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Loss	
  and	
  Regulariza,on	
  

•  Op,miza,on	
  problem	
  can	
  be	
  expressed	
  as	
  to	
  
minimize	
  “Loss”.	
  	
  

•  If	
  want	
  to	
  maximize	
  your	
  “objec,ve	
  func,on”,	
  
nega,ve	
  of	
  objec,ve	
  func,on	
  is	
  loss.	
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Loss	
  and	
  Regulariza,on	
  

•  Op,miza,on	
  problem	
  can	
  be	
  expressed	
  as	
  to	
  
minimize	
  “Loss”.	
  	
  

•  Introduce	
  “Regulariza,on”	
  term	
  (or	
  “penalty”)	
  
to	
  prevent	
  overfiYng	
  or	
  sa,sfy	
  constraints	
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Loss	
  and	
  Regulariza,on	
  

•  Example:	
  “Loss”	
  of	
  linear	
  regression	
  problem	
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Loss	
  and	
  Regulariza,on	
  

•  Example:	
  “Loss”	
  of	
  linear	
  regression	
  problem	
  

	
  
•  Example:	
  “Penalty”	
  of	
  linear	
  regression	
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Loss	
  and	
  Regulariza,on	
  

•  More	
  Examples	
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Dual:	
  Lagrangian	
  Func,on	
  

•  Many	
  constrained	
  op,miza,on	
  can	
  be	
  
expressed	
  in	
  term	
  of	
  “loss”	
  and	
  “penalty”.	
  

•  Recall	
  Lagrangian	
  func,on 	
  	
  
– Primal	
  

– Dual	
  	
  
	
  

Intermezzo 
Convex Programs for Dummies

• Primal optimization problem

• Lagrange function  

• First order optimality conditions in x

• Solve for x and plug it back into L  
 
(keep explicit constraints)
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Dual:	
  Lagrangian	
  Func,on	
  

	
  

•  Lagrangian	
  

Recall duality

Given a minimization problem

min

x2Rn
f(x)

subject to h

i

(x)  0, i = 1, . . .m

`

j

(x) = 0, j = 1, . . . r

we defined the Lagrangian:

L(x, u, v) = f(x) +

mX

i=1

u

i

h

i

(x) +

rX

j=1

v

j

`

j

(x)

and Lagrange dual function:

g(u, v) = min

x2Rn
L(x, u, v)

2

•  More	
  generally,	
  
Lagrangian

Consider general minimization problem

min

x2Rn
f(x)

subject to h

i

(x)  0, i = 1, . . .m

`

j

(x) = 0, j = 1, . . . r

Need not be convex, but of course we will pay special attention to
convex case

We define the Lagrangian as

L(x, u, v) = f(x) +

m

X

i=1

u

i

h

i

(x) +

r

X

j=1

v

j

`

j

(x)

New variables u 2 Rm

, v 2 Rr, with u � 0 (implicitly, we define
L(x, u, v) = �1 for u < 0)
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•  Important	
  Property	
  
– Lagrangian	
  func,on	
  is	
  lower	
  bound	
  of	
  loss	
  
func,on.	
  
Important property: for any u � 0 and v,

f(x) � L(x, u, v) at each feasible x

Why? For feasible x,

L(x, u, v) = f(x) +

m

X

i=1

u

i

h

i

(x)

| {z }

0

+

r

X

j=1

v

j

`

j

(x)

| {z }

=0

 f(x)

• Solid line is f

• Dashed line is h, hence
feasible set ⇡ [�0.46, 0.46]

• Each dotted line shows
L(x, u, v) for di↵erent
choices of u � 0 and v

(From B & V page 217)
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10.6 Loss Functions and Robustness 347
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FIGURE 10.4. Loss functions for two-class classification. The response is
y = ±1; the prediction is f , with class prediction sign(f). The losses are
misclassification: I(sign(f) ̸= y); exponential: exp(−yf); binomial deviance:
log(1 + exp(−2yf)); squared error: (y − f)2; and support vector: (1 − yf)+ (see
Section 12.3). Each function has been scaled so that it passes through the point
(0, 1).

f(x) = 0. The goal of the classification algorithm is to produce positive
margins as frequently as possible. Any loss criterion used for classification
should penalize negative margins more heavily than positive ones since
positive margin observations are already correctly classified.

Figure 10.4 shows both the exponential (10.8) and binomial deviance
criteria as a function of the margin y · f(x). Also shown is misclassification
loss L(y, f(x)) = I(y ·f(x) < 0), which gives unit penalty for negative mar-
gin values, and no penalty at all for positive ones. Both the exponential
and deviance loss can be viewed as monotone continuous approximations
to misclassification loss. They continuously penalize increasingly negative
margin values more heavily than they reward increasingly positive ones.
The difference between them is in degree. The penalty associated with bi-
nomial deviance increases linearly for large increasingly negative margin,
whereas the exponential criterion increases the influence of such observa-
tions exponentially.

At any point in the training process the exponential criterion concen-
trates much more influence on observations with large negative margins.
Binomial deviance concentrates relatively less influence on such observa-

•  Model	
  
	
  	
  

•  Loss	
  func,on	
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350 10. Boosting and Additive Trees
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FIGURE 10.5. A comparison of three loss functions for regression, plotted as a
function of the margin y−f . The Huber loss function combines the good properties
of squared-error loss near zero and absolute error loss when |y − f | is large.

exponential loss one performs a weighted fit of the base learner to the
output values yi, with weights wi = exp(−yifm−1(xi)). Using other more
robust criteria directly in their place does not give rise to such simple
feasible boosting algorithms. However, in Section 10.10.2 we show how one
can derive simple elegant boosting algorithms based on any differentiable
loss criterion, thereby producing highly robust boosting procedures for data
mining.

10.7 “Off-the-Shelf” Procedures for Data Mining

Predictive learning is an important aspect of data mining. As can be seen
from this book, a wide variety of methods have been developed for predic-
tive learning from data. For each particular method there are situations
for which it is particularly well suited, and others where it performs badly
compared to the best that can be done with that data. We have attempted
to characterize appropriate situations in our discussions of each of the re-
spective methods. However, it is seldom known in advance which procedure
will perform best or even well for any given problem. Table 10.1 summarizes
some of the characteristics of a number of learning methods.

Industrial and commercial data mining applications tend to be especially
challenging in terms of the requirements placed on learning procedures.
Data sets are often very large in terms of number of observations and
number of variables measured on each of them. Thus, computational con-
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•  Regression	
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The Kernel Trick
• Linear soft margin problem  
 
 

• Dual problem

• Support vector expansion
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Classifica,on	
  Examples	
  

3 

Maximizing Conditional Log Likelihood 

Good news: l(W) is convex function of W!
Bad news: no closed-form solution to maximize l(W)!

•  Logis,c	
  Regression	
  

	
  



Penalty	
  Func,ons	
  

72 3. Linear Methods for Regression

region for ridge regression is the disk β2
1 + β2

2 ≤ t, while that for lasso is
the diamond |β1| + |β2| ≤ t. Both methods find the first point where the
elliptical contours hit the constraint region. Unlike the disk, the diamond
has corners; if the solution occurs at a corner, then it has one parameter
βj equal to zero. When p > 2, the diamond becomes a rhomboid, and has
many corners, flat edges and faces; there are many more opportunities for
the estimated parameters to be zero.

We can generalize ridge regression and the lasso, and view them as Bayes
estimates. Consider the criterion

β̃ = argmin
β

{
N∑

i=1

(
yi − β0 −

p∑

j=1

xijβj

)2
+ λ

p∑

j=1

|βj |q
}

(3.53)

for q ≥ 0. The contours of constant value of
∑

j |βj |q are shown in Fig-
ure 3.12, for the case of two inputs.

Thinking of |βj |q as the log-prior density for βj , these are also the equi-
contours of the prior distribution of the parameters. The value q = 0 corre-
sponds to variable subset selection, as the penalty simply counts the number
of nonzero parameters; q = 1 corresponds to the lasso, while q = 2 to ridge
regression. Notice that for q ≤ 1, the prior is not uniform in direction, but
concentrates more mass in the coordinate directions. The prior correspond-
ing to the q = 1 case is an independent double exponential (or Laplace)
distribution for each input, with density (1/2τ) exp(−|β|/τ) and τ = 1/λ.
The case q = 1 (lasso) is the smallest q such that the constraint region
is convex; non-convex constraint regions make the optimization problem
more difficult.

In this view, the lasso, ridge regression and best subset selection are
Bayes estimates with different priors. Note, however, that they are derived
as posterior modes, that is, maximizers of the posterior. It is more common
to use the mean of the posterior as the Bayes estimate. Ridge regression is
also the posterior mean, but the lasso and best subset selection are not.

Looking again at the criterion (3.53), we might try using other values
of q besides 0, 1, or 2. Although one might consider estimating q from
the data, our experience is that it is not worth the effort for the extra
variance incurred. Values of q ∈ (1, 2) suggest a compromise between the
lasso and ridge regression. Although this is the case, with q > 1, |βj |q is
differentiable at 0, and so does not share the ability of lasso (q = 1) for

q = 4 q = 2 q = 1 q = 0.5 q = 0.1

FIGURE 3.12. Contours of constant value of
P

j |βj |q for given values of q.
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  Func,ons	
  

3.4 Shrinkage Methods 71

TABLE 3.4. Estimators of βj in the case of orthonormal columns of X. M and λ
are constants chosen by the corresponding techniques; sign denotes the sign of its
argument (±1), and x+ denotes “positive part” of x. Below the table, estimators
are shown by broken red lines. The 45◦ line in gray shows the unrestricted estimate
for reference.

Estimator Formula

Best subset (size M) β̂j · I(|β̂j | ≥ |β̂(M)|)
Ridge β̂j/(1 + λ)

Lasso sign(β̂j)(|β̂j |− λ)+

(0,0) (0,0) (0,0)
|β̂(M)|

λ

Best Subset Ridge Lasso

β̂ β̂2
. .β

1

β 2

β
1

β

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression
(right). Shown are contours of the error and constraint functions. The solid blue
areas are the constraint regions |β1| + |β2| ≤ t and β2

1 + β2
2 ≤ t2, respectively,

while the red ellipses are the contours of the least squares error function.
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Lagrange Multipliers
• Lagrange function  

!

• Saddlepoint Condition  
If there are x* and nonnegative α* such that  
 
 
then x* is an optimal solution to the constrained 
optimization problem

L(x,↵) := f(x) +
nX

i=1

↵ici(x) where ↵i � 0

L(x⇤
,↵)  L(x⇤

,↵

⇤)  L(x,↵⇤)
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Necessary Kuhn-Tucker Conditions
• Assume optimization problem!

• satisfies the constraint qualifications!
• has convex differentiable objective + constraints!

• Then the KKT conditions are necessary & sufficient
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X
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c
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) = 0 (Vanishing KKT-gap)

Yields algorithm for solving optimization problems 
Solve for saddlepoint and KKT conditions
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Lagrangian

Consider general minimization problem

min

x2Rn
f(x)

subject to h

i

(x)  0, i = 1, . . .m

`

j

(x) = 0, j = 1, . . . r

Need not be convex, but of course we will pay special attention to
convex case

We define the Lagrangian as

L(x, u, v) = f(x) +

m

X

i=1

u

i

h

i

(x) +

r

X

j=1

v

j

`

j

(x)

New variables u 2 Rm

, v 2 Rr, with u � 0 (implicitly, we define
L(x, u, v) = �1 for u < 0)
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