SML: Scalable Machine LearningSTATISTICS 241B,
COMPUTER SCIENCE C281B
Practical information
Updates
OverviewScalable Machine Learning occurs when Statistics, Systems, Machine Learning and Data Mining are combined into flexible, often nonparametric, and scalable techniques for analyzing large amounts of data at internet scale. This class aims to teach methods which are going to power the next generation of internet applications. The class will cover systems and processing paradigms, an introduction to statistical analysis, algorithms for data streams, generalized linear methods (logistic models, support vector machines, etc.), large scale convex optimization, kernels, graphical models and inference algorithms such as sampling and variational approximations, and explore/exploit mechanisms. Applications include social recommender systems, real time analytics, spam filtering, topic models, and document analysis. Resources
Prerequisites
