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Biology and Learning

- Basic Idea

» Good behavior should be rewarded, bad behavior
punished (or not rewarded). This improves system fithess.

» Killing a sabertooth tiger should be rewarded ...
» Correlated events should be combined.
- Pavlov’s salivating dog.

» Training mechanisms

» Behavioral modification of individuals (learning)
Successful behavior is rewarded (e.g. food).

- Hard-coded behavior in the genes (instinct)
The wrongly coded animal does not reproduce.
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Neurons

Soma (CPU) 4
Cell body - combines signalsa</g

Dendrite (input bus)
Combines the inputs from e
several other nerve cells

Synapse (interface)
Interface and parameter store between neurons
Axon (cable)

May be up to 1m long and will transport the
activation signal to neurons at different locations

Nerve cell

v -~
\
1\

Axon

Dendrite
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Neurons

synaptic
weights

output

flx) = szivz = (w, z)
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- Linear offset (bias)

Perceptron

» Weighted linear T1 o T2 T
combination
. w1 Wn
* Nonlinear i
. : synaptic
decision function weights

output
f(x) =0 ({w,z)+b)
» Linear separating hyperplanes
(spam/ham, novel/typical, click/no click)

» Learning
Estimating the parameters w and b
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The Perceptron

initialize w =0 and b =0
repeat
if y; [(w, x;) + b] <0 then
w4+ w—+ y;x; and b+ b+ y;
end if

until all classified correctly

- Nothing happens if classified correctly
- Weight vector is linear combination w=">» yx,

- Classifier is linear combination of vl
iInner products @)= i (wina

el
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Convergence Theorem

» |If there exists some (w*,p*)With unit length and

Yi [(x;, w™) + b*] > p for all
then the perceptron converges to a linear
separator after a number of steps bounded by

(b*2 + 1) (r* +1) p~° where [|a;|| <r

- Dimensionality independent
« Order independent (i.e. also worst case)
« Scales with ‘difficulty’ of problem
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Proof

Starting Point
We start from w; = 0 and b; = 0.
Step 1: Bound on the increase of alignment
Denote by w; the value of w at step i (analogously b;).

Alignment: ((w;, b;), (w*, b))
For error in observation (x;, y;) we get
(wjt1, bjs1) - (W™, %))
— <[(wj7 b]) + yi(ziv 1)] ; (w*a b*)>
= ((wy, by), (W™, b%)) + yil(zi, 1) - (w7, 07))
> ((wj, bj), (w*, %)) + p
> p.
Alignment increases with number of errors.
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Proof

Step 2: Cauchy-Schwartz for the Dot Product

((wjy1,bj41) - (w™,07)) < |[(wir1, 0j51)]] [[(w?, 67)
— \/1 (%)% w]+1abj+1)‘

Step 3: Upper Bound on ||(w;, b;)||
f we make a mistake we have

H2 (wj7b )_I'yz(xz» )H2 ,
(w], b]) 20 (4, 12)7 (wjv bj)> (2, 1)]]
(wj, b) || + 11z, V)|

J(R* 4 1).

Step 4: Combination of first three steps

7p < V1H )2 (w)sn, i)l < VI(R2+1)((0%)? + 1)
Solving for j proves the theorem.

‘ (w]—|—17 ]+1)

IA Al
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Consequences

* Only need to store errors.
This gives a compression bound for perceptron.

» Stochastic gradient descent on hinge loss
[(x;,y;,w,b) = max (0,1 — y; [(w, x;) + b))
» Fails with noisy data A .

do NOT train your

avatar with perceptrons




Hardness

hard easy
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4.2 Nonlinearity and Kernels

4 (Generalized) Linear Methods

Alexander Smola
Introduction to Machine Learning 10-701
http://alex.smola.org/teaching/10-701-15

Carnegie Mellon University


http://alex.smola.org/teaching/10-701-15

Preprocessing

Carnegie Mellon University



Nonlinear Features

* Regression
We got nonlinear functions by preprocessing

» Perceptron

- Map data into feature space = — ¢(z)

« Solve problem in this space

» Query replace (z,z') by (¢(z), ¢(z")) for code
» Feature Perceptron

» Solution in span of ¢(i)
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Quadratic Features

» Separating surfaces are
Circles, hyperbolae, parabolae
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Constructing Features

| | 2| 3 5116|7890

Loops | O |0 | O O 1[0 2|11
3jJoints| 0 |0 | O O 1 10]0]I1]0
4Joints| 0 |0 | O 000 1]0]0
Angles | O | | | | 1 {01 0]0]0
Ink | | | 2] 2 202111322
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Feature Engineering

for Spam Filtering

» bag of words

» pairs of words

» date & time

* recipient path

* [P number

» sender

* encoding

* |inks

* ... Secret sauce ...

Carnegie Mellon University


mailto:alex.smola@gmail.com
mailto:gmail.com@smola.org
mailto:gmail.com@smola.org
mailto:gmail.com@smola.org
mailto:gmail.com@smola.org
mailto:alex.smola@gmail.com
mailto:alex.smola@gmail.com
mailto:alex@smola.org
mailto:alex.smola@gmail.com
mailto:alex@smola.org
mailto:althoff.tim@googlemail.com
mailto:althoff.tim@googlemail.com
mailto:alex@smola.org
mailto:althoff.tim@googlemail.com
mailto:CAFJJHDGPBW+SdZg0MdAABiAKydDk9tpeMoDijYGjoGO-WC7osg@mail.gmail.com
mailto:althoff@eecs.berkeley.edu
mailto:alex@smola.org

More feature engineering

» Two Interlocking Spirals
Transform the data into a radial and angular part
(x1,22) = (rsin ¢, r cos @)
- Handwritten Japanese Character Recognition
- Break down the images into strokes and recognize it
» Lookup based on stroke order
» Medical Diagnosis
* Physician’s comments
- Blood status / ECG / height / weight / temperature ...
- Medical knowledge
* Preprocessing
« Zero mean, unit variance to fix scale issue (e.g. weight vs. income)
- Probability integral transform (inverse CDF) as alternative

Carnegie Mellon University



The Perceptron on features

initialize w, b = 0
repeat
Pick (567;, yz) from data
if y;(w - P(x;) +0) <0 then
w' = w+ yP(x;)
b = b+ Y;
until y;(w - &(x;) +b) > 0 for all ¢
» Nothing happens if classified correctly
» Weight vector is linear combination w=">y;¢(x:)

- Classifier is linear combination of el
inner products ¢, =3y (0

=y

), o(z)) +b

Carnegie Mellon University



Problems

* Problems

» Need domain expert (e.g. Chinese OCR)
- Often expensive to compute
- Difficult to transfer engineering knowledge

» Shotgun Solution

« Compute many features
» Hope that this contains good ones
» Do this efficiently

- Nonlinear methods (needs lots of data & cpu)

learn the features and the classifier

Carnegie Mellon University



Grace Wahba
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Solving XOR

($1,$2) (5131,33275131332)
« XOR not linearly separable
» Mapping into 3 dimensions makes it easily solvable

Carnegie Mellon University



Quadratic Features

Quadratic Features in R?

Insight
Trick works for any polynomials of order d via (x, z').

i
' 0
U'dl'll%glt? VICLOn university



SVM with a polynomial
Kernel visualization

Created by:
Udi Aharoni



SVM with a polynomial
Kernel visualization

Created by:
Udi Aharoni



Computational Efficiency

Problem

® Extracting features can sometimes be very costly.

® Example: second order features in 1000 dimensions.
This leads to 5 - 10° numbers. For higher order polyno-
mial features much worse.

Solution
Don’t compute the features, try to compute dot products
implicitly. For some features this works . ..

Definition
A kernel function & : X x X — R is a symmetric function
In its arguments for which the following property holds

k(x,2") = (O(x), d(2")) for some feature map ©.
If k(x,2’) is much cheaper to compute than ®(z) ...

Carnegie Mellon University



The Kernel Perceptron

initialize f =0
repeat
Pick (z;,y;) from data
() f() + yik(wi, ) +y;
until y; f(x;) > 0 for all

» Nothing happens if classified correctly
+ Weight vector is linear combination w =) vib(x:)

=y

» Classifier is linear combination of inner products

:Zyi o(xi), ¢(x) ‘l_bzzyi Zi, )

iel vel Carnegie Mellon University



Processing Pipeline

g A 43
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» QOriginal data
- Data in feature space (implicit)
» Solve in feature space using kernels

Carnegie Mellon University



Polynomial Kernels

Idea
® We want to extend k(z, ') = (z, 2/)* to
k(x,z') = ((z,2") + c)d where ¢ > 0 and d € N.

® Prove that such a kernel corresponds to a dot product.

Proof strategy
Simple and straightforward: compute the explicit sum
given by the kernel, I.e.

N / d — d NN\ d—i
ko) = o)+ = 3 (7 (a0’
Individual terms ((z, 2’))" are dot products for some ®;(z).

Carnegie Mellon University



Kernel Conditions

Computability
We have to be able to compute k(x, 2’) efficiently (much
cheaper than dot products themselves).

“Nice and Useful” Functions
The features themselves have to be useful for the learn-
ing problem at hand. Quite often this means smooth
functions.

Symmetry
Obviously k(x,x2") = k(2', x) due to the symmetry of the
dot product (d(x), (")) = (P(2'), P(x)).

Dot Product in Feature Space
Is there always a ¢ such that k really is a dot product?

Carnegie Mellon University



Mercer’'s Theorem

The Theorem
For any symmetric function £ : X x X — R which is
square integrable in X x X and which satisfies

/ k(xz,2)f(x)f(2")dzdx' > 0forall f € Ly(X)

XxX

there exist ¢; : X — R and numbers \; > 0 where
k(xz,2') = Z i (x)o;(2) for all z, 2" € X.

Interpretation
Double integral is the continuous version of a vector-
matrix-vector multiplication. For positive semidefinite
matrices we have

S: S: k(.TZ, xj)CkZ‘Oéj Z 0

Carnegie Mellon University



Properties

Distance in Feature Space
Distance between points in feature space via

d(z,2")* =||®(x) — ©(2")|7
=(®(z), P(x)) — 2(P(x), D(z)) + (P(a'), P(2))
=k(x,z) + k(2',2") — 2k(z, x)
Kernel Matrix

To compare observations we compute dot products, so
we study the matrix K given by

Kij = (®(z;), @(x))) = k(z;, 7))

where z; are the training patterns.

Similarity Measure
The entries K, tell us the overlap between &(x;) and
d(z,), SO k(z;, x,) is a similarity measure.

Carnegie Mellon University



Properties

K is Positive Semidefinite
Claim: o' Ka > 0 for all « € R™ and all kernel matrices
K € R™*"_ Proof:

Z%O@'Kw Z%% b(z;))
<ZO&L (x;), Z CD(:C])> Zaiq)(a:i)

Kernel Expansion
If w is given by a linear combination of ¢(x;) we get

d(x)) = <Z a; P(x;), <I>(:z:*)> = Z%‘k(iﬁ’i,ﬂ?)

Carnegie Mellon University




A Counterexample

A Candidate for a Kernel

N1 ifflz—2| <1
k(z,7') = { 0 otherwise

This is symmetric and gives us some information about

the proximity of points, yet it is not a proper kernel . ..
Kernel Matrix

We use three points, 1 = 1,29 = 2, 23 = 3 and compute

the resulting “kernelmatrix” K. This yields

1 10
K=1|111] andeigenvalues (v2—1)"',1 and (1—v/2).
011

as eigensystem. Hence £ is not a kernel.

Carnegie Mellon University



Examples

Examples of kernels k(z, x')

Linear (x,2")

Laplacian RBF exp (—A||lx — 2'||)

Gaussian RBF exp (—A|lz — 2'||%)
Polynomial (z,2) +c)N)',¢>0,deN
B-Spline Bopii(x — ')

Cond. Expectation  E.[p(z|c)p(x'|c)]

Simple trick for checking Mercer’s condition
Compute the Fourier transform of the kernel and check
that it is nonnegative.

Carnegie Mellon University



Linear Kernel

K(x,y) for x=1

1 2 3 4 S5

< Ot

udl 1ICZ 10 1V IC1HULL university



Laplacian Kernel

K(x,y) for x=1

1 2 3 4 S5

< O

udl 1ICZ 10 1V IC1HULL university



(Gaussian Kernel

K(x,y) for x=1

4 5

udl 1ICZ 10 1V IC1HULL university



Polynomial of order 3

250 | | | | | | |

200

150

1

N 100

K(X,y) for X

50+ |

1 2 3 4 5

—100 1 | | |
-5

< O

udl 1ICZ 10 1V IC1HULL university



Spline Kernel

K(x,y) for x=1

1 2 3 4 S5

< O

udl 1ICZ 10 1V IC1HULL university



4.3 Support Vector Machines

4 (Generalized) Linear Methods
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Introduction to Machine Learning 10-701
http://alex.smola.org/teaching/10-701-15

Carnegie Mellon University


http://alex.smola.org/teaching/10-701-15

Support Vector Machines
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Linear Separator
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Linear Separator
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Linear Separator
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Linear Separator
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Linear Separator
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Linear Separator
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Linear Separator
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Large Margin Classifier

linear function
f(x) =(w,z) +b

Carnegie Mellon University



Large Margin Classifier

margin

(xy —x_,w) 1 1

Carnegie Mellon University




Large Margin Classifier

@ K
optimization problem

maxirglize Tl subject to y; [{(x;,w) +b] > 1
w, w

Carnegie Mellon University



Large Margin Classifier

¢
@ ’

° ° ° '
optimization problem
1

minirilize 5 |w||* subject to y; [(z;, w) + b] > 1

Carnegie Mellon University



Dual Problem

» Primal optimization problem

1
mmlrinze 5 |w||* subject to y; [(z;, w) + b] > 1

» Lagrange function

(w b Oé |w|| _Zaz yz 33@7 _I_b] _1]

Optimality in w, b is at saddle point with a
« Derivatives in w, b need to vanish

Carnegie Mellon University



Dual Problem

» Lagrange function
L(w,b, a) Hw|| Zaz yi (i, w) + b — 1]

« Derivativesinw, b need to vanish
OwL(w, b, a) —w—Zaiyiazi =0

L(w,b,a) Zazyz =0
. Plugging terms back mto L y|elds

1,]

subject to ZO&L‘?J@' = 0and o; > 0
' Carnegie Mellon University



Support Vector Machines

1
mini%lize 5 |w||* subject to v; [(z;, w) + b] > 1

, X

maximize — - E ;oYY (T, ) + E o

(84
i i

subject to Zaiyi —0and o; >0

— Carnegie Mellon University



Support Vectors

1
mini%lize 5 |w||* subject to v; [(z;, w) + b] > 1

Karush Kuhn Tucker

Optimality condition ™= [ S
a; [yi [(w, ;) +b] —1] =0

a; =0

Carnegie Mellon University



Properties

Weight vector w as weighted linear combination of instances

Only points on margin matter (ignore the rest and get same solution)
Only inner products matter

 Quadratic program

» We can replace the inner product by a kernel

Keeps instances away from the margin

Carnegie Mellon University
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Example

Number of Support Vectors: 3 (-ve: 2,+ve: 1) Total number of points: 15




Why large margins?

Carnegie Mellon University






Large Margin Classifier

linear function
f(x) =(w,z) +b

Carnegie Mellon University



Large Margin Classifier

linear function
f(x) =(w,z) +b

Carnegie Mellon University



Large Margin Classifier

linear separator

linear function . .
is impossible

f(z) = (w,x) +b

Carnegie Mellon University



Large Margin Classifier

Theorem (Minsky & Papert)
Finding the minimum error separating hyperplane is NP hard
Carnegie Mellon University



Large Margin Classifier

Theorem (Minsky & Papert)
Finding the minimum error separating hyperplane is NP hard
Carnegie Mellon University



Large Margin Classifier

minimum error separator

Theorem (Minsky & Papert) IS impossible
Finding the minimum error separating hyperplane is NP hard
Carnegie Mellon University



Adding slack variables

Convex optimization problem

Carnegie Mellon University



Adding slack variables

Convex optimization problem

Carnegie Mellon University



Adding slack variables

minimize amount

Convex optimization problem of slack

Carnegie Mellon University



Intermezzo

Convex Programs for Dummies

* Primal optimization problem

minimize f(z) subject to ¢;(x) <0

- Lagrange functlon

L(x ) + ZOézCz
» First order optlmallty conditions in x
O L(z,a) = —I—Zozz(? ci(x) =0

» Solve for x and plug it back into L
maxixmize L(z(a), a)
(keep explicit constraints)

Carnegie Mellon University



Adding slack variables

Convex optimization problem

Carnegie Mellon University



Adding slack variables

Convex optimization problem

Carnegie Mellon University



Adding slack variables

minimize amount
Convex optimization problem of slack

Carnegie Mellon University



Adding slack variables

» Hard margin problem

1
minirglize 5 |w||* subject to y; [(w, z;) + b] > 1

« With slack variables

1 2
[} . . _ C /I:
minimize |w|]” + % 3

subject to y; [(w,x;) +b] > 1 —&; and & > 0

Problem is always feasible. w=0andb=0and & =1

Carnegie Mellon University



Dual Problem

* Primal optimization problem
minimize — ||wH +CZ€Z

w,b
subject to y; [(w, x;) + b] >1—-¢ and & >0
. Lagrcmge function

(w b, O‘ HwH _I_CZ&, Z@z yz ZEZ, _I_b _I_fz_l anfz

Optimality in w,b,‘E_, is at saddle point with &, n
e Derivatives in w,b,€ need to vanish

Carnegie Mellon University



Dual Problem

» Lagrange function
L(w,b,a):%|]w\|2 OY &= aily:llasw) +bl+ & =11 = Y mié

« Derivatives in w, b need to vanish
OwL(w,b,&,a,mn) =w — Zaya;‘ =0

OpL(w,b, &, a,m) = Zay—o
Og; L(w, b, &, a,m) = C a; —n; =0

» Plugging t K into L yiel
ugging terms bac into yle ds bound

o
]

subject to Zoz@-yz- =0 and a; € |0, C’]

influence

Carnegie Mellon University



Karush Kuhn Tucker Conditions

1
maximize — - E ;oYY (i, T5) + E o
(87

i) i

subject to Z%yi =0 and «; € [0, C]

ai[yz[<wa?z>—|-b]+fz—1_0 > O<az<0:yz: |
ni& =0 =C = y; {(w,x;) + b

Carnegie Mellon University
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Solving the optimization problem

» Dual problem

.y 1
maximize — - Z QLYY (Tiy T5) Z o

1,] 1

subject to Z%yi =0 and «; € |0, ]

» |If problem is small enough (1000s of variables)

we can use off-the-shelf solver (CVXOPT,
CPLEX, OOQP, LOQO)

» For larger problem use fact that only SVs matter
and solve in blocks (active set method).

Carnegie Mellon University
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The Kernel Trick

» Linear soft margin problem
mmlmlze — |wH —I—CZEZ

subject to y; [(w, x;) + b] >1—¢&and & >0

» Dual problem

max1mlze— — E Q0 Yi Y5 (i, ) + E o
6]

subject to Zaiyi =0 and «; € |0,C]
» Support vector expansion

= Z%’yi (zi,x) + b

Carnegie Mellon University



The Kernel Trick

» Linear soft margin problem
minimize — HwH +CZ€Z

w,b

subject to y; [(w,d(x;)) +b] > 1 —¢&, and & > 0

» Dual problem .

max1m1ze—— E oYY k(X T5) + E o7
i,

subject to Z a;; = 0 and oy € [0, C

» Support vector expansion

— Z a;y;k(x;, ) + b

Carnegie Mellon University
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And now with a narrower kernel
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And now with a very wide kernel

Carnegie Mellon University






Nonlinear separation

» Increasing C allows for more nonlinearities
» Decreases number of errors

» SV boundary need not be contiguous

» Kernel width adjusts function class

Carnegie Mellon University
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"Under hypnosis you revealed that in your last
eight lives you were ... er ... a cat.” University



Regression Estimation

 Find function f minimizing regression error
R[f] := E:U,yrvp(:c,y) [l(ya f(CE))]
- Compute empirical average
Remp[f] c= % Z:Zl l(yzv f('CEZ))
Overfitting as we minimize empirical error
» Add regularization for capacity control
Relf] 1= = 3 1w S(20)) + 201/,

1=1

Carnegie Mellon University



Squared loss
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e-lnsensitive LossS

4.0

3.5F

3.0F

2.5F
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Penalized least mean squares

« Optimization problem

1 m
minriwmize 2 ;(yz — (:z:z,w>)2 + % Hw||2
« Solution
1 m
aw — ) ! L g )\
.. m;[xxzw xy]—l—w
B . 1
m m

hence w = :XXT + )\ml]_l X

Conjugate Gradient

Ovuter PrOdUCt Sherman Morrison Woodbury

matrix in X Carnegie Mellon University



Penalized least mean squares

... how with kernels

»  Optimization problem

1 ™m
minimize _— ;(y — (p(x;), w))* + % |w]|?

» Representer Theorem (Kimeldorf & Wahba, 1971)

w

empirical
w) risk dependent

Carnegie Mellon University



Penalized least mean squares

. how with kernels

Optimization problem

1 m

Representer Theorem (Kimeldorf & Wahba, 1971)
Optimal solution is in span of data w =) a;¢(x;)
Proof - risk term only depends on data via¢(z:)
Regqgularization ensures that orthogonal part is O

Optimization problem in terms of w

mmgmze—Z(yz ZKW%> Z%Oé; ij

solve fora = (K + m)\l) y as linear system

Carnegie Mellon University



SVM Regression

don’t care about deviations within the tube

Carnegie Mellon University



SVM Regression

(e-insensitive loss)

 Optimization Problem (as constrained QP)

minimize — HwH —I—CZ &+ &

w,b
=1

subject to (w,z;) +b<y; +e+& and & >0

(w, ;) +b>y; —e—& and £ >0

1

. Lagrange Function
L—: IIwII +CZ &+ &= & +ni&
1=1 1=1

Zai[<w7$i> ol yi—é—fi]ﬂLZO‘r}k yi —€—§& —(w,x;) — ]
i=1 i=1

Carnegie Mellon University



SVM Regression

(e-insensitive loss)

* First order conditions
awL:O:’w—FZ[OéZ—Oé;k]ZBZ

5’bL:O:Z[ai—(xf]

8&1;:0:(]—777;—047;
8@[4:0:0—77;—04:

» Dual problem
1
minimize 5((1 — o' Kla—a)+el'(a+a®)+y' (o —a*)

subject to 1" (v — *) = 0 and o, af € [0, C]

Carnegie Mellon University



Properties

* Ignores ‘typical’ instances with small error
* Only upper or lower bound active at any time
* QP in 2n variables as cheap as SVM problem
» Robustness with respect to outliers

» |4 loss yields same problem without epsilon

» Huber’s robust loss yields similar problem but
with added quadratic penalty on coefficients

Carnegie Mellon University



Regression example

sinc X + 81 —
sinc X - 0.1 -——
approximation -----

. 7/ ~
-~ =" / So
T 7
7 ~
/
7
, —
7/
s
s
-
—_

“Carnegie Metlon University



Regression example

Sinc X + 8% S
sing X -0.2 -
approximation ----- -

1 1 1 1 I 1 | o T University



Regression example

sinc X + 8g —
sinG X - 0.5 -
approximation ----- -

| | | | ; | | Carnegie Meldn University



Regression example

00000, °
oo
° ° 00°%00,
0° ° °° °
° °

Support Vectors

Carnegie Mellon University



Huber’s robust loss

y— 1@ ity ()] <1
ly — f(z)| — 2 otherwise

trimmed mean
estimatior

quadratic

~6 -4 2 0 2 4 6 llon University




Novelty Detection

p.

u 5)3@

fae. c.""ﬁ)

Carnegie Mellon University



Basic ldea

Data
Observations ()
generated from

some P(z), e.g.,

® network usage
patterns

® handwritten digits

® alarm sensors

® factory status

Task
Find unusual events,
clean database, dis-
tinguish typical ex-
amples.

Carnegie Mellon University



Applications

Network Intrusion Detection
Detect whether someone is trying to hack the network,
downloading tons of MP3s, or doing anything else un-
usual on the network.
Jet Engine Failure Detection
You can’t destroy jet engines just to see how they fail.
Database Cleaning
We want to find out whether someone stored bogus in-
formation in a database (typos, etc.), mislabelled digits,
ugly digits, bad photographs in an electronic album.
Fraud Detection
Credit Cards, Telephone Bills, Medical Records
Self calibrating alarm devices
Car alarms (adjusts itself to where the car is parked),

home alarm (furniture, temperature, W'”doﬁ‘é%e%t&w?ellonuniversity



Novelty Detection via

Key Idea

® Novel data is one that we don’t see frequently.
® |t must lie in low density regions.

Step 1: Estimate density

® Observations z1, ..., z,,
® Density estimate via Parzen windows

Step 2: Thresholding the density

® Sort data according to density and use it for rejection
® Practical implementation: compute

1
Z-:—E i, x;) for all i
p(x;) : k(x;,z;) for all 4

and sort according to magnitude.
® Pick smallest p(x;) as novel points.

Carnegie Mellon University



Order Statistics of Densities

Unnormalized Density
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A better way

Problems

® We do not care about estimating the density properly
in regions of high density (waste of capacity).

® We only care about the relative density for threshold-
INg purposes.

® We want to eliminate a certain fraction of observations
and tune our estimator specifically for this fraction.

Solution

® Areas of low density can be approximated as the level

set of an auxiliary function. No need to estimate p(x)
directly — use proxy of p(x).

® Specifically: find f(x) such that x is novel if f(z) <

c where c is some constant, i.e. f(x) describes the

amount of novelty.

Carnegie Mellon University



Problems with density estimation

» Exponential Family for density estimation
p(z]0) = exp ((¢(x),0) — g(0))

* MAP estimation |
mini@mizeZg(@) — (p(x;),0) 5 16]|7

Advantages 7’

® Convex optimization problem
® Concentration of measure

Problems

® Normalization g(6) may be painful to compute

® For density estimation we need no normalized p(x|0)

® No need to perform particularly well in high density
reg lons Carnegie Mellon University




Thresholding

A




Optimization Problem

Optimization Problem

m 1
MAP Z—logp(%‘w’) | 202H9H2
i=1

_ p(x;]0) > 1 2
Novelt g max | — lo 0 ) +=||6
g ( > explp — g(0)) 1l

Z max(p — (p(x;),0),0) + %HHHQ

Advantages

® No normalization ¢(#) needed

® No need to perform particularly well in high density
regions (estimator focuses on low-density regions)

® Quadratic program

Carnegie Mellon University



Maximum Distance

Idea Find hyperplane, given by f(z) = (w,z) + b = 0 that
has maximum distance from origin yet is still closer to
the origin than the observations.

Hard Margin

. . . ]. 2
minimize §HwH
subjectto (w,z;) > 1

Soft Margin

VI T —
minimize §HUJH +C;§¢
subjectto  (w,x;) > 1—¢

& >0

Carnegie Mellon University




Optimization Problem

Primal Problem | o
. . . 2
minimize §||w\| +C;§i
subjectto (w,z;) — 14+ & >0and & > 0

Lagrange Function L

® Subtract constraints, multiplied by Lagrange multipli-
ers (o; and »n;), from Primal Objective Function.
® [ agrange function L has saddlepoint at optimum.

1 m m m
L = §HUJH2 + CZ&—ZO% ((w,z;) — 1+ &)—me@'
1=1 1=1 1=1

subject to a;, n; > 0.

Carnegie Mellon University



Dual Problem

Optimality Conditions

w — Z%%—O — w—Zazxz

852.[/:0—04@ =0 — q; € [O C]

Now substitute the optimality conditions back into L.
Dual Problem

™m
minimize Zozzoz] Ti, ;) Zoz@
i=1

subject to az [O C

All this is only possible due to the convexity of the
primal problem.

Ow L

Carnegie Mellon University



Minimum enclosing ball

« (Observations on
surface of ball
* FIind minimum
enclosing ball

- Equivalent to
single class SVM

Carnegie Mellon University



Adaptive thresholds

Problem

® Depending on C, the number of novel points will vary.
® We would like to specify the fraction » beforehand.

Solution
Use hyperplane separating data from the origin

H = {z|(w,z) = p;

where the threshold p is adaptive.
Intuition

® Let the hyperplane shift by shifting p
® Adjust it such that the right’ number of observations is
considered novel.
® Do this automatically

Carnegie Mellon University



Optimization Problem

Primal Problem

] .
minimize inHQ +- Z;& — mup
where (w,z;) —p+& >0
& >0

Dual Problem

T
mMiNnimize 5 2 Oéz‘Oéj<37i> xj>
’L:

where ; € [0,1] and ) a; = vm.
1=1

Carnegie Mellon University



The v-property theorem

» Optimization problem

o1 2 | O
minimize |wl|” + ;fz — mup
subject to (w,xz;) > p—&; and & >0

 Solution satisfies
» At most a fraction of v points are novel
» At most a fraction of (1-v) points aren’t novel

» Fraction of points on boundary vanishes for
large m (for non-pathological kernels)

Carnegie Mellon University



Proof

- Move boundary at optimality

* For smaller threshold m. points on wrong side
of margin contribute §(m_ —vm) <0

» For larger threshold m+ points not on ‘good’
side of margin yield
o(my —vm) >0
« Combining inequalities
mo oM

_ m T
» Margin set of measure O

Larnegie vielion University



Toy example

B o—X O
3%, d
° UH o o S
o o)
o o
}2218( o d ¢ © o O
o©
@ 0] o) e} o)
o o o
- o9 o : 00 o 1)
o 9@ o
ot ®
B( ‘ .

v, width ¢ 0.5, 0.5 0.5, 0.5 0.1, 0.5 0.5, 0.1
frac. SVs/OLs 0.54, 0.43 0.59, 0.47 0.24, 0.03 0.65, 0.38
margin p/||w|| 0.84 0.70 0.62 0.48

threshold and smoothness requirements

Carnegie Mellon University



Novelty detection for OCR
1411?&§?E

—5]3 0 —507 1 —458 0 =377 1 =282 7 =2162 —2003 —186 9 —179 5 —162 0

S L LA

1533 —143 6 —1286 —123 0 —1177 —93 5 78 058 7 -52 6 —48 3

® Better estimates since we only optimize in low density
regions.

® Specifically tuned for small number of outliers.
® Only estimates of a level-set.
® For v =1 we get the Parzen-windows estimator back.

Carnegie Mellon University
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4.4 Optimization

4 (Generalized) Linear Methods

Alexander Smola
Introduction to Machine Learning 10-701
http://alex.smola.org/teaching/10-701-15

Carnegie Mellon University
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Constrained Quadratic Program

« Optimization Problem

1
minimize iaTQa + 1" subject to Ca+b <0

« Support Vector classification
» Support Vector regression
* Novelty detection
»+ Solving it
 Off the shelf solvers for small problems
+ Solve sequence of subproblems
+ Optimization in primal space (the w space)

Carnegie Mellon University






Subproblems

» Qriginal optimization problem

1
minimize iaTQa + 1" subject to Ca+b <0

» Key Idea - solve subproblems one at a time and
decompose into active and fixed set o = (a4, ay)

1
minimize 5041@&&&& + [lq + Qafaf]T g

subject to Cpa, + b+ Crayr] <0

» Subproblem is again a convex problem
» Updating subproblems is cheap

Carnegie Mellon University









Picking observations

’ = 0= y; [{(w,z;) +b] > 1
ozi[yz[<wx@>—|—b]—|—§z—1—0 » O<az<0$yz:<w,xi>——b::;
& =0 =C = y; [(w,z;) + 0] <1

» Most violated margin condition
* Points on the boundary
 Points with nonzero Lagrange multiplier that are correct
Carnegie Mellon University



Selecting variables

 Incrementally increase (chunking)
» Select promising subset of actives (SVMLight)
« Select pairs of variables (SMO)

Chunking

Osuna

Iy

SMO

Carnegie Mellon University



Being smart about hardware

« Data flow from disk to CPU

Data Cached Data Parameter

O (Working Set)
N Reading Training i
DISk <_[ Thread ]_> RAM <_[ Thread ]_>IRAM

N—
Read Load Read Update
(Sequential (Random (Random
Access) Access) Access)
- 10 Speeds System | Capacity | Bandwidth | IOPs
Disk 3TB | 150MB/s 10°
SSD 256GB | 500MB/s | 5-10°
RAM 16GB 30GB/s 10°
Cache 16MB 100GB/s 10°

Carnegie Mellon University



Being smart about hardware

« Data flow from disk to CPU

Data Cached Data Parameter
O (Working Set)

N Reading Training i
DISk <_[ Thread ]_> RAM <_[ Thread ]_>IRAM

N—
Read Load Read Update
(Sequential (Random (Random
Access) Access) Access)
- 10 Speeds System | Capacity | Bandwidth | IOPs
Disk 3TB | 150MB/s 10°
SSD 256GB | 500MB/s | 5-10°
RAM 16GB 30GB/s 10°
Cache 16MB 100GB/s 10°

Carnegie Mellon University



Dataflow

Reading Thread Training Thread

Read Load Read
(Sequential (Random (Random
Access) Access) Access)

Update

i

Cached Data
Dataset (Working Set)

Weight Vector

Carnegie Mellon University



Algorithm - 2 loops

Reader

while not converged do
read example (x,y) from disk
if buffer full then evict random (z’,vy’) from memory
insert new (x,y) into ring buffer in memory

end while

Trainer at RAM speed
while not converged do

randomly pick example (z,y) from memory
update dual parameter o

update weight vector w

if deemed to be uninformative then evict (x,y) from

memory . . !
end while margin criterion

at disk speed

ellon University



Runtime Example

fastest
competitor

dna C' = 1.0
—a— StreamSVM
A SBM
—t BM

10— 11 L | | | A
0 1 2 3

Carnegie Mellon University






Spam Classification

From: bat<kilian@gmail.com=
Subject: hey whats up check this meds place out
Date: April 6, 2009 10:50113 PMPDT
To: Kilian Weinberger
Reply-To: bat <kilian@gmail.com:=

Your friend (kilian @gmail.com) has sent you a link to the following Scout.com story:
Savage Hall Ground-Breaking Celebration

Get Vicodin, Valium, Xanax, Viagra, Oxycontin, and much more. Absolutely Mo Prescription Required.
Orver Might Shipping! Why should you be risking dealing with shady people. Check us out today!
httpfienkinsteqar?3.blogspot.com

The University of Toledo will hold a ground-breaking celebration to kick-off the UT Athletics Complex and
Savage Hall renovation project on Wednesday, December 12th at Savage Hall.

To read the rest of this story, go here:

hitpftoledo.scout.com/2/F08390.html i

lT
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Spam Classification

From: bat<kilian@gmail.com=
Subject: hey whats up check this meds place out
Date: April 6, 2009 10:50113 PMPDT
To: Kilian Weinberger
Reply-To: bat <kilian@gmail.com:=

Your friend (kilian @gmail.com) has sent you a link to the following Scout.com story:
Savage Hall Ground-Breaking Celebration

Get Vicodin, Valium, Xanax, Viagra, Oxycontin, and much more. Absolutely Mo Prescription Required.
Orver Might Shipping! Why should you be risking dealing with shady people. Check us out today!
httpfienkinsteqar?3.blogspot.com

The University of Toledo will hold a ground-breaking celebration to kick-off the UT Athletics Complex and
Savage Hall renovation project on Wednesday, December 12th at Savage Hall.

To read the rest of this story, go here:
hitp2toledo. scout.com/2/708390.html

b [T

1: spam! 1: donut? O: not-spam! -

educated misinformed confused
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Spam Classification

Global
_ Classifier

¥ Classiine.

@ @ Classifier B Ciassifier

0: quality
smail

: donut? O: not-spam!

educated misinformed confused malicious silent



Collaborative Classification

- Primal representation

f(z,u) = (@(x), w) + (d(x), wu) = (P(z) ® (1@ ey), w)
Kernel representation
k((z,u), (¢, u)) = k(z, 2')[1 + 0u,u]
Multitask kernel (e.g. Pontil & I\@chelli, Daume). Usually does not scale well ...
- Problem - dimensionality is 10 . That is 40TB of space

Carnegie Mellon University



Collaborative Classification

- Primal representation

f(z,u) = (@(x), w) + (d(x), wu) = (P(z) ® (1@ ey), w)
Kernel representation
k((z,u), (¢, u)) = k(z, 2')[1 + 0u,u]
Multitask kernel (e.g. Pontil & I\@chelli, Daume). Usually does not scale well ...
- Problem - dimensionality is 10 . That is 40TB of space

Carnegie Mellon University



Collaborative Classification

email (1 + eyser)

- Primal representation

f(z,u) = (@(x), w) + (d(x), wu) = (P(z) ® (1@ ey), w)
Kernel representation
k((z,u), (¢, u)) = k(z, 2')[1 + 0u,u]
Multitask kernel (e.g. Pontil & I\@chelli, Daume). Usually does not scale well ...
- Problem - dimensionality is 10 . That is 40TB of space

Carnegie Mellon University



Hash Kernels

Carnegie Mellon University



Hash Kernels

iInstance: dictionary:

Hey, mE

please mentio
subtly during
your talk that
people should
use Yahoo mail
more often.
Thanks,

Someone

task/user

— | sparse

Carnegie Mellon University



Hash Kernels

Instance: dictionary:
hash
Hey, :
y function:

please mentio 2 1

subtly during

your talk that L

people should .

use Yahoo maill

more often.

Thanks, 2

)
Someone
sparse

task/user

=barney): H\\
( y) W L Sparse

Carnegie Mellon University



Hash Kernels

Instance:

Hey,

please mentio h(‘mention’)
subtly during
your talk that
people should
use Yahoo mail
more often.
Thanks, h(‘mention_barney’)

Someone

task/user

Similar to count hash
(=barney):

(Charikar, Chen, Farrach-Colton, 2003)

Carnegie Mellon University




* No dictionary!

Advantages of hashing

« Content drift is no problem g
» All memory used for classification

» Finite memory guarantee (with online learning)

- No Memory needed for projection. (vs LSH)
 Implicit mapping into high dimensional space!
- |t is sparsity preserving! (vs LSH)

Carnegie Mellon University



Inner product preserving

» Unhashed inner product

<w7 'T> — Z Wiy

* Hashed inner product o _
(w,2)=> | Y wio(@)| | Y wio(i)
i [ih()=j 1 LEh()=7 _

» Taking expectations
E,[o(i)o(i")] = i

hence inner product is preserved in expectation

Carnegie Mellon University



Approximate Orthogonality

We can do multi-task learning!

Carnegie Mellon University



(Guarantees

» For a random hash function the inner product vanishes

with high probability via
2
Pr{|(wy, hy(x))| > e} < e~ Cem

» We can use this for multitask learning

Direct sum in Sum in

Hilbert Space Hash Space

» The hashed inner product is unbiased

Proof: take expectation over random signs

» The variance is O(1/n). Proof by brute force expansion
 Restricted isometry property (Kumar, Sarlos, Dasgupta ’10)

Carnegie Mellon University



Spam classification results

1.20

0.80

0.60

0.40

0.20

spam miss-rate (relative to baseline)

0.00

1.00 -

1.12

=#&=global-hashed

0.68 0.67

=&-personalized

=—haseline

18

20 22 24 26
b bits in hash-table

N=20M, U=400K

Carnegie Mellon University



Lazy users ...

number of users

1000000

100000

10000

1000

100

10

1

Labeled emails per user

AN

" YINIALT

N O O NN OO A NO MmO OAOOAN DN 1 0 <
—A AN M N OMNOODO cd N T IN O 0 O 1 N <
1 1 v o o =+ " N AN N

number of labels

A

261
288
317
370
523
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Results by user group
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Results by user group

spam miss-rate (relative to baseline)

=
~

=
N

[EY

O
0o

O
o

o
N

—
N

o

labeled emails:

0]
1]
2,3]

4,7]
8,15]

16,31]

32,64]

18

20

22 24 26
b bits in hash-table

S SIS 1 DY D (dall a Yl
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Results by user group

spam miss-rate (relative to baseline)

O
0o

O
o

o
N

—
N

o

labeled emails:

0]
1]
2,3]
4,7]

8,15]

16,31]

32,64]

18

20

22
b bits in hash-table

24

26 ==haseline

S SIS 1 DY D (dall a Yl
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Approximate String Matches

 (General idea

ZZ ) for |w—w'| <0

wexr w' ex’

e Pittsburgh
e Plttsburgh
e Pitsburgh

catch

all

e Pittsburg
e Pittsbrugh

Carnegie Mellon University



Approximate String Matches

 (General idea

ZZ ) for |lw—w'| <6

wer w ex’
Simplification
» Weigh by mismatch amount lw-w’l
» Map into fragments: dog -> (*og, d*g, do*)
» Hash fragments and weigh them based on
mismatch amount

» Exponential in amount of mismatch
But not in alphabet size

Carnegie Mellon University



Approximate String Matches

 (General idea

ZZ ) for |w—w'| <0

wexr w' ex’

e Pittsburgh
e P*ttsburgh
e Pi*tsburgh
e Pit*sburgh
e Pitt*burgh

Carnegie Mellon University



Memory access patterns

» (Cache size is a few MBs
Very fast random memory access

RAM (DDRS3 or better) is GBs
Fast sequential memory access (burst read)
CPU caches memory read from RAM
Random memory access is very slow
CPU caches memory read from RAM

vector

hashed sequence

Carnegie Mellon University



Speeding up access

Key idea - bound the range of h(i,j) for |=1 to n access hi,j)

Linear offset
bad collisions in |
Sum of hash functions . . ’y

h — h
bad collisions in j (#:7) = h(@) + 1(7)
Optimal Golomb Ruler (Langford) (i, j) = h(i) + OGR(j)
NP hard in general

Feistel Network / Cryptography (i, ) = h(i) + crypt(jli)

h(i,j) = h(i) +

Carnegie Mellon University



