} \alpha_{f}\right] \leq 0
\end{array}
$$

- Subproblem is again a convex problem
- Updating subproblems is cheap

Picking observations

$$
w=\sum_{i} y_{i} \alpha_{i} x_{i}
$$

Selecting variables

- Incrementally increase (chunking)
- Select promising subset of actives (SVMLight)
- Select pairs of variables (SMO)

Chunking

Carnegie Mellon University

Being smart about hardware

- Data flow from disk to CPU

Data

Parameter

- IO speeds

System	Capacity	Bandwidth	IOPs
Disk	3 TB	$150 \mathrm{MB} / \mathrm{s}$	10^{2}
SSD	256 GB	$500 \mathrm{MB} / \mathrm{s}$	$5 \cdot 10^{4}$
RAM	16 GB	$30 \mathrm{~GB} / \mathrm{s}$	10^{8}
Cache	16 MB	$100 \mathrm{~GB} / \mathrm{s}$	10^{9}

Being smart about hardware

- Data flow from disk to CPU

Data

Cached Data (Working Set)

- IO speeds
reuse data

System	Capacity	Bandwidth	IOPs
Disk	3 TB	$150 \mathrm{MB} / \mathrm{s}$	10^{2}
SSD	256 GB	$500 \mathrm{MB} / \mathrm{s}$	$5 \cdot 10^{4}$
RAM	16 GB	$30 \mathrm{~GB} / \mathrm{s}$	10^{8}
Cache	16 MB	$100 \mathrm{~GB} / \mathrm{s}$	10^{9}

Dataflow

Algorithm - 2 loops

Reader

while not converged do

at disk speed

read example (x, y) from disk
if buffer full then evict random $\left(x^{\prime}, y^{\prime}\right)$ from memory insert new (x, y) into ring buffer in memory
end while
Trainer
while not converged do

at RAM speed

randomly pick example (x, y) from memory
update dual parameter α
update weight vector w
if deemed to be uninformative then evict (x, y) from memory
end while

margin criterion

Runtime Example

Spam Classification

Abstract

From: bat kilian@gmail.com Subject: hey whats up check this meds place out Date: April 6, 2009 10:50:13 PM PDT To: Kilian Weinberger Reply-To: batkilian@gmail.com

Your friend (kilian@amail.com) has sent you a link to the following Scout.com story: Savage Hall Ground-Breaking Celebration

Get Vicodin, Valium, Xanax, Viagra, Oxycontin, and much more. Absolutely No Prescription Required. Over Night Shipping! Why should you be risking dealing with shady people. Check us out today! http://enkinstegar73.blogspot.com

The University of Toledo will hold a ground-breaking celebration to kick-off the UT Athletics Complex and Savage Hall renovation project on Wednesday, December 12th at Savage Hall.

To read the rest of this story, go here: http:/foledo.scout.com/2/708390.html

Spam Classification

> From: bat kilian@gmail.com
> Subject: hey whats up check this meds place out
> Date: April 6, 2009 10:50:13 PM PDT
> To: Kilian Weinberger
> Reply-To: bat kilian@gmail.com

Your friend (kilian@amail.com) has sent you a link to the following Scout.com story: Savage Hall Ground-Breaking Celebration

Get Vicodin, Valium, Xanax, Viagra, Oxycontin, and much more. Absolutely No Prescription Required. Over Night Shipping! Why should you be risking dealing with shady people. Check us out today! http://enkinstegar73.blogspot.com

The University of Toledo will hold a ground-breaking celebration to kick-off the UT Athletics Complex and Savage Hall renovation project on Wednesday, December 12th at Savage Hall.

To read the rest of this story, go here:
http:/foledo.scout.com/2/708390.html

Spam Classification

Spam Classification

educated

misinformed

confused

malicious

silent

Collaborative Classification

- Primal representation

$$
f(x, u)=\langle\phi(x), w\rangle+\left\langle\phi(x), w_{u}\right\rangle=\left\langle\phi(x) \otimes\left(1 \oplus e_{u}\right), w\right\rangle
$$

Kernel representation

$$
k\left((x, u),\left(x^{\prime}, u^{\prime}\right)\right)=k\left(x, x^{\prime}\right)\left[1+\delta_{u, u^{\prime}}\right]
$$

Multitask kernel (e.g. Pontil \& Michelli, Daume). Usually does not scale well ...

- Problem - dimensionality is 10^{13}. That is 40TB of space

Collaborative Classification

- Primal representation

$$
f(x, u)=\langle\phi(x), w\rangle+\left\langle\phi(x), w_{u}\right\rangle=\left\langle\phi(x) \otimes\left(1 \oplus e_{u}\right), w\right\rangle
$$

Kernel representation

$$
k\left((x, u),\left(x^{\prime}, u^{\prime}\right)\right)=k\left(x, x^{\prime}\right)\left[1+\delta_{u, u^{\prime}}\right]
$$

Multitask kernel (e.g. Pontil \& Michelli, Daume). Usually does not scale well ...

- Problem - dimensionality is 10^{13}. That is 40TB of space

Collaborative Classification

- Primal representation

$$
f(x, u)=\langle\phi(x), w\rangle+\left\langle\phi(x), w_{u}\right\rangle=\left\langle\phi(x) \otimes\left(1 \oplus e_{u}\right), w\right\rangle
$$

Kernel representation

$$
k\left((x, u),\left(x^{\prime}, u^{\prime}\right)\right)=k\left(x, x^{\prime}\right)\left[1+\delta_{u, u^{\prime}}\right]
$$

Multitask kernel (e.g. Pontil \& Michelli, Daume). Usually does not scale well ...

- Problem - dimensionality is 10^{13}. That is 40TB of space

Hash Kernels

Carnegie Mellon University

Hash Kernels

instance: dictionary:

Hash Kernels

instance: dictionary:
Hey,

please mentiop
subtly during
your talk that
people should
use Yahoo mail
more often.
Thanks,
Someone

task/user
(=barney):

Carnegie Mellon University

Hash Kernels

instance:

Hey,
please mention subtly during your talk that people should use Yahoo mail more often. Thanks,
Someone

h('mention_barney')
(Chask/user
(=barney):

Advantages of hashing

- No dictionary!
- Content drift is no problem
- All memory used for classification

- Finite memory guarantee (with online learning)
- No Memory needed for projection. (vs LSH)
- Implicit mapping into high dimensional space!
- It is sparsity preserving! (vs LSH)

Inner product preserving

- Unhashed inner product

$$
\langle w, x\rangle=\sum_{i} w_{i} x_{i}
$$

- Hashed inner product

$$
\langle\bar{w}, \bar{x}\rangle=\sum_{j}\left[\sum_{i: h(i)=j} w_{i} \sigma(i)\right]\left[\sum_{i: h(i)=j} x_{i} \sigma(i)\right]
$$

- Taking expectations

$$
\mathbf{E}_{\sigma}\left[\sigma(i) \sigma\left(i^{\prime}\right)\right]=\delta_{i i^{\prime}}
$$

hence inner product is preserved in expectation

Approximate Orthogonality

$\mathbb{R}^{\text {small }}$

We can do multi-task learning!
Carnegie Mellon University

Guarantees

- For a random hash function the inner product vanishes with high probability via

$$
\operatorname{Pr}\left\{\left|\left\langle w_{v}, h_{u}(x)\right\rangle\right|>\epsilon\right\} \leq 2 e^{-C \epsilon^{2} m}
$$

- We can use this for multitask learning

Direct sum in Hilbert Space

- The hashed inner product is unbiased Proof: take expectation over random signs
- The variance is $\mathrm{O}(1 / \mathrm{n})$. Proof by brute force expansion
- Restricted isometry property (Kumar, Sarlos, Dasgupta '10)

Spam classification results

$N=20 M, U=400 K$

Lazy users ...

Labeled emails per user

Carnegie Mellon University

Results by user group

Carnegie Mellon University

Results by user group

Results by user group

Approximate String Matches

- General idea

$$
k\left(x, x^{\prime}\right)=\sum_{w \in x} \sum_{w^{\prime} \in x^{\prime}} \kappa\left(w, w^{\prime}\right) \text { for }\left|w-w^{\prime}\right| \leq \delta
$$

- Pittsburgh
- P1ttsburgh
- Pitsburgh
- Pittsburg

catch all

- Pittsbrugh

Approximate String Matches

- General idea

$$
k\left(x, x^{\prime}\right)=\sum_{w \in x} \sum_{w^{\prime} \in x^{\prime}} \kappa\left(w, w^{\prime}\right) \text { for }\left|w-w^{\prime}\right| \leq \delta
$$

- Simplification
- Weigh by mismatch amount |w-w'|
- Map into fragments: dog -> (*og, d*g, do*)
- Hash fragments and weigh them based on mismatch amount
- Exponential in amount of mismatch

But not in alphabet size

Approximate String Matches

- General idea

$$
k\left(x, x^{\prime}\right)=\sum_{w \in x} \sum_{w^{\prime} \in x^{\prime}} \kappa\left(w, w^{\prime}\right) \text { for }\left|w-w^{\prime}\right| \leq \delta
$$

- Pittsburgh
- P*ttsburgh
- Pi*tsburgh
- Pit*sburgh
- Pitt*burgh

Memory access patterns

- Cache size is a few MBs Very fast random memory access
- RAM (DDR3 or better) is GBs
- Fast sequential memory access (burst read)
- CPU caches memory read from RAM
- Random memory access is very slow
- CPU caches memory read from RAM

Speeding up access

- Key idea - bound the range of $h(i, j) \quad$ for $j=1$ to n access $h(i, j)$
- Linear offset bad collisions in i

$$
h(i, j)=h(i)+j
$$

- Sum of hash functions

$$
h(i, j)=h(i)+h^{\prime}(j)
$$ bad collisions in j

- Optimal Golomb Ruler (Langford) $\quad h(i, j)=h(i)+\operatorname{OGR}(j)$ NP hard in general
- Feistel Network / Cryptography $\quad h(i, j)=h(i)+\operatorname{crypt}(j \mid i)$

