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Neurons
and

Learning



Biology and Learning
• Basic Idea

• Good behavior should be rewarded, bad behavior 
punished (or not rewarded). This improves system fitness.

• Killing a sabertooth tiger should be rewarded ...
• Correlated events should be combined.
• Pavlov’s salivating dog.

• Training mechanisms
• Behavioral modification of individuals (learning) 

Successful behavior is rewarded (e.g. food). 
• Hard-coded behavior in the genes (instinct) 

The wrongly coded animal does not reproduce.



Neurons
• Soma (CPU) 

Cell body - combines signals
• Dendrite (input bus) 

Combines the inputs from  
several other nerve cells

• Synapse (interface) 
Interface and parameter store between neurons

• Axon (cable) 
May be up to 1m long and will transport the 
activation signal to neurons at different locations



Neurons

f(x) =
X

i

wixi = hw, xi

x1 x2 x3 xn. . .

output

w1 wn

synaptic 
weights



Perceptron
• Weighted linear 

combination
• Nonlinear 

decision function
• Linear offset (bias) 
 

• Linear separating hyperplanes 
(spam/ham, novel/typical, click/no click)

• Learning  
Estimating the parameters w and b

x1 x2 x3 xn. . .

output

w1 wn

synaptic 
weights

f(x) = � (hw, xi+ b)



Perceptron

Spam
Ham



Perceptron

Rosenblatt
Widom



The Perceptron

• Nothing happens if classified correctly
• Weight vector is linear combination
• Classifier is linear combination of 

inner products 

initialize w = 0 and b = 0

repeat
if yi [hw, xii+ b]  0 then
w  w + yixi and b b+ yi

end if
until all classified correctly

w =
X

i2I

yixi

f(x) =
X

i2I

yi hxi, xi+ b



Convergence Theorem
• If there exists some          with unit length and  
 
then the perceptron converges to a linear 
separator after a number of steps bounded by 
 

• Dimensionality independent
• Order independent (i.e. also worst case)
• Scales with ‘difficulty’ of problem

(w⇤, b⇤)

yi [hxi, w
⇤i+ b

⇤
] � ⇢ for all i

⇣
b

⇤2 + 1
⌘ �

r

2 + 1
�
⇢

�2 where kxik  r



ProofProof, Part I
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Starting Point
We start from w1 = 0 and b1 = 0.

Step 1: Bound on the increase of alignment
Denote by w

i

the value of w at step i (analogously b

i

).

Alignment: h(w
i

, b

i

), (w

⇤
, b

⇤
)i

For error in observation (x

i

, y

i

) we get

h(w
j+1, bj+1) · (w

⇤
, b

⇤
)i

= h[(w
j

, b

j

) + y

i

(x

i

, 1)] , (w

⇤
, b

⇤
)i

= h(w
j

, b

j

), (w

⇤
, b

⇤
)i + y

i

h(x
i

, 1) · (w

⇤
, b

⇤
)i

� h(w
j

, b

j

), (w

⇤
, b

⇤
)i + ⇢

� j⇢.

Alignment increases with number of errors.



ProofProof, Part II
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Step 2: Cauchy-Schwartz for the Dot Product
h(w

j+1, bj+1) · (w

⇤
, b

⇤
)i  k(w

j+1, bj+1)k k(w⇤
, b

⇤
)k

=

p
1 + (b

⇤
)

2k(w
j+1, bj+1)k

Step 3: Upper Bound on k(w
j

, b

j

)k
If we make a mistake we have

k(w
j+1, bj+1)k2

= k(w
j

, b

j

) + y

i

(x

i

, 1)k2

= k(w
j

, b

j

)k2
+ 2y

i

h(x
i

, 1), (w

j

, b

j

)i + k(x
i

, 1)k2

 k(w
j

, b

j

)k2
+ k(x

i

, 1)k2

 j(R

2
+ 1).

Step 4: Combination of first three steps

j⇢ 
p

1 + (b

⇤
)

2k(w
j+1, bj+1)k 

p
j(R

2
+ 1)((b

⇤
)

2
+ 1)

Solving for j proves the theorem.



Consequences
• Only need to store errors. 

This gives a compression bound for perceptron.
• Stochastic gradient descent on hinge loss 

• Fails with noisy data
l(xi, yi, w, b) = max (0, 1� yi [hw, xii+ b])

do NOT train your 
avatar with perceptrons

Black & White



Hardness 

hard easy
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Preprocessing



Nonlinear Features
• Regression  

We got nonlinear functions by preprocessing
• Perceptron

• Map data into feature space
• Solve problem in this space
• Query replace         by                for code

• Feature Perceptron
• Solution in span of 

x ! �(x)

hx, x0i h�(x),�(x0)i

�(xi)



Quadratic Features

• Separating surfaces are  
Circles, hyperbolae, parabolae



Constructing Features 
Constructing Features
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Idea
Construct features manually. E.g. for OCR we could use



Feature Engineering 
for Spam Filtering

• bag of words
• pairs of words
• date & time
• recipient path
• IP number
• sender
• encoding
• links
• ... secret sauce ...

Delivered-To: alex.smola@gmail.com
Received: by 10.216.47.73 with SMTP id s51cs361171web;
        Tue, 3 Jan 2012 14:17:53 -0800 (PST)
Received: by 10.213.17.145 with SMTP id s17mr2519891eba.147.1325629071725;
        Tue, 03 Jan 2012 14:17:51 -0800 (PST)
Return-Path: <alex+caf_=alex.smola=gmail.com@smola.org>
Received: from mail-ey0-f175.google.com (mail-ey0-f175.google.com [209.85.215.175])
        by mx.google.com with ESMTPS id n4si29264232eef.57.2012.01.03.14.17.51
        (version=TLSv1/SSLv3 cipher=OTHER);
        Tue, 03 Jan 2012 14:17:51 -0800 (PST)
Received-SPF: neutral (google.com: 209.85.215.175 is neither permitted nor denied by best 
guess record for domain of alex+caf_=alex.smola=gmail.com@smola.org) client-
ip=209.85.215.175;
Authentication-Results: mx.google.com; spf=neutral (google.com: 209.85.215.175 is neither 
permitted nor denied by best guess record for domain of alex
+caf_=alex.smola=gmail.com@smola.org) smtp.mail=alex+caf_=alex.smola=gmail.com@smola.org; 
dkim=pass (test mode) header.i=@googlemail.com
Received: by eaal1 with SMTP id l1so15092746eaa.6
        for <alex.smola@gmail.com>; Tue, 03 Jan 2012 14:17:51 -0800 (PST)
Received: by 10.205.135.18 with SMTP id ie18mr5325064bkc.72.1325629071362;
        Tue, 03 Jan 2012 14:17:51 -0800 (PST)
X-Forwarded-To: alex.smola@gmail.com
X-Forwarded-For: alex@smola.org alex.smola@gmail.com
Delivered-To: alex@smola.org
Received: by 10.204.65.198 with SMTP id k6cs206093bki;
        Tue, 3 Jan 2012 14:17:50 -0800 (PST)
Received: by 10.52.88.179 with SMTP id bh19mr10729402vdb.38.1325629068795;
        Tue, 03 Jan 2012 14:17:48 -0800 (PST)
Return-Path: <althoff.tim@googlemail.com>
Received: from mail-vx0-f179.google.com (mail-vx0-f179.google.com [209.85.220.179])
        by mx.google.com with ESMTPS id dt4si11767074vdb.93.2012.01.03.14.17.48
        (version=TLSv1/SSLv3 cipher=OTHER);
        Tue, 03 Jan 2012 14:17:48 -0800 (PST)
Received-SPF: pass (google.com: domain of althoff.tim@googlemail.com designates 
209.85.220.179 as permitted sender) client-ip=209.85.220.179;
Received: by vcbf13 with SMTP id f13so11295098vcb.10
        for <alex@smola.org>; Tue, 03 Jan 2012 14:17:48 -0800 (PST)
DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed;
        d=googlemail.com; s=gamma;
        h=mime-version:sender:date:x-google-sender-auth:message-id:subject
         :from:to:content-type;
        bh=WCbdZ5sXac25dpH02XcRyDOdts993hKwsAVXpGrFh0w=;
        b=WK2B2+ExWnf/gvTkw6uUvKuP4XeoKnlJq3USYTm0RARK8dSFjyOQsIHeAP9Yssxp6O
         7ngGoTzYqd+ZsyJfvQcLAWp1PCJhG8AMcnqWkx0NMeoFvIp2HQooZwxSOCx5ZRgY+7qX
         uIbbdna4lUDXj6UFe16SpLDCkptd8OZ3gr7+o=
MIME-Version: 1.0
Received: by 10.220.108.81 with SMTP id e17mr24104004vcp.67.1325629067787;
 Tue, 03 Jan 2012 14:17:47 -0800 (PST)
Sender: althoff.tim@googlemail.com
Received: by 10.220.17.129 with HTTP; Tue, 3 Jan 2012 14:17:47 -0800 (PST)
Date: Tue, 3 Jan 2012 14:17:47 -0800
X-Google-Sender-Auth: 6bwi6D17HjZIkxOEol38NZzyeHs
Message-ID: <CAFJJHDGPBW+SdZg0MdAABiAKydDk9tpeMoDijYGjoGO-WC7osg@mail.gmail.com>
Subject: CS 281B. Advanced Topics in Learning and Decision Making
From: Tim Althoff <althoff@eecs.berkeley.edu>
To: alex@smola.org
Content-Type: multipart/alternative; boundary=f46d043c7af4b07e8d04b5a7113a

--f46d043c7af4b07e8d04b5a7113a
Content-Type: text/plain; charset=ISO-8859-1
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More feature engineering
• Two Interlocking Spirals 

Transform the data into a radial and angular part

• Handwritten Japanese Character Recognition 
• Break down the images into strokes and recognize it
• Lookup based on stroke order 

• Medical Diagnosis
• Physician’s comments
• Blood status / ECG / height / weight / temperature ...
• Medical knowledge

• Preprocessing
• Zero mean, unit variance to fix scale issue (e.g. weight vs. income)
• Probability integral transform (inverse CDF) as alternative

(x1, x2) = (r sin�, r cos�)



The Perceptron on features

• Nothing happens if classified correctly
• Weight vector is linear combination
• Classifier is linear combination of 

inner products 

Perceptron on Features
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argument: X := {x1, . . . , xm

} ⇢ X (data)
Y := {y1, . . . , ym

} ⇢ {±1} (labels)
function (w, b) = Perceptron(X, Y, ⌘)

initialize w, b = 0

repeat
Pick (x

i

, y

i

) from data
if y

i

(w · �(x

i

) + b)  0 then
w

0
= w + y

i

�(x

i

)

b

0
= b + y

i

until y

i

(w · �(x

i

) + b) > 0 for all i

end

Important detail
w =

X

j

y

j

�(x

j

) and hence f (x) =

P
j

y

j

(�(x

j

) · �(x)) + b

w =
X

i2I

yi�(xi)

f(x) =
X

i2I

yi h�(xi),�(x)i+ b



Problems
• Problems

• Need domain expert (e.g. Chinese OCR)
• Often expensive to compute
• Difficult to transfer engineering knowledge

• Shotgun Solution
• Compute many features
• Hope that this contains good ones
• Do this efficiently

• Nonlinear methods (needs lots of data & cpu) 
learn the features and the classifier



Grace Wahba

Kernels



Solving XOR

• XOR not linearly separable
• Mapping into 3 dimensions makes it easily solvable

(x1, x2) (x1, x2, x1x2)



Quadratic FeaturesPolynomial Features
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Quadratic Features in R2

�(x) :=

⇣
x

2
1,
p

2x1x2, x
2
2

⌘

Dot Product
h�(x), �(x

0
)i =

D⇣
x

2
1,
p

2x1x2, x
2
2

⌘
,

⇣
x

0
1
2
,

p
2x

0
1x

0
2, x

0
2
2
⌘E

= hx, x

0i2.
Insight
Trick works for any polynomials of order d via hx, x

0id.







Computational EfficiencyKernels
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Problem
Extracting features can sometimes be very costly.
Example: second order features in 1000 dimensions.
This leads to 5005 numbers. For higher order polyno-
mial features much worse.

Solution
Don’t compute the features, try to compute dot products
implicitly. For some features this works . . .

Definition
A kernel function k : X ⇥ X ! R is a symmetric function
in its arguments for which the following property holds

k(x, x

0
) = h�(x), �(x

0
)i for some feature map �.

If k(x, x

0
) is much cheaper to compute than �(x) . . .

5 · 105



The Kernel Perceptron

• Nothing happens if classified correctly
• Weight vector is linear combination
• Classifier is linear combination of inner products 

w =
X

i2I

yi�(xi)

Kernel Perceptron
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argument: X := {x1, . . . , xm

} ⇢ X (data)
Y := {y1, . . . , ym

} ⇢ {±1} (labels)
function f = Perceptron(X, Y, ⌘)

initialize f = 0

repeat
Pick (x

i

, y

i

) from data
if y

i

f (x

i

)  0 then
f (·) f (·) + y

i

k(x

i

, ·) + y

i

until y

i

f (x

i

) > 0 for all i

end

Important detail
w =

X

j

y

j

�(x

j

) and hence f (x) =

P
j

y

j

k(x

j

, x) + b.

f(x) =
X

i2I

yi h�(xi),�(x)i+ b =
X

i2I

yik(xi, x) + b



Processing Pipeline

• Original data
• Data in feature space (implicit)
• Solve in feature space using kernels



Polynomial KernelsPolynomial Kernels in Rn
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Idea
We want to extend k(x, x

0
) = hx, x

0i2 to

k(x, x

0
) = (hx, x

0i + c)

d where c > 0 and d 2 N.

Prove that such a kernel corresponds to a dot product.
Proof strategy
Simple and straightforward: compute the explicit sum
given by the kernel, i.e.

k(x, x

0
) = (hx, x

0i + c)

d

=

mX

i=0

✓
d

i

◆
(hx, x

0i)i cd�i

Individual terms (hx, x

0i)i are dot products for some �

i

(x).



Kernel Conditions
Are all k(x, x

0
) good Kernels?
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Computability
We have to be able to compute k(x, x

0
) efficiently (much

cheaper than dot products themselves).
“Nice and Useful” Functions
The features themselves have to be useful for the learn-
ing problem at hand. Quite often this means smooth
functions.

Symmetry
Obviously k(x, x

0
) = k(x

0
, x) due to the symmetry of the

dot product h�(x), �(x

0
)i = h�(x

0
), �(x)i.

Dot Product in Feature Space
Is there always a � such that k really is a dot product?



Mercer’s Theorem
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The Theorem
For any symmetric function k : X ⇥ X ! R which is
square integrable in X⇥ X and which satisfies

Z

X⇥X

k(x, x

0
)f (x)f (x

0
)dxdx

0 � 0 for all f 2 L2(X)

there exist �
i

: X ! R and numbers �

i

� 0 where
k(x, x

0
) =

X

i

�

i

�

i

(x)�

i

(x

0
) for all x, x

0 2 X.

Interpretation
Double integral is the continuous version of a vector-
matrix-vector multiplication. For positive semidefinite
matrices we haveX

i

X

j

k(x

i

, x

j

)↵

i

↵

j

� 0

Mercer’s Theorem



PropertiesProperties of the Kernel
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Distance in Feature Space
Distance between points in feature space via

d(x, x

0
)

2
:=k�(x) � �(x

0
)k2

=h�(x), �(x)i � 2h�(x), �(x

0
)i + h�(x

0
), �(x

0
)i

=k(x, x) + k(x

0
, x

0
) � 2k(x, x)

Kernel Matrix
To compare observations we compute dot products, so
we study the matrix K given by

K

ij

= h�(x

i

), �(x

j

)i = k(x

i

, x

j

)

where x

i

are the training patterns.
Similarity Measure
The entries K

ij

tell us the overlap between �(x

i

) and
�(x

j

), so k(x

i

, x

j

) is a similarity measure.



PropertiesProperties of the Kernel Matrix
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K is Positive Semidefinite
Claim: ↵

>
K↵ � 0 for all ↵ 2 Rm and all kernel matrices

K 2 Rm⇥m. Proof:
mX

i,j

↵

i

↵

j

K

ij

=

mX

i,j

↵

i

↵

j

h�(x

i

), �(x

j

)i

=

*
mX

i

↵

i

�(x

i

),

mX

j

↵

j

�(x

j

)

+
=

�����

mX

i=1

↵

i

�(x

i

)

�����

2

Kernel Expansion
If w is given by a linear combination of �(x

i

) we get

hw, �(x)i =

*
mX

i=1

↵

i

�(x

i

), �(x)

+
=

mX

i=1

↵

i

k(x

i

, x).



A CounterexampleA Counterexample
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A Candidate for a Kernel

k(x, x

0
) =

⇢
1 if kx� x

0k  1

0 otherwise
This is symmetric and gives us some information about
the proximity of points, yet it is not a proper kernel . . .

Kernel Matrix
We use three points, x1 = 1, x2 = 2, x3 = 3 and compute
the resulting “kernelmatrix” K. This yields

K =

2

4
1 1 0

1 1 1

0 1 1

3

5 and eigenvalues (

p
2�1)

�1
, 1 and (1�

p
2).

as eigensystem. Hence k is not a kernel.



ExamplesSome Good Kernels
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Examples of kernels k(x, x

0
)

Linear hx, x

0i
Laplacian RBF exp (��kx � x

0k)
Gaussian RBF exp

�
��kx � x

0k2
�

Polynomial (hx, x

0i + ci)d , c � 0, d 2 N
B-Spline B2n+1(x � x

0
)

Cond. Expectation E

c

[p(x|c)p(x

0|c)]
Simple trick for checking Mercer’s condition
Compute the Fourier transform of the kernel and check
that it is nonnegative.



Linear KernelLinear Kernel
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Laplacian KernelLaplacian Kernel
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Gaussian KernelGaussian Kernel
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Polynomial of order 3Polynomial (Order 3)
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B3 Spline Kernel
B

3

-Spline Kernel
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Support Vector Machines



Linear Separator

Spam
Ham



Linear Separator

Spam
Ham



Linear Separator

Spam
Ham



Linear Separator

Spam
Ham



Linear Separator

Spam
Ham



Linear Separator

Spam
Ham



Linear Separator

Spam
Ham



Large Margin Classifier

hw, xi+ b  �1 hw, xi+ b � 1

f(x) = hw, xi+ b

linear function



Large Margin Classifier

hw, xi+ b = �1 hw, xi+ b = 1

hx+ � x�, wi
2 kwk =

1

2 kwk [[hx+, wi+ b]� [hx�, wi+ b]] =
1

kwk

margin

w



Large Margin Classifier

hw, xi+ b = �1 hw, xi+ b = 1

optimization problem

w

maximize

w,b

1

kwk subject to yi [hxi, wi+ b] � 1



Large Margin Classifier

hw, xi+ b = �1 hw, xi+ b = 1

optimization problem

w

minimize

w,b

1

2

kwk2 subject to yi [hxi, wi+ b] � 1



Dual Problem
• Primal optimization problem 
 

• Lagrange function  
 
 
 
Optimality in w, b is at saddle point with α

• Derivatives in w, b need to vanish

minimize

w,b

1

2

kwk2 subject to yi [hxi, wi+ b] � 1

L(w, b,↵) =
1

2
kwk2 �

X

i

↵i [yi [hxi, wi+ b]� 1]

constraint



Dual Problem
• Lagrange function  
 

• Derivatives in w, b need to vanish  
 
 

• Plugging terms back into L yields

L(w, b,↵) =
1

2
kwk2 �

X

i

↵i [yi [hxi, wi+ b]� 1]

@wL(w, b, a) = w �
X

i

↵iyixi = 0

@bL(w, b, a) =
X

i

↵iyi = 0

maximize

↵
� 1

2

X

i,j

↵i↵jyiyj hxi, xji+
X

i

↵i

subject to

X

i

↵iyi = 0 and ↵i � 0



w

Support Vector Machines
minimize

w,b

1

2

kwk2 subject to yi [hxi, wi+ b] � 1

maximize

↵
� 1

2

X

i,j

↵i↵jyiyj hxi, xji+
X

i

↵i

subject to

X

i

↵iyi = 0 and ↵i � 0

w =
X

i

yi↵ixi



w

Support Vectors
minimize

w,b

1

2

kwk2 subject to yi [hxi, wi+ b] � 1

w =
X

i

yi↵ixi

Karush Kuhn Tucker 
Optimality condition

↵i [yi [hw, xii+ b]� 1] = 0

↵i = 0

↵i > 0 =) yi [hw, xii+ b] = 1



w

w =
X

i

yi↵ixi

Properties

• Weight vector w as weighted linear combination of instances
• Only points on margin matter (ignore the rest and get same solution)
• Only inner products matter

• Quadratic program
• We can replace the inner product by a kernel

• Keeps instances away from the margin
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Why large margins?
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∆x ∈ H is bounded in norm by some r > 0. Clearly, if we manage to separate the
training set with a margin ρ > r, we will correctly classify all test points: Since all
training points have a distance of at least ρ to the hyperplane, the test patterns
will still be on the correct side (Figure 7.3, cf. also [146]).

o

o

o

+

+

+

o
+

r

ρ

Figure 7.3 Two-dimensional toy example of a classification problem: Separate ‘o’ from
‘+’ using a hyperplane. Suppose that we add bounded noise to each pattern. If the optimal
margin hyperplane has margin ρ, and the noise is bounded by r < ρ, then the hyperplane
will correctly separate even the noisy patterns. Conversely, if we ran the perceptron
algorithm (which finds some separating hyperplane, but not necessarily the optimal one)
on the noisy data, then we would recover the optimal hyperplane in the limit r → ρ.

If we knew ρ beforehand, then this could actually be turned into an optimal
margin classifier training algorithm, as follows. If we use an r which is slightly
smaller than ρ, then even the patterns with added noise will be separable with a
nonzero margin. In this case, the standard perceptron algorithm can be shown to
converge.1

1. Rosenblatt’s perceptron algorithm [423] is one of the simplest conceivable iterative
procedures for computing a separating hyperplane. In its simplest form, it proceeds as
follows. We start with an arbitrary weight vector w0. At step n ∈ N, we consider the
training example (xn, yn). If it is classified correctly using the current weight vector (i.e.,
if sgn ⟨xn,wn−1⟩ = yn), we set wn := wn−1; otherwise, we set wn := wn−1+ηyixi (here,
η > 0 is a learning rate). We thus loop over all patterns repeatedly, until we can complete
one full pass through the training set without a single error. The resulting weight vector
will thus classify all points correctly. Novikoff [369] proved that this procedure terminates,
provided that the training set is separable with a nonzero margin.
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Large Margin Classifier

hw, xi+ b  �1 hw, xi+ b � 1

minimum error separator 
is impossibleTheorem (Minsky & Papert) 

Finding the minimum error separating hyperplane is NP hard
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Adding slack variables

Convex optimization problem
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Adding slack variables

Convex optimization problem
minimize amount 

of slack
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Intermezzo 
Convex Programs for Dummies

• Primal optimization problem

• Lagrange function  

• First order optimality conditions in x

• Solve for x and plug it back into L  
 
(keep explicit constraints)

minimize

x

f(x) subject to c

i

(x)  0

L(x,↵) = f(x) +
X

i

↵ici(x)

@

x

L(x,↵) = @

x

f(x) +
X

i

↵

i

@

x

c

i

(x) = 0

maximize

↵
L(x(↵),↵)
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Adding slack variables

Convex optimization problem
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Convex optimization problem
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hw, xi+ b  �1 + ⇠

Adding slack variables

Convex optimization problem
minimize amount 

of slack

hw, xi+ b � 1� ⇠



Adding slack variables
• Hard margin problem

• With slack variables 
 
 
 
 
Problem is always feasible.  
           

minimize

w,b

1

2

kwk2 subject to yi [hw, xii+ b] � 1

minimize

w,b

1

2

kwk2 + C

X

i

⇠i

subject to yi [hw, xii+ b] � 1� ⇠i and ⇠i � 0

w = 0 and b = 0 and ⇠i = 1



• Primal optimization problem  
 

• Lagrange function  
 
 
Optimality in w,b,ξ is at saddle point with α,η 

• Derivatives in w,b,ξ need to vanish

L(w, b,↵) =
1

2
kwk2 + C

X

i

⇠i �
X

i

↵i [yi [hxi, wi+ b] + ⇠i � 1]�
X

i

⌘i⇠i

Dual Problem

minimize

w,b

1

2

kwk2 + C

X

i

⇠i

subject to yi [hw, xii+ b] � 1� ⇠i and ⇠i � 0



Dual Problem
• Lagrange function  
 

• Derivatives in w, b need to vanish  
 
 

• Plugging terms back into L yields

L(w, b,↵) =
1

2
kwk2 + C

X

i

⇠i �
X

i

↵i [yi [hxi, wi+ b] + ⇠i � 1]�
X

i

⌘i⇠i

@wL(w, b, ⇠,↵, ⌘) = w �
X
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↵iyixi = 0

@bL(w, b, ⇠,↵, ⌘) =
X

i

↵iyi = 0

@⇠iL(w, b, ⇠,↵, ⌘) = C � ↵i � ⌘i = 0

maximize
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2

X
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↵i↵jyiyj hxi, xji+
X

i
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X

i
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bound 
influence
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Karush Kuhn Tucker Conditions

w =
X

i

yi↵ixi
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Solving the optimization problem
• Dual problem 

• If problem is small enough (1000s of variables) 
we can use off-the-shelf solver (CVXOPT, 
CPLEX, OOQP, LOQO)

• For larger problem use fact that only SVs matter 
and solve in blocks (active set method).

maximize

↵
� 1

2

X

i,j

↵i↵jyiyj hxi, xji+
X

i

↵i

subject to

X

i

↵iyi = 0 and ↵i 2 [0, C]
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The Kernel Trick
• Linear soft margin problem 
 
 

• Dual problem

• Support vector expansion
f(x) =

X

i

↵iyi hxi, xi+ b

maximize
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The Kernel Trick
• Linear soft margin problem 
 
 

• Dual problem

• Support vector expansion
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And now with a narrower kernel











And now with a very wide kernel





Nonlinear separation
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Figure 7.10 2D toy example of a binary classification problem solved using a soft margin
SVC. In all cases, a Gaussian kernel (7.27) is used. From left to right, we decrease the
kernel width. Note that for a large width, the decision boundary is almost linear, and
the data set cannot be separated without error (see text). Solid lines represent decision
boundaries; dotted lines depict the edge of the margin (where (7.34) becomes an equality
with ξi = 0).

was used, but the kernel width c was varied. For large values of c, the classifier is
almost linear, and it cannot separate the data set without errors. For a small width
(right), the data set is practically memorized. For an intermediate width (middle),
a trade-off is made between allowing some training errors and using a “simple”
decision boundary.

In practice, both the kernel parameters and the value of C (or ν) are often chosenParameter Choice
using cross validation. To this end, we first split the data set into p parts of equal
size, say, p = 10. We then perform ten training runs. Each time, we leave out one of
the ten parts and use it as an independent test set for optimizing the parameters.
In the simplest case, we choose the parameters which work best, on average over
the ten runs. It is common practice, however, to then train on the full training
set, using these average parameters. There are some problems with this. First, it
amounts to optimizing the parameters on the same set as the one used for training,
which can lead to overfitting. Second, the optimal parameter settings for data sets
of size m and 9

10m, respectively, do not usually coincide. Typically, the smaller set
will requrie a slightly stronger regularization. This could mean a wider Gaussian
kernel, a smaller polynomial degree, a smaller C, or a larger ν. Even worse, it is
theoretically possible that there is a so-called phase transition (e.g., [376]) in the
learning curve between the two sample sizes. This means that the generalization
error as a function of the sample size could change dramatically between 9

10m and
m. Having said all this, practicioners often do not care about these theoretical
precautions, and use the unchanged parameters with excellent results. For further
detail, see Section 12.3.

In some cases, one can try to avoid the whole procedure by using an educated
guess. Below, we list several methods.

Use parameter setting that have worked well for similar problems. Here, some
care has to be exercised in the scaling of kernel parameters. For instance, when
using an RBF kernel, c must be rescaled to ensure that ∥xi − xj∥2/c typically lies

• Increasing C allows for more nonlinearities
• Decreases number of errors
• SV boundary need not be contiguous
• Kernel width adjusts function class



Support Vector



Regression Estimation
• Find function f minimizing regression error

• Compute empirical average  
 
 
Overfitting as we minimize empirical error

• Add regularization for capacity control  
 
 

R[f ] := E
x,y⇠p(x,y) [l(y, f(x))]

Remp[f ] :=
1

m

mX

i=1

l(yi, f(xi))

Rreg[f ] :=
1

m

mX

i=1

l(yi, f(xi)) + �⌦[f ]



Squared loss

l(y, f(x)) =
1

2
(y � f(x))2



l1 loss

l(y, f(x)) = |y � f(x)|



ε-insensitive Loss
l(y, f(x)) = max(0, |y � f(x)|� ✏)



Penalized least mean squares
• Optimization problem 
 

• Solution
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Conjugate Gradient 
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matrix in X
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Penalized least mean squares 
... now with kernels

• Optimization problem 
 

• Representer Theorem (Kimeldorf & Wahba, 1971)

minimize
w

1

2m

mX

i=1

(yi � h�(xi), wi)2 +
�

2
kwk2

kwk2 =
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��2 + kw?k2

empirical 
risk dependentw?
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Penalized least mean squares 
... now with kernels

• Optimization problem 
 

• Representer Theorem (Kimeldorf & Wahba, 1971)
• Optimal solution is in span of data
• Proof - risk term only depends on data via
• Regularization ensures that orthogonal part is 0

• Optimization problem in terms of w  
 
 
solve for                            as linear system
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SVM Regression 
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Figure 1.8 In SV regression, a tube with radius ε is fitted to the data. The trade-
off between model complexity and points lying outside of the tube (with positive slack
variables ξ) is determined by minimizing (1.48).

Note that the term ∥w∥2 is the same as in pattern recognition (cf. (1.41)); for
further details, cf. Chapter 9.

We can transform this into a constrained optimization problem by introducing
slack variables, akin to the soft margin case. In the present case, we need two types
of slack variable for the two cases f(xi) − yi > ε and yi − f(xi) > ε, respectively.
We denote them by ξ and ξ∗, respectively, and collectively refer to them as ξ(∗).
The optimization problem consists in finding

min
w∈H,ξ(∗)∈Rm,b∈R

τ(w, ξ, ξ∗) =
1

2
∥w∥2 + C

m
∑

i=1

(ξi + ξ∗i ) (1.48)

subject to f(xi)− yi ≤ ε+ ξi (1.49)

yi − f(xi) ≤ ε+ ξ∗i (1.50)

ξi, ξ
∗
i ≥ 0 (1.51)

for all i = 1, . . . ,m.
Note that according to (1.49) and (1.50), any error smaller than ε does not require

a nonzero ξi or ξ∗i and hence does not enter the objective function (1.48).
Generalization to kernel -based regression estimation is carried out in an analo-

gous manner to the case of pattern recognition. Introducing Lagrange multipliers,
one arrives at the following optimization problem: for C > 0, ε ≥ 0 chosen a priori,

max
α,α∗∈Rm

W (α,α∗) = −ε
m
∑

i=1

(α∗
i + αi) +

m
∑

i=1

(α∗
i − αi)yi

−1

2

m
∑

i,j=1

(α∗
i − αi)(α

∗
j − αj)k(xi, xj), (1.52)

subject to 0 ≤ αi,α
∗
i ≤ C, i = 1, . . . ,m, and

m
∑

i=1

(αi − α∗
i ) = 0. (1.53)

don’t care about deviations within the tube



SVM Regression 
(ϵ-insensitive loss)

• Optimization Problem (as constrained QP)

• Lagrange Function

minimize
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SVM Regression 
(ϵ-insensitive loss)

• First order conditions

• Dual problem

@wL = 0 = w +
X

i

[↵i � ↵

⇤
i ]xi

@bL = 0 =
X

i

[↵i � ↵
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i ]
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) + y>(↵� ↵⇤
)

subject to 1

>
(↵� ↵⇤
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⇤
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Properties
• Ignores ‘typical’ instances with small error
• Only upper or lower bound active at any time
• QP in 2n variables as cheap as SVM problem
• Robustness with respect to outliers

• l1 loss yields same problem without epsilon
• Huber’s robust loss yields similar problem but 

with added quadratic penalty on coefficients
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Figure 9.3 From top to
bottom: approximation of
the function sincx with
precisions ε = 0.1, 0.2,
and 0.5. The solid top and
dashed bottom lines indi-
cate the size of the ε-tube,
here drawn around the tar-
get function sincx. The
dotted line between them
is the regression function.
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Figure 9.4 Left to right: regression (solid line), datapoints (small dots) and SVs (big
dots) for an approximation of sincx (dotted line) with ε = 0.1, 0.2, and 0.5. Note the
decrease in the number of SVs.

redundant — even without these patterns in the training set, the SVM would have
constructed exactly the same function f . We might be tempted to use this property
as an efficient means of data compression, namely by storing only the support
patterns, from which the estimate can be reconstructed completely. Unfortunately,
this approach turns out not to work well in the case of noisy high-dimensional data,
since for moderate approximation quality, the number of SVs can be rather high
[555].

9.3 ν-SV Regression

The parameter ε of the ε-insensitive loss is useful if the desired accuracy of the
approximation can be specified beforehand. In some cases, however, we just want
the estimate to be as accurate as possible, without having to commit ourselves to
a specific level of accuracy a priori. We now describe a modification of the ε-SVR
algorithm, called ν-SVR, which automatically computes ε [466].

To estimate functions (9.2) from empirical data (9.3) we proceed as follows. At
each point xi, we allow an error ε. Everything above ε is captured in slack variables
ξ(∗)i , which are penalized in the objective function via a regularization constant
C, chosen a priori. The size of ε is traded off against model complexity and slack
variables via a constant ν ≥ 0:

min
w∈H,ξ(∗)∈Rm,ε,b∈R

τ(w, ξ(∗), ε) =
1

2
∥w∥2 + C ·

(

νε+
1

m

m
∑

i=1

(ξi + ξ∗i )

)

, (9.31)

subject to (⟨w,xi⟩+ b)− yi ≤ ε+ ξi, (9.32)

yi − (⟨w,xi⟩+ b) ≤ ε+ ξ∗i , (9.33)

ξ(∗)i ≥ 0, ε ≥ 0. (9.34)

For the constraints, we introduce multipliers α(∗)
i , η(∗)i ,β ≥ 0, and obtain the

Lagrangian,Primal Problem
ν-SVR

L(w, b,α(∗),β, ξ(∗), ε,η(∗)) = (9.35)

1

2
∥w∥2 + Cνε+

C

m

m
∑

i=1

(ξi + ξ∗i )− βε−
m
∑

i=1

(ηiξi + η∗i ξ
∗
i )

Support VectorsSupport VectorsSupport Vectors



Huber’s robust loss

quadratic

linear

l(y, f(x)) =

(
1
2 (y � f(x))

2
if |y � f(x)| < 1

|y � f(x)|� 1
2 otherwise

trimmed mean 
estimatior



Novelty Detection



Basic Idea Novelty Detection

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 4

Data
Observations (xi)

generated from
some P(x), e.g.,
network usage
patterns
handwritten digits
alarm sensors
factory status

Task
Find unusual events,
clean database, dis-
tinguish typical ex-
amples.



ApplicationsApplications

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 5

Network Intrusion Detection
Detect whether someone is trying to hack the network,
downloading tons of MP3s, or doing anything else un-
usual on the network.

Jet Engine Failure Detection
You can’t destroy jet engines just to see how they fail.

Database Cleaning
We want to find out whether someone stored bogus in-
formation in a database (typos, etc.), mislabelled digits,
ugly digits, bad photographs in an electronic album.

Fraud Detection
Credit Cards, Telephone Bills, Medical Records

Self calibrating alarm devices
Car alarms (adjusts itself to where the car is parked),
home alarm (furniture, temperature, windows, etc.)



Novelty Detection via Novelty Detection via Densities
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Key Idea
Novel data is one that we don’t see frequently.
It must lie in low density regions.

Step 1: Estimate density
Observations x

1

, . . . , xm

Density estimate via Parzen windows
Step 2: Thresholding the density

Sort data according to density and use it for rejection
Practical implementation: compute

p(xi) =

1

m

X

j

k(xi, xj) for all i

and sort according to magnitude.
Pick smallest p(xi) as novel points.



Order Statistics of DensitiesOrder Statistic of Densities
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Typical DataTypical Data
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OutliersOutliers
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A better wayA better way . . .
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Problems
We do not care about estimating the density properly
in regions of high density (waste of capacity).
We only care about the relative density for threshold-
ing purposes.
We want to eliminate a certain fraction of observations
and tune our estimator specifically for this fraction.

Solution
Areas of low density can be approximated as the level
set of an auxiliary function. No need to estimate p(x)

directly — use proxy of p(x).
Specifically: find f (x) such that x is novel if f (x) 
c where c is some constant, i.e. f (x) describes the
amount of novelty.



Problems with density estimation
• Exponential Family for density estimation

• MAP estimation

Density Estimation

Alexander J. Smola: Exponential Families and Kernels, Page 4

Maximum a Posteriori

minimize

✓

mX

i=1

g(✓) � h�(xi), ✓i +

1

2�2
k✓k2

Advantages
Convex optimization problem
Concentration of measure

Problems
Normalization g(✓) may be painful to compute
For density estimation we need no normalized p(x|✓)

No need to perform particularly well in high density
regions

p(x|✓) = exp (h�(x), ✓i � g(✓))

minimize
✓

X

i

g(✓)� h�(xi), ✓i+
1

2�2
k✓k2



ThresholdingNovelty Detection
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Optimization ProblemNovelty Detection
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Optimization Problem

MAP
mX

i=1

� log p(xi|✓) +

1

2�2
k✓k2

Novelty
mX

i=1

max

✓
� log

p(xi|✓)

exp(⇢ � g(✓))

, 0

◆
+

1

2

k✓k2

mX

i=1

max(⇢ � h�(xi), ✓i, 0) +

1

2

k✓k2

Advantages
No normalization g(✓) needed
No need to perform particularly well in high density
regions (estimator focuses on low-density regions)
Quadratic program



Maximum Distance Maximum Distance Hyperplane
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Idea Find hyperplane, given by f (x) = hw, xi + b = 0 that
has maximum distance from origin yet is still closer to
the origin than the observations.

Hard Margin

minimize 1

2

kwk2

subject to hw, xii � 1

Soft Margin

minimize 1

2

kwk2

+ C
mX

i=1

⇠i

subject to hw, xii � 1 � ⇠i

⇠i � 0



Optimization ProblemDual Problem
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Primal Problem
minimize 1

2

kwk2

+ C
mX

i=1

⇠i

subject to hw, xii � 1 + ⇠i � 0 and ⇠i � 0

Lagrange Function L

Subtract constraints, multiplied by Lagrange multipli-
ers (↵i and ⌘i), from Primal Objective Function.
Lagrange function L has saddlepoint at optimum.

L =

1

2

kwk2

+ C

mX

i=1

⇠i�
mX

i=1

↵i (hw, xii � 1 + ⇠i)�
mX

i=1

⌘i⇠i

subject to ↵i, ⌘i � 0.



Dual ProblemDual Problem
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Optimality Conditions

@wL = w �
mX

i=1

↵ixi = 0 =) w =

mX

i=1

↵ixi

@⇠iL = C � ↵i � ⌘i = 0 =) ↵i 2 [0, C]

Now substitute the optimality conditions back into L.
Dual Problem

minimize 1

2

mX

i=1

↵i↵jhxi, xji �
mX

i=1

↵i

subject to ↵i 2 [0, C]

All this is only possible due to the convexity of the
primal problem.



Minimum enclosing ball
• Observations on 

surface of ball
• Find minimum 

enclosing ball
• Equivalent to 

single class SVM
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Figure 8.3 For RBF kernels, which depend only on x− x′, k(x, x) is constant, and the
mapped data points thus lie on a hypersphere in feature space. In this case, finding the
smallest sphere enclosing the data is equivalent to maximizing the margin of separation
from the origin (cf. Figure 8.2).

8.4 Optimization

•3 The previous section formulated quadratic programs (QPs) for computing regions
that capture a certain fraction of the data. These constrained optimization problems
can be solved via an off-the-shelf QP package (cf. Chapter 6). In the present section,
however, we describe an algorithm which takes advantage of the precise form of the
QPs [459], which is an adaptation of the SMO (Sequential Minimal Optimization)
algorithm [392]. Although most of the material on implementations is in Chapter 10,
we will spend a few minutes to describe the single class algorithm here. Further
information on SMO in general can be found in Section 10.5; additional information
on single-class SVM implementations, and specifically on variants which work in
an online setting, can be found in Section 10.6.3.

The SMO algorithm has been reported to work well in C-SV classification, to
which the structure of the present optimization problem, which uses ν instead of
C, is quite similar. The dual problem has only one equality constraint (8.15), just
as the dual of C-SV classification (7.37).4

The strategy of SMO is to break up the constrained minimization of (8.13) into
the smallest optimization steps possible. Note that it is not possible to modify
variables αi individually without violating the sum constraint (8.15). We therefore
resort to optimizing over pairs of variables.

3. Bernhard: alex can you cut what’s totally redundant, and insert quotes to the
implementation chapter? for convenience, i would tend to leave most of it here.
4. The ν-SV classification algorithm (7.47), on the other hand, has two equality con-
straints. Therefore, is not directly amenable to a SMO approach, unless we remove the
equality constraint arising from the offset b, as done in [93].



Adaptive thresholdsThe ⌫-Trick
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Problem
Depending on C, the number of novel points will vary.
We would like to specify the fraction ⌫ beforehand.

Solution
Use hyperplane separating data from the origin

H := {x|hw, xi = ⇢}
where the threshold ⇢ is adaptive.

Intuition
Let the hyperplane shift by shifting ⇢
Adjust it such that the ’right’ number of observations is
considered novel.
Do this automatically



Optimization ProblemThe ⌫-Trick
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Primal Problem

minimize 1

2

kwk2

+

mX

i=1

⇠i �m⌫⇢

where hw, xii � ⇢ + ⇠i � 0

⇠i � 0

Dual Problem

minimize 1

2

mX

i=1

↵i↵jhxi, xji

where ↵i 2 [0, 1] and
mX

i=1

↵i = ⌫m.

Similar to SV classification problem, use standard opti-
mizer for it.



The ν-property theorem
• Optimization problem 
 
 

• Solution satisfies
• At most a fraction of ν points are novel
• At most a fraction of (1-ν) points aren’t novel
• Fraction of points on boundary vanishes for 

large m (for non-pathological kernels)

minimize

w

1

2

kwk2 +
mX

i=1

⇠i �m⌫⇢

subject to hw, xii � ⇢� ⇠i and ⇠i � 0



Proof
• Move boundary at optimality

• For smaller threshold m- points on wrong side 
of margin contribute

• For larger threshold m+ points not on ‘good’  
side of margin yield

• Combining inequalities

• Margin set of measure 0

Maximum Distance Hyperplane

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 11

Idea Find hyperplane, given by f (x) = hw, xi + b = 0 that
has maximum distance from origin yet is still closer to
the origin than the observations.

Hard Margin

minimize 1

2

kwk2

subject to hw, xii � 1

Soft Margin

minimize 1

2

kwk2

+ C
mX

i=1

⇠i

subject to hw, xii � 1 � ⇠i

⇠i � 0

�(m� � ⌫m)  0

�(m+ � ⌫m) � 0

m�
m

 ⌫  m+

m



Toy example
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Proposition 8.3 (ν-Property) Assume the solution of (8.6),(8.7) satisfies ρ ̸= 0.
The following statements hold:
(i) ν is an upper bound on the fraction of outliers.
(ii) ν is a lower bound on the fraction of SVs.
(iii) Suppose the data (8.32) were generated independently from a distribution P(x)
which does not contain discrete components. Suppose, moreover, that the kernel
is analytic and non-constant. With probability 1, asymptotically, ν equals both the
fraction of SVs and the fraction of outliers.

The proof can be found in [459]. The result also applies to the soft margin ball
algorithm of [524], provided that it is stated in the ν-parameterization given in
(8.17). Figure 8.5 displays a 2-D toy example, illustrating how the choice of ν and
the kernel width influence the solution.

ν, width c 0.5, 0.5 0.5, 0.5 0.1, 0.5 0.5, 0.1

frac. SVs/OLs 0.54, 0.43 0.59, 0.47 0.24, 0.03 0.65, 0.38

margin ρ/∥w∥ 0.84 0.70 0.62 0.48

Figure 8.5 First two pictures: A single-class SVM applied to two toy problems; ν =
c = 0.5, domain: [−1, 1]2. Note how in both cases, at least a fraction 1− ν of all examples
is in the estimated region (cf. table). The large value of ν causes the additional data
points in the upper left corner to have almost no influence on the decision function. For
smaller values of ν, such as 0.1 (third picture), these points can no longer be ignored.
Alternatively, we can force the algorithm to take these ‘outliers’ (OLs) into account by
changing the kernel width (8.5): in the fourth picture, using c = 0.1, ν = 0.5, the data are
effectively analyzed on a different length scale, which leads the algorithm to consider the
outliers as meaningful points.

Proposition 8.4 (Resistance) Local movements of outliers parallel to w do not
change the hyperplane.Resistance

Proof (Proposition 8.4) Suppose xo is an outlier, for which ξo > 0; hence by
the KKT conditions (Chapter 6) αo = 1/(νm). Transforming it into x′

o := xo+δ ·w,
where |δ| < ξo/∥w∥, leads to a slack which is still nonzero, ξ′o > 0, hence we still have
αo = 1/(νm). Therefore, α′ = α is still feasible, as is the primal solution (w′, ξ′, ρ′).
Here, we use ξ′i = (1 + δ · αo)ξi for i ̸= o, w′ = (1 + δ · αo)w, and ρ′ as computed
from (8.16). Finally, the KKT conditions are still satisfied, as α′

o = 1/(νm) still
holds. Thus (Chapter 6), α remains the optimal solution.

threshold and smoothness requirements



Novelty detection for OCRUSPS Digits
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Better estimates since we only optimize in low density
regions.
Specifically tuned for small number of outliers.
Only estimates of a level-set.
For ⌫ = 1 we get the Parzen-windows estimator back.



Classification with the ν-
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216 Pattern Recognition

Figure 7.9 Toy problem (task: separate circles from disks) solved using ν-SV classifi-
cation, with parameter values ranging from ν = 0.1 (top left) to ν = 0.8 (bottom right).
The larger we make ν, the more points are allowed to lie inside the margin (depicted by
dotted lines). Results are shown for a Gaussian kernel, k(x, x′) = exp(−∥x− x′∥2).

Table 7.1 Fractions of errors and SVs, along with the margins of class separation, for
the toy example in Figure 7.9.
Note that ν upper bounds the fraction of errors and lower bounds the fraction of SVs,
and that increasing ν, i.e., allowing more errors, increases the margin.

ν 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

fraction of errors 0.00 0.07 0.25 0.32 0.39 0.50 0.61 0.71

fraction of SVs 0.29 0.36 0.43 0.46 0.57 0.68 0.79 0.86

margin ρ/∥w∥ 0.005 0.018 0.115 0.156 0.364 0.419 0.461 0.546

slightly more complicated. We consider the Lagrangian

L(w, ξ, b, ρ,α,β, δ) =
1

2
∥w∥2 − νρ+ 1

m

m
∑

i=1

ξi

−
m
∑

i=1

(αi(yi(⟨xi,w⟩+ b)− ρ+ ξi) + βiξi)− δρ, (7.44)

using multipliers αi,βi, δ ≥ 0. This function has to be mimimized with respect to
the primal variables w, ξ, b, ρ, and maximized with respect to the dual variables
α,β, δ. To eliminate the former, we compute the corresponding partial derivatives
and set them to 0, obtaining the following conditions:

w =
m
∑

i=1

αiyixi, (7.45)

changing kernel width and threshold
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Constrained Quadratic Program
• Optimization Problem 
 

• Support Vector classification
• Support Vector regression
• Novelty detection

• Solving it
• Off the shelf solvers for small problems
• Solve sequence of subproblems
• Optimization in primal space (the w space)

minimize

↵

1

2

↵>Q↵+ l>↵ subject to C↵+ b  0



Convex problem



Subproblems
• Original optimization problem 
 

• Key Idea - solve subproblems one at a time and 
decompose into active and fixed set 

• Subproblem is again a convex problem
• Updating subproblems is cheap

↵ = (↵a,↵f )

minimize

↵

1

2

↵>Q↵+ l>↵ subject to C↵+ b  0

minimize

↵

1

2

↵>
a Qaa↵a + [la +Qaf↵f ]

> ↵a

subject to Ca↵a + [b+ Cf↵f ]  0







w

w =
X

i

yi↵ixi

↵i = 0 =) yi [hw, xii+ b] � 1

0 < ↵i < C =) yi [hw, xii+ b] = 1

↵i = C =) yi [hw, xii+ b]  1

↵i [yi [hw, xii+ b] + ⇠i � 1] = 0

⌘i⇠i = 0

Picking observations

• Most violated margin condition
• Points on the boundary
• Points with nonzero Lagrange multiplier that are correct



Selecting variables
• Incrementally increase (chunking)
• Select promising subset of actives (SVMLight)
• Select pairs of variables (SMO)



1.2 Exploiting the Storage Hierarchy
StreamSVM takes advantage of the di↵erent characteris-

tics inherent in the storage hierarchy of modern computers.
That is, while hard disks excel at storing large amounts of
data, they have typically mediocre data transfer rates and
are outright slow at random access operations. Compared
to that, main memory comes at a hundredfold premium in
terms of space but o↵ers two to three orders of magnitude
faster data transfer rates. CPU caches are yet faster again.
Similar considerations hold for solid state drives, PCI inter-
connects, and graphics subsystems.

This suggests that algorithms which require streaming
through data from disk should take advantage of the data
they already have in main memory while waiting for more
data to arrive from disk. Obviously, the same rationale ap-
plies to a sequence of storage systems with di↵erent capac-
ity/bandwidth characteristics. To make things somewhat
more explicit we list a range of such systems below:

System Capacity Bandwidth IOPs
Disk 3TB 150MB/s 102

SSD 256GB 500MB/s 5 · 104
RAM 16GB 30GB/s 108

Cache 16MB 100GB/s 109

In the present paper we focus on two parts of this hierarchy
— disk and memory (see Figure 1). This already a↵ords
quite dramatic improvements in terms of speed relative to
sequential algorithms. In a nutshell our algorithm does the
following:

Iterate over the data in main memory while stream-
ing data from disk. Evict primarily examples
from main memory that are “uninformative”.

A naive approach which takes, e.g. stochastic gradient de-
scent steps based on the importance of examples would likely
run afoul of data weighting problems — informative exam-
ples need not have extended statistical weight but rather
only a higher influence on the choice of objective function.
One way of dealing with this issue is to resort to dual up-
dates. That is, we consider the dual optimization problem
to SVMs (and related problems) and judiciously update the
associated Lagrange multipliers. This leads to the following
algorithm:

Reader
while not converged do

read example (x, y) from disk
if bu↵er full then evict random (x0

, y

0) from memory
insert new (x, y) into ring bu↵er in memory

end while

Trainer
while not converged do

randomly pick example (x, y) from memory
update dual parameter ↵
update weight vector w
if deemed to be uninformative then evict (x, y) from
memory

end while

1.3 Enterprise Scale Solvers
To place our research in perspective note that industrial

datasets regularly exceed the capacities o↵ered by single
computers in terms of both storage and computation. This
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Figure 1: Basic data flow diagram of the optimiza-
tion algorithm. A reader keeps on filling the main
memory from disk while the optimization thread(s)
perform updates on the data available in RAM. Both
threads operate asynchronously.

means that distributed inference techniques are required.
Unfortunately, large server centers often come with rather
severe restrictions on reliability, inter-machine latency, com-
munication trees, delays, etc. such that it is desirable to find
algorithms which compute estimates using a bare minimum
of communication. Note that not all estimation problems are
amenable to e�cient high-latency scenarios. For instance,
latent variable models typically require excellent communi-
cation and great care needs to be taken to obtain fast esti-
mates [2, 32]. A common attribute of these models is that
they have a large degree of symmetry and non-convexity in
their parametrization.
Fortunately much of what is commonly known as gener-

alized linear models can be addressed with convex solvers.
That is, the estimation problems can be decomposed e�-
ciently into parts which are guaranteed to yield very similar
solutions. In statistical learning terminology this is known
as stability of the solution space and there exists a rich body
of research [7, 36, 9, 16] extolling the desirable theoretical
properties of convexly penalized estimation problems. It is
therefore natural to take advantage of these properties in
terms of implementations. For instance, [40] show that it is
possible to perform stochastic gradient descent on individ-
ual processors independently, using random sub-samples of
the data and to average the parameter estimates afterwards
and simultaneously reaping the benefits of parallelization.
Note that in previous work [25] suggested a similar averag-
ing strategy, however their theoretical analysis only showed
that averaging does not hurt, rather than actually accelerate
convergence. It is in the spirit of [40] that we approach the
problem of estimation:

1. Decompose (possibly with oversampling) the data for
several machines.

2. Solve the estimation problem per machine as e�ciently
as possible.

3. Average the solutions between machines to obtain a
final estimate.

Much work in the analysis of [40] was invested into proving
that the stochastic gradient descent solutions on subsets are
su�ciently independent for averaging to be actually benefi-
cial. If we treat the optimization step as a standard batch
problem this obstacle disappears. In this case we can appeal
directly to the asymptotic analysis of [26] to see that averag-
ing is beneficial: in particular, [26] show that the parameter
distribution of a penalized empirical risk minimizer w⇤|X,Y

conditioned on some data X,Y is asymptotically normal.
This means that if we obtain such estimates based on vari-

Being smart about hardware
• Data flow from disk to CPU  
 
 
 
 

• IO speeds 

1.2 Exploiting the Storage Hierarchy
StreamSVM takes advantage of the di↵erent characteris-

tics inherent in the storage hierarchy of modern computers.
That is, while hard disks excel at storing large amounts of
data, they have typically mediocre data transfer rates and
are outright slow at random access operations. Compared
to that, main memory comes at a hundredfold premium in
terms of space but o↵ers two to three orders of magnitude
faster data transfer rates. CPU caches are yet faster again.
Similar considerations hold for solid state drives, PCI inter-
connects, and graphics subsystems.

This suggests that algorithms which require streaming
through data from disk should take advantage of the data
they already have in main memory while waiting for more
data to arrive from disk. Obviously, the same rationale ap-
plies to a sequence of storage systems with di↵erent capac-
ity/bandwidth characteristics. To make things somewhat
more explicit we list a range of such systems below:

System Capacity Bandwidth IOPs
Disk 3TB 150MB/s 102

SSD 256GB 500MB/s 5 · 104
RAM 16GB 30GB/s 108

Cache 16MB 100GB/s 109

In the present paper we focus on two parts of this hierarchy
— disk and memory (see Figure 1). This already a↵ords
quite dramatic improvements in terms of speed relative to
sequential algorithms. In a nutshell our algorithm does the
following:

Iterate over the data in main memory while stream-
ing data from disk. Evict primarily examples
from main memory that are “uninformative”.

A naive approach which takes, e.g. stochastic gradient de-
scent steps based on the importance of examples would likely
run afoul of data weighting problems — informative exam-
ples need not have extended statistical weight but rather
only a higher influence on the choice of objective function.
One way of dealing with this issue is to resort to dual up-
dates. That is, we consider the dual optimization problem
to SVMs (and related problems) and judiciously update the
associated Lagrange multipliers. This leads to the following
algorithm:

Reader
while not converged do

read example (x, y) from disk
if bu↵er full then evict random (x0

, y

0) from memory
insert new (x, y) into ring bu↵er in memory

end while

Trainer
while not converged do

randomly pick example (x, y) from memory
update dual parameter ↵
update weight vector w
if deemed to be uninformative then evict (x, y) from
memory

end while

1.3 Enterprise Scale Solvers
To place our research in perspective note that industrial

datasets regularly exceed the capacities o↵ered by single
computers in terms of both storage and computation. This
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Figure 1: Basic data flow diagram of the optimiza-
tion algorithm. A reader keeps on filling the main
memory from disk while the optimization thread(s)
perform updates on the data available in RAM. Both
threads operate asynchronously.

means that distributed inference techniques are required.
Unfortunately, large server centers often come with rather
severe restrictions on reliability, inter-machine latency, com-
munication trees, delays, etc. such that it is desirable to find
algorithms which compute estimates using a bare minimum
of communication. Note that not all estimation problems are
amenable to e�cient high-latency scenarios. For instance,
latent variable models typically require excellent communi-
cation and great care needs to be taken to obtain fast esti-
mates [2, 32]. A common attribute of these models is that
they have a large degree of symmetry and non-convexity in
their parametrization.
Fortunately much of what is commonly known as gener-

alized linear models can be addressed with convex solvers.
That is, the estimation problems can be decomposed e�-
ciently into parts which are guaranteed to yield very similar
solutions. In statistical learning terminology this is known
as stability of the solution space and there exists a rich body
of research [7, 36, 9, 16] extolling the desirable theoretical
properties of convexly penalized estimation problems. It is
therefore natural to take advantage of these properties in
terms of implementations. For instance, [40] show that it is
possible to perform stochastic gradient descent on individ-
ual processors independently, using random sub-samples of
the data and to average the parameter estimates afterwards
and simultaneously reaping the benefits of parallelization.
Note that in previous work [25] suggested a similar averag-
ing strategy, however their theoretical analysis only showed
that averaging does not hurt, rather than actually accelerate
convergence. It is in the spirit of [40] that we approach the
problem of estimation:

1. Decompose (possibly with oversampling) the data for
several machines.

2. Solve the estimation problem per machine as e�ciently
as possible.

3. Average the solutions between machines to obtain a
final estimate.

Much work in the analysis of [40] was invested into proving
that the stochastic gradient descent solutions on subsets are
su�ciently independent for averaging to be actually benefi-
cial. If we treat the optimization step as a standard batch
problem this obstacle disappears. In this case we can appeal
directly to the asymptotic analysis of [26] to see that averag-
ing is beneficial: in particular, [26] show that the parameter
distribution of a penalized empirical risk minimizer w⇤|X,Y

conditioned on some data X,Y is asymptotically normal.
This means that if we obtain such estimates based on vari-



1.2 Exploiting the Storage Hierarchy
StreamSVM takes advantage of the di↵erent characteris-

tics inherent in the storage hierarchy of modern computers.
That is, while hard disks excel at storing large amounts of
data, they have typically mediocre data transfer rates and
are outright slow at random access operations. Compared
to that, main memory comes at a hundredfold premium in
terms of space but o↵ers two to three orders of magnitude
faster data transfer rates. CPU caches are yet faster again.
Similar considerations hold for solid state drives, PCI inter-
connects, and graphics subsystems.

This suggests that algorithms which require streaming
through data from disk should take advantage of the data
they already have in main memory while waiting for more
data to arrive from disk. Obviously, the same rationale ap-
plies to a sequence of storage systems with di↵erent capac-
ity/bandwidth characteristics. To make things somewhat
more explicit we list a range of such systems below:

System Capacity Bandwidth IOPs
Disk 3TB 150MB/s 102

SSD 256GB 500MB/s 5 · 104
RAM 16GB 30GB/s 108

Cache 16MB 100GB/s 109

In the present paper we focus on two parts of this hierarchy
— disk and memory (see Figure 1). This already a↵ords
quite dramatic improvements in terms of speed relative to
sequential algorithms. In a nutshell our algorithm does the
following:

Iterate over the data in main memory while stream-
ing data from disk. Evict primarily examples
from main memory that are “uninformative”.

A naive approach which takes, e.g. stochastic gradient de-
scent steps based on the importance of examples would likely
run afoul of data weighting problems — informative exam-
ples need not have extended statistical weight but rather
only a higher influence on the choice of objective function.
One way of dealing with this issue is to resort to dual up-
dates. That is, we consider the dual optimization problem
to SVMs (and related problems) and judiciously update the
associated Lagrange multipliers. This leads to the following
algorithm:

Reader
while not converged do

read example (x, y) from disk
if bu↵er full then evict random (x0

, y

0) from memory
insert new (x, y) into ring bu↵er in memory

end while

Trainer
while not converged do

randomly pick example (x, y) from memory
update dual parameter ↵
update weight vector w
if deemed to be uninformative then evict (x, y) from
memory

end while

1.3 Enterprise Scale Solvers
To place our research in perspective note that industrial

datasets regularly exceed the capacities o↵ered by single
computers in terms of both storage and computation. This
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Figure 1: Basic data flow diagram of the optimiza-
tion algorithm. A reader keeps on filling the main
memory from disk while the optimization thread(s)
perform updates on the data available in RAM. Both
threads operate asynchronously.

means that distributed inference techniques are required.
Unfortunately, large server centers often come with rather
severe restrictions on reliability, inter-machine latency, com-
munication trees, delays, etc. such that it is desirable to find
algorithms which compute estimates using a bare minimum
of communication. Note that not all estimation problems are
amenable to e�cient high-latency scenarios. For instance,
latent variable models typically require excellent communi-
cation and great care needs to be taken to obtain fast esti-
mates [2, 32]. A common attribute of these models is that
they have a large degree of symmetry and non-convexity in
their parametrization.
Fortunately much of what is commonly known as gener-

alized linear models can be addressed with convex solvers.
That is, the estimation problems can be decomposed e�-
ciently into parts which are guaranteed to yield very similar
solutions. In statistical learning terminology this is known
as stability of the solution space and there exists a rich body
of research [7, 36, 9, 16] extolling the desirable theoretical
properties of convexly penalized estimation problems. It is
therefore natural to take advantage of these properties in
terms of implementations. For instance, [40] show that it is
possible to perform stochastic gradient descent on individ-
ual processors independently, using random sub-samples of
the data and to average the parameter estimates afterwards
and simultaneously reaping the benefits of parallelization.
Note that in previous work [25] suggested a similar averag-
ing strategy, however their theoretical analysis only showed
that averaging does not hurt, rather than actually accelerate
convergence. It is in the spirit of [40] that we approach the
problem of estimation:

1. Decompose (possibly with oversampling) the data for
several machines.

2. Solve the estimation problem per machine as e�ciently
as possible.

3. Average the solutions between machines to obtain a
final estimate.

Much work in the analysis of [40] was invested into proving
that the stochastic gradient descent solutions on subsets are
su�ciently independent for averaging to be actually benefi-
cial. If we treat the optimization step as a standard batch
problem this obstacle disappears. In this case we can appeal
directly to the asymptotic analysis of [26] to see that averag-
ing is beneficial: in particular, [26] show that the parameter
distribution of a penalized empirical risk minimizer w⇤|X,Y

conditioned on some data X,Y is asymptotically normal.
This means that if we obtain such estimates based on vari-
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1.2 Exploiting the Storage Hierarchy
StreamSVM takes advantage of the di↵erent characteris-

tics inherent in the storage hierarchy of modern computers.
That is, while hard disks excel at storing large amounts of
data, they have typically mediocre data transfer rates and
are outright slow at random access operations. Compared
to that, main memory comes at a hundredfold premium in
terms of space but o↵ers two to three orders of magnitude
faster data transfer rates. CPU caches are yet faster again.
Similar considerations hold for solid state drives, PCI inter-
connects, and graphics subsystems.

This suggests that algorithms which require streaming
through data from disk should take advantage of the data
they already have in main memory while waiting for more
data to arrive from disk. Obviously, the same rationale ap-
plies to a sequence of storage systems with di↵erent capac-
ity/bandwidth characteristics. To make things somewhat
more explicit we list a range of such systems below:

System Capacity Bandwidth IOPs
Disk 3TB 150MB/s 102

SSD 256GB 500MB/s 5 · 104
RAM 16GB 30GB/s 108

Cache 16MB 100GB/s 109

In the present paper we focus on two parts of this hierarchy
— disk and memory (see Figure 1). This already a↵ords
quite dramatic improvements in terms of speed relative to
sequential algorithms. In a nutshell our algorithm does the
following:

Iterate over the data in main memory while stream-
ing data from disk. Evict primarily examples
from main memory that are “uninformative”.

A naive approach which takes, e.g. stochastic gradient de-
scent steps based on the importance of examples would likely
run afoul of data weighting problems — informative exam-
ples need not have extended statistical weight but rather
only a higher influence on the choice of objective function.
One way of dealing with this issue is to resort to dual up-
dates. That is, we consider the dual optimization problem
to SVMs (and related problems) and judiciously update the
associated Lagrange multipliers. This leads to the following
algorithm:

Reader
while not converged do

read example (x, y) from disk
if bu↵er full then evict random (x0

, y

0) from memory
insert new (x, y) into ring bu↵er in memory

end while

Trainer
while not converged do

randomly pick example (x, y) from memory
update dual parameter ↵
update weight vector w
if deemed to be uninformative then evict (x, y) from
memory

end while

1.3 Enterprise Scale Solvers
To place our research in perspective note that industrial

datasets regularly exceed the capacities o↵ered by single
computers in terms of both storage and computation. This
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Figure 1: Basic data flow diagram of the optimiza-
tion algorithm. A reader keeps on filling the main
memory from disk while the optimization thread(s)
perform updates on the data available in RAM. Both
threads operate asynchronously.

means that distributed inference techniques are required.
Unfortunately, large server centers often come with rather
severe restrictions on reliability, inter-machine latency, com-
munication trees, delays, etc. such that it is desirable to find
algorithms which compute estimates using a bare minimum
of communication. Note that not all estimation problems are
amenable to e�cient high-latency scenarios. For instance,
latent variable models typically require excellent communi-
cation and great care needs to be taken to obtain fast esti-
mates [2, 32]. A common attribute of these models is that
they have a large degree of symmetry and non-convexity in
their parametrization.
Fortunately much of what is commonly known as gener-

alized linear models can be addressed with convex solvers.
That is, the estimation problems can be decomposed e�-
ciently into parts which are guaranteed to yield very similar
solutions. In statistical learning terminology this is known
as stability of the solution space and there exists a rich body
of research [7, 36, 9, 16] extolling the desirable theoretical
properties of convexly penalized estimation problems. It is
therefore natural to take advantage of these properties in
terms of implementations. For instance, [40] show that it is
possible to perform stochastic gradient descent on individ-
ual processors independently, using random sub-samples of
the data and to average the parameter estimates afterwards
and simultaneously reaping the benefits of parallelization.
Note that in previous work [25] suggested a similar averag-
ing strategy, however their theoretical analysis only showed
that averaging does not hurt, rather than actually accelerate
convergence. It is in the spirit of [40] that we approach the
problem of estimation:

1. Decompose (possibly with oversampling) the data for
several machines.

2. Solve the estimation problem per machine as e�ciently
as possible.

3. Average the solutions between machines to obtain a
final estimate.

Much work in the analysis of [40] was invested into proving
that the stochastic gradient descent solutions on subsets are
su�ciently independent for averaging to be actually benefi-
cial. If we treat the optimization step as a standard batch
problem this obstacle disappears. In this case we can appeal
directly to the asymptotic analysis of [26] to see that averag-
ing is beneficial: in particular, [26] show that the parameter
distribution of a penalized empirical risk minimizer w⇤|X,Y

conditioned on some data X,Y is asymptotically normal.
This means that if we obtain such estimates based on vari-
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Figure 1: Basic data flow diagram of the optimiza-
tion algorithm. A reader keeps on filling the main
memory from disk while the optimization thread(s)
perform updates on the data available in RAM. Both
threads operate asynchronously.

through data from disk should take advantage of the data
they already have in main memory while waiting for more
data to arrive from disk. Obviously, the same rationale ap-
plies to a sequence of storage systems with di↵erent capac-
ity/bandwidth characteristics. To make things somewhat
more explicit we list a range of such systems below:

System Capacity Bandwidth IOP/s
Disk 3TB 150MB/s 102

SSD 256GB 500MB/s 5 · 104
RAM 16GB 30GB/s 108

Cache 16MB 100GB/s 109

In the present paper we focus on two parts of this hierarchy
— disk and memory (see Figure 1). This already a↵ords
quite dramatic improvements in terms of speed relative to
sequential algorithms. In a nutshell our algorithm does the
following:

Iterate over the data in main memory while stream-
ing data from disk. Evict primarily examples
from main memory that are “uninformative”.

A naive approach which takes, e.g. stochastic gradient de-
scent steps based on the importance of examples would likely
run afoul of data weighting problems — informative exam-
ples need not have extended statistical weight but rather
only a higher influence on the choice of objective function.
One way of dealing with this issue is to resort to dual up-
dates. That is, we consider the dual optimization problem
to SVMs (and related problems) and judiciously update the
associated Lagrange multipliers. This leads to the following
algorithm:

Reader
while not converged do

read example (x, y) from disk
if bu↵er full then evict random (x0

, y

0) from memory
insert new (x, y) into ring bu↵er in memory

end while

Trainer
while not converged do

randomly pick example (x, y) from memory
update dual parameter ↵
update weight vector w
if deemed to be uninformative then evict (x, y) from
memory

end while

1.3 Enterprise Scale Solvers
To place our research in perspective note that industrial

datasets regularly exceed the capacities o↵ered by single
computers in terms of both storage and computation. This
means that distributed inference techniques are required.
Unfortunately, large server centers often come with rather
severe restrictions on reliability, inter-machine latency, com-
munication trees, delays, etc. such that it is desirable to find
algorithms which compute estimates using a bare minimum
of communication. Note that not all estimation problems are
amenable to e�cient high-latency scenarios. For instance,
latent variable models typically require excellent communi-
cation and great care needs to be taken to obtain fast esti-
mates [?, 28]. A common attribute of these models is that
they have a large degree of symmetry and non-convexity in
their parametrization.
Fortunately much of what is commonly known as gener-

alized linear models can be addressed with convex solvers.
That is, the estimation problems can be decomposed e�-
ciently into parts which are guaranteed to yield very similar
solutions. In statistical learning terminology this is known
as stability of the solution space and there exists a rich body
of research [5, 32, 7, 12] extolling the desirable theoretical
properties of convexly penalized estimation problems. It is
therefore natural to take advantage of these properties in
terms of implementations. For instance, [35] show that it is
possible to perform stochastic gradient descent on individ-
ual processors independently, using random sub-samples of
the data and to average the parameter estimates afterwards
and simultaneously reaping the benefits of parallelization.
Note that in previous work [?] suggested a similar averag-
ing strategy, however their theoretical analysis only showed
that averaging does not hurt, rather than actually accelerate
convergence. It is in the spirit of [35] that we approach the
problem of estimation:

1. Decompose (possibly with oversampling) the data for
several machines.

2. Solve the estimation problem per machine as e�ciently
as possible.

3. Average the solutions between machines to obtain a
final estimate.

Much work in the analysis of [35] was invested into proving
that the stochastic gradient descent solutions on subsets are
su�ciently independent for averaging to be actually benefi-
cial. If we treat the optimization step as a standard batch
problem this obstacle disappears. In this case we can appeal
directly to the asymptotic analysis of [22] to see that averag-
ing is beneficial: in particular, [22] show that the parameter
distribution of a penalized empirical risk minimizer w⇤|X,Y

conditioned on some data X,Y is asymptotically normal.
This means that if we obtain such estimates based on vari-
ous subsets of data via w⇤|Xi, Yi, we will be able to aggregate
this to an improved joint estimate via 1

n

Pn
i=1

w

⇤|Xi, Yi.
Consequently, in the present paper we are primarily con-

cerned with step 2 of the above approach — to find the most
e�cient way of solving a convex optimization problem on a
single machine. While we primarily focus on linear SVMs in
this paper, our ideas are fairly generic and can be applied
to other convex losses including losses used in structured
prediction [?].
Outline. We will briefly review dual descent algorithms

for linear Support Vector Machines in Section 2. Subse-
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Figure 1: Basic data flow diagram of the optimiza-
tion algorithm. A reader keeps on filling the main
memory from disk while the optimization thread(s)
perform updates on the data available in RAM. Both
threads operate asynchronously.

through data from disk should take advantage of the data
they already have in main memory while waiting for more
data to arrive from disk. Obviously, the same rationale ap-
plies to a sequence of storage systems with di↵erent capac-
ity/bandwidth characteristics. To make things somewhat
more explicit we list a range of such systems below:

System Capacity Bandwidth IOP/s
Disk 3TB 150MB/s 102

SSD 256GB 500MB/s 5 · 104
RAM 16GB 30GB/s 108

Cache 16MB 100GB/s 109

In the present paper we focus on two parts of this hierarchy
— disk and memory (see Figure 1). This already a↵ords
quite dramatic improvements in terms of speed relative to
sequential algorithms. In a nutshell our algorithm does the
following:

Iterate over the data in main memory while stream-
ing data from disk. Evict primarily examples
from main memory that are “uninformative”.

A naive approach which takes, e.g. stochastic gradient de-
scent steps based on the importance of examples would likely
run afoul of data weighting problems — informative exam-
ples need not have extended statistical weight but rather
only a higher influence on the choice of objective function.
One way of dealing with this issue is to resort to dual up-
dates. That is, we consider the dual optimization problem
to SVMs (and related problems) and judiciously update the
associated Lagrange multipliers. This leads to the following
algorithm:

Reader
while not converged do

read example (x, y) from disk
if bu↵er full then evict random (x0

, y

0) from memory
insert new (x, y) into ring bu↵er in memory

end while

Trainer
while not converged do

randomly pick example (x, y) from memory
update dual parameter ↵
update weight vector w
if deemed to be uninformative then evict (x, y) from
memory

end while

1.3 Enterprise Scale Solvers
To place our research in perspective note that industrial

datasets regularly exceed the capacities o↵ered by single
computers in terms of both storage and computation. This
means that distributed inference techniques are required.
Unfortunately, large server centers often come with rather
severe restrictions on reliability, inter-machine latency, com-
munication trees, delays, etc. such that it is desirable to find
algorithms which compute estimates using a bare minimum
of communication. Note that not all estimation problems are
amenable to e�cient high-latency scenarios. For instance,
latent variable models typically require excellent communi-
cation and great care needs to be taken to obtain fast esti-
mates [?, 28]. A common attribute of these models is that
they have a large degree of symmetry and non-convexity in
their parametrization.
Fortunately much of what is commonly known as gener-

alized linear models can be addressed with convex solvers.
That is, the estimation problems can be decomposed e�-
ciently into parts which are guaranteed to yield very similar
solutions. In statistical learning terminology this is known
as stability of the solution space and there exists a rich body
of research [5, 32, 7, 12] extolling the desirable theoretical
properties of convexly penalized estimation problems. It is
therefore natural to take advantage of these properties in
terms of implementations. For instance, [35] show that it is
possible to perform stochastic gradient descent on individ-
ual processors independently, using random sub-samples of
the data and to average the parameter estimates afterwards
and simultaneously reaping the benefits of parallelization.
Note that in previous work [?] suggested a similar averag-
ing strategy, however their theoretical analysis only showed
that averaging does not hurt, rather than actually accelerate
convergence. It is in the spirit of [35] that we approach the
problem of estimation:

1. Decompose (possibly with oversampling) the data for
several machines.

2. Solve the estimation problem per machine as e�ciently
as possible.

3. Average the solutions between machines to obtain a
final estimate.

Much work in the analysis of [35] was invested into proving
that the stochastic gradient descent solutions on subsets are
su�ciently independent for averaging to be actually benefi-
cial. If we treat the optimization step as a standard batch
problem this obstacle disappears. In this case we can appeal
directly to the asymptotic analysis of [22] to see that averag-
ing is beneficial: in particular, [22] show that the parameter
distribution of a penalized empirical risk minimizer w⇤|X,Y

conditioned on some data X,Y is asymptotically normal.
This means that if we obtain such estimates based on vari-
ous subsets of data via w⇤|Xi, Yi, we will be able to aggregate
this to an improved joint estimate via 1

n

Pn
i=1

w

⇤|Xi, Yi.
Consequently, in the present paper we are primarily con-

cerned with step 2 of the above approach — to find the most
e�cient way of solving a convex optimization problem on a
single machine. While we primarily focus on linear SVMs in
this paper, our ideas are fairly generic and can be applied
to other convex losses including losses used in structured
prediction [?].
Outline. We will briefly review dual descent algorithms

for linear Support Vector Machines in Section 2. Subse-
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Figure 2: Relative function value di↵erence vs wall
clock time on the dna dataset for various values of C
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Figure 3: Top three figures: Relative function value
vs wall clock time on the kddb, ocr, and webspam-

t datasets for C = 1.0. The bottom figure: The red
solid curve is the relative function value vs wall clock
time and the blue dashed curve is the gap vs wall
clock time on the dna dataset expanded using the
“WD d = 8 explicit” feature with C = 1.0.
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Collaborative Classification

• Primal representation 
 
 
Kernel representation 
 
 
Multitask kernel (e.g. Pontil & Michelli, Daume). Usually does not scale well ...

• Problem - dimensionality is 10
13

. That is 40TB of space

f(x, u) = ⇤�(x), w⌅+ ⇤�(x), wu⌅ = ⇤�(x)⇥ (1� eu), w⌅

k((x, u), (x�, u�)) = k(x, x�)[1 + �u,u� ]
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Hash Kernels

Hey,


please mention 
subtly during 
your talk that 
people should 
use Yahoo mail 
more often. 

Thanks,  


Someone 

instance:

task/user

(=barney):

⇥xi � RN�(U+1)
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h()

h(‘mention’)

h(‘mention_barney’)

s(m_b)

s(m)

{-1, 1}

Similar to count hash 
(Charikar, Chen, Farrach-Colton, 2003)
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w̄[h(i)]�(i)xi



Advantages of hashing
• No dictionary!

• Content drift is no problem
• All memory used for classification 
• Finite memory guarantee (with online learning)

• No Memory needed for projection. (vs LSH)
• Implicit mapping into high dimensional space!
• It is sparsity preserving! (vs LSH)



Inner product preserving
• Unhashed inner product

• Hashed inner product

• Taking expectations 
 
hence inner product is preserved in expectation

hw, xi =
X
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Approximate Orthogonality

Rsmall

We can do multi-task learning!

�()
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Rsmall



Guarantees
• For a random hash function the inner product vanishes 

with high probability via

• We can use this for multitask learning  
 
 

• The hashed inner product is unbiased  
Proof: take expectation over random signs

• The variance is O(1/n). Proof by brute force expansion
• Restricted isometry property (Kumar, Sarlos, Dasgupta ’10)

Pr{|⌅wv, hu(x)⇧| > �} � 2e�C�2m

Direct sum in  
Hilbert Space

Sum in  
Hash Space



Spam classification results
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Lazy users ...
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Results by user group



Results by user group
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Results by user group
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Approximate String Matches
• General idea  
 

• Pittsburgh
• P1ttsburgh
• Pitsburgh
• Pittsburg
• Pittsbrugh

k(x, x0
) =

X

w2x

X

w

02x

0

⇥(w,w0
) for |w � w0| ⇥ �

catch 
all



Approximate String Matches
• General idea  
 

• Simplification
• Weigh by mismatch amount |w-w’|
• Map into fragments: dog -> (*og, d*g, do*)
• Hash fragments and weigh them based on 

mismatch amount
• Exponential in amount of mismatch  

But not in alphabet size

k(x, x0
) =

X

w2x

X

w

02x

0

⇥(w,w0
) for |w � w0| ⇥ �



Approximate String Matches
• General idea  
 

• Pittsburgh
• P*ttsburgh
• Pi*tsburgh
• Pit*sburgh
• Pitt*burgh
• …

k(x, x0
) =

X

w2x

X

w

02x

0

⇥(w,w0
) for |w � w0| ⇥ �



Memory access patterns
• Cache size is a few MBs 

Very fast random memory access
• RAM (DDR3 or better) is GBs

• Fast sequential memory access (burst read)
• CPU caches memory read from RAM
• Random memory access is very slow
• CPU caches memory read from RAM

vector

hashed sequence



Speeding up access
• Key idea - bound the range of h(i,j) 
• Linear offset 

bad collisions in i
• Sum of hash functions 

bad collisions in j
• Optimal Golomb Ruler (Langford) 

NP hard in general
• Feistel Network / Cryptography 

for j=1 to n access h(i,j)

h(i, j) = h(i) + j

h(i, j) = h(i) + h0(j)

h(i, j) = h(i) + OGR(j)

h(i, j) = h(i) + crypt(j|i)


