
Scalable Machine Learning
5. (Generalized) Linear Models

Alex Smola
Yahoo! Research and ANU
http://alex.smola.org/teaching/berkeley2012

Stat 260 SP 12

http://alex.smola.org/teaching/berkeley2012
http://alex.smola.org/teaching/berkeley2012


Administrative stuff
• Solutions will be posted by tomorrow
• New problem set will be available by tomorrow

• Midterm project presentations are on March 13
• Describe what you will do
• Why it’s important
• What you’ve achieved so far
• Show why you think you’re going to succeed
• 10 minutes per team (6 slides maximum)
• Up to 10 pages supporting documentation



5. (Generalized) Linear Models



• Kernel trick
• Simple kernels
• Kernel PCA
• Mean Classifier

• Support Vectors
• Support Vector Machine classification
• Regression
• Logistic regression
• Novelty detection 

• Gaussian Process Estimation
• Regression
• Classification
• Heteroscedastic Regression

(Generalized) Linear Models



Kernels - a Preview



Solving XOR

• XOR not linearly separable
• Mapping into 3 dimensions makes it easily solvable

(x1, x2) (x1, x2, x1x2)



Feature Space Mapping
• Naive Nonlinearization Strategy

• Express data x in terms of features ɸ(x)
• Solve problem in feature space
• Requires explicit feature computation

• Kernel trick
• Write algorithm in terms of inner products
• Replace        by 
• Works well for dimension-insensitive methods
• Kernel matrix K is positive semidefinite

hx, x0i k(x, x0) := h�(x),�(x0)i





Polynomial Kernels
• Linear

• Quadratic

• Homogeneous polynomial

• Inhomogeneous polynomial

k(x, x0) := hx, x0i

k(x, x0) :=
D
(x2

1, x
2
2,
p
2x1x2), (x

0
1
2
, x

0
2
2
,

p
2x0

1x
0
2)
E
= hx, x0i2

k(x, x0) := hx, x0ip =
X

|↵|=p

Y

i

↵i!(xix
0
i)

↵i with ↵ 2 Nd
0

k(x, x0) := (hx, x0i+ c)
p
=

pX

i=0

✓
p

i

◆
hx, x0ii

inner product



More Kernels
• Gaussian Kernel

can check that this is convolution of Gaussians
• Brownian Bridge

• Set intersection

• Strings, more fancy set kernels, graphs, etc.

k(x, x

0
) := exp

⇣
�� kx� x

0k2
⌘

k(x, x

0
) := min(x, x

0
) for x, x

0 � 0

k(A,B) := |A \B|



Support Vector Machines



Classification

http://maktoons.blogspot.com/2009/03/support-vector-machine.html

http://maktoons.blogspot.com/2009/03/support-vector-machine.html
http://maktoons.blogspot.com/2009/03/support-vector-machine.html


Support Vectors

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2012/01/14 15:35

12 A Tutorial Introduction

,
w

{x | <w  x> + b = 0},

{x | <w  x> + b = −1},
{x | <w  x> + b = +1},

x2
x1

Note:
<w  x1> + b = +1
<w  x2> + b = −1

=>       <w  (x1−x2)> =   2

=> (x1−x2)   =w
||w||< >

,
,

,

, 2
||w||

yi = −1

yi = +1❍
❍

❍

❍
❍

◆

◆

◆

◆

Figure 1.5 A binary classification toy problem: separate balls from diamonds. The
optimal hyperplane (1.24) is shown as a solid line. The problem being separable, there
exists a weight vector w and a threshold b such that yi(〈w,xi〉 + b) > 0 (i = 1, . . . ,m).
Rescaling w and b such that the point(s) closest to the hyperplane satisfy | 〈w,xi〉+b| = 1,
we obtain a canonical form (w, b) of the hyperplane, satisfying yi(〈w,xi〉 + b) ≥ 1. Note
that in this case, the margin, measured perpendicularly to the hyperplane, equals 2/‖w‖.
This can be seen by considering two points x1,x2 on opposite sides of the margin, that is,
〈w,x1〉+ b = 1, 〈w,x2〉+ b = −1, and projecting them onto the hyperplane normal vector
w/‖w‖.

of w, as in (1.25). If ‖w‖ were 1, then the left hand side of (1.26) would equal
the distance from xi to the hyperplane (cf. (1.24)). In general, we have to divide
yi(〈w,xi〉 + b) by ‖w‖ to transform it into this distance. Hence, if we can satisfy
(1.26) for all i = 1, . . . ,m with an w of minimal length, then the overall margin
will be maximized.

A more detailed explanation of why this leads to the maximummargin hyperplane
will be given in Chapter 7. A short summary of the argument is also given in
Figure 1.5.

The function τ in (1.25) is called the objective function, while (1.26) are called
inequality constraints. Together, they form a so-called constrained optimization
problem. Problems of this kind are dealt with by introducing Lagrange multipliers
αi ≥ 0 and a Lagrangian7Lagrangian

L(w, b,α) =
1

2
‖w‖2 −

m
∑

i=1

αi (yi(〈xi,w〉+ b)− 1) . (1.27)

The Lagrangian L has to be minimized with respect to the primal variables w and
b and maximized with respect to the dual variables αi (in other words, a saddle
point has to be found). Note that the constraint has been incorporated into the
second term of the Lagrangian; it is not necessary to enforce it explicitly.

7. Henceforth, we use boldface Greek letters as a shorthand for corresponding vectors
α = (α1, . . . ,αm).

minimize

w,b

1

2

kwk2 subject to yi [hw, xii+ b] � 1

margin

hw, x1i+ b = 1

hw, x2i+ b = �1

hence hw, x1 � x2i = 2

hence

⌧
w

kwk , x1 � x2

�
=

2

kwk



Support Vectors

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2012/01/14 15:35

12 A Tutorial Introduction

,
w

{x | <w  x> + b = 0},

{x | <w  x> + b = −1},
{x | <w  x> + b = +1},

x2
x1

Note:
<w  x1> + b = +1
<w  x2> + b = −1

=>       <w  (x1−x2)> =   2

=> (x1−x2)   =w
||w||< >

,
,

,

, 2
||w||

yi = −1

yi = +1❍
❍

❍

❍
❍

◆

◆

◆

◆

Figure 1.5 A binary classification toy problem: separate balls from diamonds. The
optimal hyperplane (1.24) is shown as a solid line. The problem being separable, there
exists a weight vector w and a threshold b such that yi(〈w,xi〉 + b) > 0 (i = 1, . . . ,m).
Rescaling w and b such that the point(s) closest to the hyperplane satisfy | 〈w,xi〉+b| = 1,
we obtain a canonical form (w, b) of the hyperplane, satisfying yi(〈w,xi〉 + b) ≥ 1. Note
that in this case, the margin, measured perpendicularly to the hyperplane, equals 2/‖w‖.
This can be seen by considering two points x1,x2 on opposite sides of the margin, that is,
〈w,x1〉+ b = 1, 〈w,x2〉+ b = −1, and projecting them onto the hyperplane normal vector
w/‖w‖.

of w, as in (1.25). If ‖w‖ were 1, then the left hand side of (1.26) would equal
the distance from xi to the hyperplane (cf. (1.24)). In general, we have to divide
yi(〈w,xi〉 + b) by ‖w‖ to transform it into this distance. Hence, if we can satisfy
(1.26) for all i = 1, . . . ,m with an w of minimal length, then the overall margin
will be maximized.

A more detailed explanation of why this leads to the maximummargin hyperplane
will be given in Chapter 7. A short summary of the argument is also given in
Figure 1.5.

The function τ in (1.25) is called the objective function, while (1.26) are called
inequality constraints. Together, they form a so-called constrained optimization
problem. Problems of this kind are dealt with by introducing Lagrange multipliers
αi ≥ 0 and a Lagrangian7Lagrangian

L(w, b,α) =
1

2
‖w‖2 −

m
∑

i=1

αi (yi(〈xi,w〉+ b)− 1) . (1.27)

The Lagrangian L has to be minimized with respect to the primal variables w and
b and maximized with respect to the dual variables αi (in other words, a saddle
point has to be found). Note that the constraint has been incorporated into the
second term of the Lagrangian; it is not necessary to enforce it explicitly.

7. Henceforth, we use boldface Greek letters as a shorthand for corresponding vectors
α = (α1, . . . ,αm).

minimize

w,b

1

2

kwk2 subject to yi [hw, xii+ b] � 1

dual problem

Kij = yiyj hxi, xji

w =
X

i

↵iyixi

minimize

↵

1

2

↵>K↵� 1

>↵

subject to

X

i

↵iyi = 0

↵i � 0



Karush Kuhn Tucker conditions

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2012/01/14 15:35

12 A Tutorial Introduction

,
w

{x | <w  x> + b = 0},

{x | <w  x> + b = −1},
{x | <w  x> + b = +1},

x2
x1

Note:
<w  x1> + b = +1
<w  x2> + b = −1

=>       <w  (x1−x2)> =   2

=> (x1−x2)   =w
||w||< >

,
,

,

, 2
||w||

yi = −1

yi = +1❍
❍

❍

❍
❍

◆

◆

◆

◆

Figure 1.5 A binary classification toy problem: separate balls from diamonds. The
optimal hyperplane (1.24) is shown as a solid line. The problem being separable, there
exists a weight vector w and a threshold b such that yi(〈w,xi〉 + b) > 0 (i = 1, . . . ,m).
Rescaling w and b such that the point(s) closest to the hyperplane satisfy | 〈w,xi〉+b| = 1,
we obtain a canonical form (w, b) of the hyperplane, satisfying yi(〈w,xi〉 + b) ≥ 1. Note
that in this case, the margin, measured perpendicularly to the hyperplane, equals 2/‖w‖.
This can be seen by considering two points x1,x2 on opposite sides of the margin, that is,
〈w,x1〉+ b = 1, 〈w,x2〉+ b = −1, and projecting them onto the hyperplane normal vector
w/‖w‖.

of w, as in (1.25). If ‖w‖ were 1, then the left hand side of (1.26) would equal
the distance from xi to the hyperplane (cf. (1.24)). In general, we have to divide
yi(〈w,xi〉 + b) by ‖w‖ to transform it into this distance. Hence, if we can satisfy
(1.26) for all i = 1, . . . ,m with an w of minimal length, then the overall margin
will be maximized.

A more detailed explanation of why this leads to the maximummargin hyperplane
will be given in Chapter 7. A short summary of the argument is also given in
Figure 1.5.

The function τ in (1.25) is called the objective function, while (1.26) are called
inequality constraints. Together, they form a so-called constrained optimization
problem. Problems of this kind are dealt with by introducing Lagrange multipliers
αi ≥ 0 and a Lagrangian7Lagrangian

L(w, b,α) =
1

2
‖w‖2 −

m
∑

i=1

αi (yi(〈xi,w〉+ b)− 1) . (1.27)

The Lagrangian L has to be minimized with respect to the primal variables w and
b and maximized with respect to the dual variables αi (in other words, a saddle
point has to be found). Note that the constraint has been incorporated into the
second term of the Lagrangian; it is not necessary to enforce it explicitly.

7. Henceforth, we use boldface Greek letters as a shorthand for corresponding vectors
α = (α1, . . . ,αm).

↵i [yi(hxi, wi+ b) � 1] = 0

yi(hxi, wi+ b) > 1 implies ↵i = 0

↵i > 0 implies yi(hxi, wi+ b) = 1

KKT optimality condition



Properties
• Weight vector w as weighted linear 

combination of instances
• Only points on margin matter

(we can ignore the rest and get same solution)
• Only inner products matter

• Quadratic program
• We can replace the inner product by a kernel

• Keeps instances away from the margin
Java demo: http://svm.dcs.rhbnc.ac.uk/pagesnew/GPat.shtml

http://svm.dcs.rhbnc.ac.uk/pagesnew/GPat.shtml
http://svm.dcs.rhbnc.ac.uk/pagesnew/GPat.shtml


Example



Example



Why large margins?
• Maximum 

robustness relative 
to uncertainty

• Symmetry breaking
• Independent of 

correctly classified 
instances

• Easy to find for 
easy problems

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2012/01/14 15:35

7.2 The Role of the Margin 201

∆x ∈ H is bounded in norm by some r > 0. Clearly, if we manage to separate the
training set with a margin ρ > r, we will correctly classify all test points: Since all
training points have a distance of at least ρ to the hyperplane, the test patterns
will still be on the correct side (Figure 7.3, cf. also [146]).

o

o

o

+

+

+

o
+

r

ρ

Figure 7.3 Two-dimensional toy example of a classification problem: Separate ‘o’ from
‘+’ using a hyperplane. Suppose that we add bounded noise to each pattern. If the optimal
margin hyperplane has margin ρ, and the noise is bounded by r < ρ, then the hyperplane
will correctly separate even the noisy patterns. Conversely, if we ran the perceptron
algorithm (which finds some separating hyperplane, but not necessarily the optimal one)
on the noisy data, then we would recover the optimal hyperplane in the limit r → ρ.

If we knew ρ beforehand, then this could actually be turned into an optimal
margin classifier training algorithm, as follows. If we use an r which is slightly
smaller than ρ, then even the patterns with added noise will be separable with a
nonzero margin. In this case, the standard perceptron algorithm can be shown to
converge.1

1. Rosenblatt’s perceptron algorithm [423] is one of the simplest conceivable iterative
procedures for computing a separating hyperplane. In its simplest form, it proceeds as
follows. We start with an arbitrary weight vector w0. At step n ∈ N, we consider the
training example (xn, yn). If it is classified correctly using the current weight vector (i.e.,
if sgn 〈xn,wn−1〉 = yn), we set wn := wn−1; otherwise, we set wn := wn−1+ηyixi (here,
η > 0 is a learning rate). We thus loop over all patterns repeatedly, until we can complete
one full pass through the training set without a single error. The resulting weight vector
will thus classify all points correctly. Novikoff [369] proved that this procedure terminates,
provided that the training set is separable with a nonzero margin.



Inseparable data
Quadratic program has no feasible solution



Adding slack variables
• Hard margin problem

• With slack variables

problem is always feasible. Proof:             
                               (also yields upper bound)

minimize

w,b

1

2

kwk2 subject to yi [hw, xii+ b] � 1

minimize

w,b

1

2

kwk2 + C

X

i

⇠i

subject to yi [hw, xii+ b] � 1� ⇠i and ⇠i � 0

w = 0 and b = 0 and ⇠i = 1



Support Vectors

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2012/01/14 15:35

12 A Tutorial Introduction

,
w

{x | <w  x> + b = 0},

{x | <w  x> + b = −1},
{x | <w  x> + b = +1},

x2
x1

Note:
<w  x1> + b = +1
<w  x2> + b = −1

=>       <w  (x1−x2)> =   2

=> (x1−x2)   =w
||w||< >

,
,

,

, 2
||w||

yi = −1

yi = +1❍
❍

❍

❍
❍

◆

◆

◆

◆

Figure 1.5 A binary classification toy problem: separate balls from diamonds. The
optimal hyperplane (1.24) is shown as a solid line. The problem being separable, there
exists a weight vector w and a threshold b such that yi(〈w,xi〉 + b) > 0 (i = 1, . . . ,m).
Rescaling w and b such that the point(s) closest to the hyperplane satisfy | 〈w,xi〉+b| = 1,
we obtain a canonical form (w, b) of the hyperplane, satisfying yi(〈w,xi〉 + b) ≥ 1. Note
that in this case, the margin, measured perpendicularly to the hyperplane, equals 2/‖w‖.
This can be seen by considering two points x1,x2 on opposite sides of the margin, that is,
〈w,x1〉+ b = 1, 〈w,x2〉+ b = −1, and projecting them onto the hyperplane normal vector
w/‖w‖.

of w, as in (1.25). If ‖w‖ were 1, then the left hand side of (1.26) would equal
the distance from xi to the hyperplane (cf. (1.24)). In general, we have to divide
yi(〈w,xi〉 + b) by ‖w‖ to transform it into this distance. Hence, if we can satisfy
(1.26) for all i = 1, . . . ,m with an w of minimal length, then the overall margin
will be maximized.

A more detailed explanation of why this leads to the maximummargin hyperplane
will be given in Chapter 7. A short summary of the argument is also given in
Figure 1.5.

The function τ in (1.25) is called the objective function, while (1.26) are called
inequality constraints. Together, they form a so-called constrained optimization
problem. Problems of this kind are dealt with by introducing Lagrange multipliers
αi ≥ 0 and a Lagrangian7Lagrangian

L(w, b,α) =
1

2
‖w‖2 −

m
∑

i=1

αi (yi(〈xi,w〉+ b)− 1) . (1.27)

The Lagrangian L has to be minimized with respect to the primal variables w and
b and maximized with respect to the dual variables αi (in other words, a saddle
point has to be found). Note that the constraint has been incorporated into the
second term of the Lagrangian; it is not necessary to enforce it explicitly.

7. Henceforth, we use boldface Greek letters as a shorthand for corresponding vectors
α = (α1, . . . ,αm).

dual problem

Kij = yiyj hxi, xji

w =
X

i

↵iyixi

minimize

↵

1

2

↵>K↵� 1

>↵

subject to

X

i

↵iyi = 0

↵i 2 [0, C]

minimize

w,b

1

2

kwk2 + C

X

i

⇠i

subject to yi [hw, xii+ b] � 1� ⇠i and ⇠i � 0



Classification with errors



Nonlinear separation

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2012/01/14 15:35

226 Pattern Recognition

Figure 7.10 2D toy example of a binary classification problem solved using a soft margin
SVC. In all cases, a Gaussian kernel (7.27) is used. From left to right, we decrease the
kernel width. Note that for a large width, the decision boundary is almost linear, and
the data set cannot be separated without error (see text). Solid lines represent decision
boundaries; dotted lines depict the edge of the margin (where (7.34) becomes an equality
with ξi = 0).

was used, but the kernel width c was varied. For large values of c, the classifier is
almost linear, and it cannot separate the data set without errors. For a small width
(right), the data set is practically memorized. For an intermediate width (middle),
a trade-off is made between allowing some training errors and using a “simple”
decision boundary.

In practice, both the kernel parameters and the value of C (or ν) are often chosenParameter Choice
using cross validation. To this end, we first split the data set into p parts of equal
size, say, p = 10. We then perform ten training runs. Each time, we leave out one of
the ten parts and use it as an independent test set for optimizing the parameters.
In the simplest case, we choose the parameters which work best, on average over
the ten runs. It is common practice, however, to then train on the full training
set, using these average parameters. There are some problems with this. First, it
amounts to optimizing the parameters on the same set as the one used for training,
which can lead to overfitting. Second, the optimal parameter settings for data sets
of size m and 9

10m, respectively, do not usually coincide. Typically, the smaller set
will requrie a slightly stronger regularization. This could mean a wider Gaussian
kernel, a smaller polynomial degree, a smaller C, or a larger ν. Even worse, it is
theoretically possible that there is a so-called phase transition (e.g., [376]) in the
learning curve between the two sample sizes. This means that the generalization
error as a function of the sample size could change dramatically between 9

10m and
m. Having said all this, practicioners often do not care about these theoretical
precautions, and use the unchanged parameters with excellent results. For further
detail, see Section 12.3.

In some cases, one can try to avoid the whole procedure by using an educated
guess. Below, we list several methods.

Use parameter setting that have worked well for similar problems. Here, some
care has to be exercised in the scaling of kernel parameters. For instance, when
using an RBF kernel, c must be rescaled to ensure that ‖xi − xj‖2/c typically lies

• Increasing C allows for more nonlinearities
• Decreases number of errors
• SV boundary need not be contiguous



Loss function point of view
• Constrained quadratic program

• Risk minimization setting

Follows from finding minimal slack variable for 
given (w,b) pair.  

minimize

w,b

1

2

kwk2 + C

X

i

⇠i

subject to yi [hw, xii+ b] � 1� ⇠i and ⇠i � 0

minimize

w,b

1

2

kwk2 + C

X

i

max [0, 1� yi [hw, xii+ b]]

empirical risk



Soft margin as proxy for binary
• Soft margin loss
• Binary loss

max(0, 1� yf(x))

{yf(x) < 0}

convex upper 
bound

binary loss 
function margin



More loss functions

• Logistic
• Huberized loss

• Soft margin

8
><

>:

0 if f(x) > 1
1
2 (1� f(x))2 if f(x) 2 [0, 1]
1
2 � f(x) if f(x) < 0

max(0, 1� f(x))

(asymptotically)
linear

(asymptotically) 0

log

h
1 + e�f(x)

i



Risk minimization view
• Find function f minimizing classification error

• Compute empirical average

• Minimization is nonconvex
• Overfitting as we minimize empirical error

• Compute convex upper bound on the loss
• Add regularization for capacity control

R[f ] := E
x,y⇠p(x,y) [{yf(x) > 0}]

Remp[f ] :=
1

m

mX

i=1

{yif(xi) > 0}

Rreg[f ] :=
1

m

mX

i=1

max(0, 1� yif(xi)) + �⌦[f ]

regularization

how to control ƛ



Regression



Regression Estimation
• Find function f minimizing regression error

• Compute empirical average

Overfitting as we minimize empirical error
• Add regularization for capacity control

R[f ] := E
x,y⇠p(x,y) [l(y, f(x))]

Remp[f ] :=
1

m

mX

i=1

l(yi, f(xi))

Rreg[f ] :=
1

m

mX

i=1

l(yi, f(xi)) + �⌦[f ]



Squared loss

l(y, f(x)) =
1

2
(y � f(x))2



l1 loss

l(y, f(x)) = |y � f(x)|



ε-insensitive Loss

l(y, f(x)) = max(0, |y � f(x)|� ✏)



Penalized least mean squares
• Optimization problem

• Solution

minimize
w

1

m

mX

i=1

(yi � hxi, wi)2 +
�

2
kwk2

@w [. . .] =
1

m

mX

i=1

⇥
xix

>
i w � xiyi

⇤
+ �w

=


1

m

XX

> + �1

�
w � 1

m

Xy = 0

hence w =
⇥
XX

> + �m1
⇤�1

Xy

matrix inverse
use CG or SMW

only inner product 
between X matters



SVM Regression
(ϵ-insensitive loss)

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2012/01/14 15:35

18 A Tutorial Introduction

x

x

x x

x

x
xx

x

x
x

x

x

x

+ε−ε

x

ξ+ε

−ε
0

ξ

y

x

y − f(x)

loss

Figure 1.8 In SV regression, a tube with radius ε is fitted to the data. The trade-
off between model complexity and points lying outside of the tube (with positive slack
variables ξ) is determined by minimizing (1.48).

Note that the term ‖w‖2 is the same as in pattern recognition (cf. (1.41)); for
further details, cf. Chapter 9.

We can transform this into a constrained optimization problem by introducing
slack variables, akin to the soft margin case. In the present case, we need two types
of slack variable for the two cases f(xi) − yi > ε and yi − f(xi) > ε, respectively.
We denote them by ξ and ξ∗, respectively, and collectively refer to them as ξ(∗).
The optimization problem consists in finding

min
w∈H,ξ(∗)∈Rm,b∈R

τ(w, ξ, ξ∗) =
1

2
‖w‖2 + C

m
∑

i=1

(ξi + ξ∗i ) (1.48)

subject to f(xi)− yi ≤ ε+ ξi (1.49)

yi − f(xi) ≤ ε+ ξ∗i (1.50)

ξi, ξ
∗
i ≥ 0 (1.51)

for all i = 1, . . . ,m.
Note that according to (1.49) and (1.50), any error smaller than ε does not require

a nonzero ξi or ξ∗i and hence does not enter the objective function (1.48).
Generalization to kernel -based regression estimation is carried out in an analo-

gous manner to the case of pattern recognition. Introducing Lagrange multipliers,
one arrives at the following optimization problem: for C > 0, ε ≥ 0 chosen a priori,

max
α,α∗∈Rm

W (α,α∗) = −ε
m
∑

i=1

(α∗
i + αi) +

m
∑

i=1

(α∗
i − αi)yi

−1

2

m
∑

i,j=1

(α∗
i − αi)(α

∗
j − αj)k(xi, xj), (1.52)

subject to 0 ≤ αi,α
∗
i ≤ C, i = 1, . . . ,m, and

m
∑

i=1

(αi − α∗
i ) = 0. (1.53)

don’t care about deviations within the tube



SVM Regression
(ϵ-insensitive loss)

• Optimization Problem (as constrained QP)

• Lagrange Function

minimize

w,b

1

2

kwk2 + C

mX

i=1

[⇠i + ⇠

⇤
i ]

subject to hw, xii+ b  yi + ✏+ ⇠i and ⇠i � 0

hw, xii+ b � yi � ✏� ⇠

⇤
i and ⇠

⇤
i � 0

L =
1

2
kwk2 + C

mX

i=1

[⇠i + ⇠

⇤
i ]�

mX

i=1

[⌘i⇠i + ⌘

⇤
i ⇠

⇤
i ] +

mX

i=1

↵i [hw, xii+ b� yi � ✏� ⇠i] +
mX

i=1

↵

⇤
i [yi � ✏� ⇠

⇤
i � hw, xii � b]



SVM Regression
(ϵ-insensitive loss)

• First order conditions

• Dual problem

@wL = 0 = w +
X

i

[↵i � ↵

⇤
i ]xi

@bL = 0 =
X

i

[↵i � ↵

⇤
i ]

@⇠iL = 0 = C � ⌘i � ↵i

@⇠⇤i
L = 0 = C � ⌘

⇤
i � ↵

⇤
i

minimize

↵,↵⇤

1

2

(↵� ↵⇤
)

>K(↵� ↵⇤
) + ✏1>(↵+ ↵⇤

) + y>(↵� ↵⇤
)

subject to 1

>
(↵� ↵⇤

) = 0 and ↵i,↵
⇤
i 2 [0, C]



Properties
• Ignores ‘typical’ instances with small error
• Only upper or lower bound active at any time

(we cannot violate both bounds simultaneously)
• Quadratic Program in 2n variables can be 

solved as cheaply as standard SVM problem
• Robustness with respect to outliers

• l1 loss yields same problem without epsilon
• Huber’s robust loss yields similar problem but 

with added quadratic penalty on coefficients



Regression example

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2012/01/14 15:35

270 Regression Estimation

sinc x + 0.1sinc x - 0.1approximation

sinc x + 0.2sinc x - 0.2approximation

sinc x + 0.5sinc x - 0.5approximation

Figure 9.3 From top to
bottom: approximation of
the function sincx with
precisions ε = 0.1, 0.2,
and 0.5. The solid top and
dashed bottom lines indi-
cate the size of the ε-tube,
here drawn around the tar-
get function sincx. The
dotted line between them
is the regression function.



Regression example

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2012/01/14 15:35

270 Regression Estimation

sinc x + 0.1sinc x - 0.1approximation

sinc x + 0.2sinc x - 0.2approximation

sinc x + 0.5sinc x - 0.5approximation

Figure 9.3 From top to
bottom: approximation of
the function sincx with
precisions ε = 0.1, 0.2,
and 0.5. The solid top and
dashed bottom lines indi-
cate the size of the ε-tube,
here drawn around the tar-
get function sincx. The
dotted line between them
is the regression function.



Regression example

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2012/01/14 15:35

270 Regression Estimation

sinc x + 0.1sinc x - 0.1approximation

sinc x + 0.2sinc x - 0.2approximation

sinc x + 0.5sinc x - 0.5approximation

Figure 9.3 From top to
bottom: approximation of
the function sincx with
precisions ε = 0.1, 0.2,
and 0.5. The solid top and
dashed bottom lines indi-
cate the size of the ε-tube,
here drawn around the tar-
get function sincx. The
dotted line between them
is the regression function.



Regression example

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2012/01/14 15:35

9.3 ν-SV Regression 271

Figure 9.4 Left to right: regression (solid line), datapoints (small dots) and SVs (big
dots) for an approximation of sincx (dotted line) with ε = 0.1, 0.2, and 0.5. Note the
decrease in the number of SVs.

redundant — even without these patterns in the training set, the SVM would have
constructed exactly the same function f . We might be tempted to use this property
as an efficient means of data compression, namely by storing only the support
patterns, from which the estimate can be reconstructed completely. Unfortunately,
this approach turns out not to work well in the case of noisy high-dimensional data,
since for moderate approximation quality, the number of SVs can be rather high
[555].

9.3 ν-SV Regression

The parameter ε of the ε-insensitive loss is useful if the desired accuracy of the
approximation can be specified beforehand. In some cases, however, we just want
the estimate to be as accurate as possible, without having to commit ourselves to
a specific level of accuracy a priori. We now describe a modification of the ε-SVR
algorithm, called ν-SVR, which automatically computes ε [466].

To estimate functions (9.2) from empirical data (9.3) we proceed as follows. At
each point xi, we allow an error ε. Everything above ε is captured in slack variables
ξ(∗)i , which are penalized in the objective function via a regularization constant
C, chosen a priori. The size of ε is traded off against model complexity and slack
variables via a constant ν ≥ 0:

min
w∈H,ξ(∗)∈Rm,ε,b∈R

τ(w, ξ(∗), ε) =
1

2
‖w‖2 + C ·

(

νε+
1

m

m
∑

i=1

(ξi + ξ∗i )

)

, (9.31)

subject to (〈w,xi〉+ b)− yi ≤ ε+ ξi, (9.32)

yi − (〈w,xi〉+ b) ≤ ε+ ξ∗i , (9.33)

ξ(∗)i ≥ 0, ε ≥ 0. (9.34)

For the constraints, we introduce multipliers α(∗)
i , η(∗)i ,β ≥ 0, and obtain the

Lagrangian,Primal Problem
ν-SVR

L(w, b,α(∗),β, ξ(∗), ε,η(∗)) = (9.35)

1

2
‖w‖2 + Cνε+

C

m

m
∑

i=1

(ξi + ξ∗i )− βε−
m
∑

i=1

(ηiξi + η∗i ξ
∗
i )

Support VectorsSupport VectorsSupport Vectors



Huber’s robust loss

quadratic

linear

l(y, f(x)) =

(
1
2 (y � f(x))

2
if |y � f(x)| < 1

|y � f(x)|� 1
2 otherwise

trimmed mean
estimatior



Novelty Detection



Basic Idea Novelty Detection

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 4

Data
Observations (xi)

generated from
some P(x), e.g.,
network usage
patterns
handwritten digits
alarm sensors
factory status

Task
Find unusual events,
clean database, dis-
tinguish typical ex-
amples.



ApplicationsApplications

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 5

Network Intrusion Detection
Detect whether someone is trying to hack the network,
downloading tons of MP3s, or doing anything else un-
usual on the network.

Jet Engine Failure Detection
You can’t destroy jet engines just to see how they fail.

Database Cleaning
We want to find out whether someone stored bogus in-
formation in a database (typos, etc.), mislabelled digits,
ugly digits, bad photographs in an electronic album.

Fraud Detection
Credit Cards, Telephone Bills, Medical Records

Self calibrating alarm devices
Car alarms (adjusts itself to where the car is parked),
home alarm (furniture, temperature, windows, etc.)



Novelty Detection via Density EstimationNovelty Detection via Densities

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 6

Key Idea
Novel data is one that we don’t see frequently.
It must lie in low density regions.

Step 1: Estimate density
Observations x

1

, . . . , xm

Density estimate via Parzen windows
Step 2: Thresholding the density

Sort data according to density and use it for rejection
Practical implementation: compute

p(xi) =

1

m

X

j

k(xi, xj) for all i

and sort according to magnitude.
Pick smallest p(xi) as novel points.



Order Statistics of DensitiesOrder Statistic of Densities

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 7



Typical DataTypical Data

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 8



OutliersOutliers

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 9



A better wayA better way . . .

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 10

Problems
We do not care about estimating the density properly
in regions of high density (waste of capacity).
We only care about the relative density for threshold-
ing purposes.
We want to eliminate a certain fraction of observations
and tune our estimator specifically for this fraction.

Solution
Areas of low density can be approximated as the level
set of an auxiliary function. No need to estimate p(x)

directly — use proxy of p(x).
Specifically: find f (x) such that x is novel if f (x) 
c where c is some constant, i.e. f (x) describes the
amount of novelty.



Problems with density estimationDensity Estimation

Alexander J. Smola: Exponential Families and Kernels, Page 4

Maximum a Posteriori

minimize

✓

mX

i=1

g(✓) � h�(xi), ✓i +

1

2�2
k✓k2

Advantages
Convex optimization problem
Concentration of measure

Problems
Normalization g(✓) may be painful to compute
For density estimation we need no normalized p(x|✓)

No need to perform particularly well in high density
regions



ThresholdingNovelty Detection

Alexander J. Smola: Exponential Families and Kernels, Page 5



Optimization ProblemNovelty Detection

Alexander J. Smola: Exponential Families and Kernels, Page 6

Optimization Problem

MAP
mX

i=1

� log p(xi|✓) +

1

2�2
k✓k2

Novelty
mX

i=1

max

✓
� log

p(xi|✓)

exp(⇢ � g(✓))

, 0

◆
+

1

2

k✓k2

mX

i=1

max(⇢ � h�(xi), ✓i, 0) +

1

2

k✓k2

Advantages
No normalization g(✓) needed
No need to perform particularly well in high density
regions (estimator focuses on low-density regions)
Quadratic program



Maximum Distance HyperplaneMaximum Distance Hyperplane

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 11

Idea Find hyperplane, given by f (x) = hw, xi + b = 0 that
has maximum distance from origin yet is still closer to
the origin than the observations.

Hard Margin

minimize 1

2

kwk2

subject to hw, xii � 1

Soft Margin

minimize 1

2

kwk2

+ C
mX

i=1

⇠i

subject to hw, xii � 1 � ⇠i

⇠i � 0



Optimization ProblemDual Problem

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 12

Primal Problem
minimize 1

2

kwk2

+ C
mX

i=1

⇠i

subject to hw, xii � 1 + ⇠i � 0 and ⇠i � 0

Lagrange Function L

Subtract constraints, multiplied by Lagrange multipli-
ers (↵i and ⌘i), from Primal Objective Function.
Lagrange function L has saddlepoint at optimum.

L =

1

2

kwk2

+ C

mX

i=1

⇠i�
mX

i=1

↵i (hw, xii � 1 + ⇠i)�
mX

i=1

⌘i⇠i

subject to ↵i, ⌘i � 0.



Dual ProblemDual Problem

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 13

Optimality Conditions

@wL = w �
mX

i=1

↵ixi = 0 =) w =

mX

i=1

↵ixi

@⇠iL = C � ↵i � ⌘i = 0 =) ↵i 2 [0, C]

Now substitute the optimality conditions back into L.
Dual Problem

minimize 1

2

mX

i=1

↵i↵jhxi, xji �
mX

i=1

↵i

subject to ↵i 2 [0, C]

All this is only possible due to the convexity of the
primal problem.



Minimum enclosing ball

• Observations on 
surface of ball

• Find minimum 
enclosing ball

• Equivalent to 
single class SVM

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2012/01/14 15:35

244 Single-Class Problems: Quantile Estimation and Novelty Detection

||w||ρ/

.

x
R

x

x
x

x
x

Figure 8.3 For RBF kernels, which depend only on x− x′, k(x, x) is constant, and the
mapped data points thus lie on a hypersphere in feature space. In this case, finding the
smallest sphere enclosing the data is equivalent to maximizing the margin of separation
from the origin (cf. Figure 8.2).

8.4 Optimization

•3 The previous section formulated quadratic programs (QPs) for computing regions
that capture a certain fraction of the data. These constrained optimization problems
can be solved via an off-the-shelf QP package (cf. Chapter 6). In the present section,
however, we describe an algorithm which takes advantage of the precise form of the
QPs [459], which is an adaptation of the SMO (Sequential Minimal Optimization)
algorithm [392]. Although most of the material on implementations is in Chapter 10,
we will spend a few minutes to describe the single class algorithm here. Further
information on SMO in general can be found in Section 10.5; additional information
on single-class SVM implementations, and specifically on variants which work in
an online setting, can be found in Section 10.6.3.

The SMO algorithm has been reported to work well in C-SV classification, to
which the structure of the present optimization problem, which uses ν instead of
C, is quite similar. The dual problem has only one equality constraint (8.15), just
as the dual of C-SV classification (7.37).4

The strategy of SMO is to break up the constrained minimization of (8.13) into
the smallest optimization steps possible. Note that it is not possible to modify
variables αi individually without violating the sum constraint (8.15). We therefore
resort to optimizing over pairs of variables.

3. Bernhard: alex can you cut what’s totally redundant, and insert quotes to the
implementation chapter? for convenience, i would tend to leave most of it here.
4. The ν-SV classification algorithm (7.47), on the other hand, has two equality con-
straints. Therefore, is not directly amenable to a SMO approach, unless we remove the
equality constraint arising from the offset b, as done in [93].



Adaptive thresholdsThe ⌫-Trick

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 14

Problem
Depending on C, the number of novel points will vary.
We would like to specify the fraction ⌫ beforehand.

Solution
Use hyperplane separating data from the origin

H := {x|hw, xi = ⇢}
where the threshold ⇢ is adaptive.

Intuition
Let the hyperplane shift by shifting ⇢
Adjust it such that the ’right’ number of observations is
considered novel.
Do this automatically



Optimization ProblemThe ⌫-Trick

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 15

Primal Problem

minimize 1

2

kwk2

+

mX

i=1

⇠i �m⌫⇢

where hw, xii � ⇢ + ⇠i � 0

⇠i � 0

Dual Problem

minimize 1

2

mX

i=1

↵i↵jhxi, xji

where ↵i 2 [0, 1] and
mX

i=1

↵i = ⌫m.

Similar to SV classification problem, use standard opti-
mizer for it.



The ν-property theorem
• Optimization problem

• Solution satisfies
• At most a fraction of ν points are novel
• At most a fraction of (1-ν) points aren’t novel
• Fraction of points on boundary vanishes for 

large m (for non-pathological kernels)

minimize

w

1

2

kwk2 +
mX

i=1

⇠i �m⌫⇢

subject to hw, xii � ⇢� ⇠i and ⇠i � 0



Proof
• Move boundary at optimality

• For smaller threshold m- points on wrong side 
of margin contribute

• For larger threshold m+ points not on ‘good’
side of margin yield

• Combining inequalities

• Margin set of measure 0

Maximum Distance Hyperplane

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 11

Idea Find hyperplane, given by f (x) = hw, xi + b = 0 that
has maximum distance from origin yet is still closer to
the origin than the observations.

Hard Margin

minimize 1

2

kwk2

subject to hw, xii � 1

Soft Margin

minimize 1

2

kwk2

+ C
mX

i=1

⇠i

subject to hw, xii � 1 � ⇠i

⇠i � 0

�(m� � ⌫m)  0

�(m+ � ⌫m) � 0

m�
m

 ⌫  m+

m



Toy example

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2012/01/14 15:35

8.5 Theory 249

Proposition 8.3 (ν-Property) Assume the solution of (8.6),(8.7) satisfies ρ != 0.
The following statements hold:
(i) ν is an upper bound on the fraction of outliers.
(ii) ν is a lower bound on the fraction of SVs.
(iii) Suppose the data (8.32) were generated independently from a distribution P(x)
which does not contain discrete components. Suppose, moreover, that the kernel
is analytic and non-constant. With probability 1, asymptotically, ν equals both the
fraction of SVs and the fraction of outliers.

The proof can be found in [459]. The result also applies to the soft margin ball
algorithm of [524], provided that it is stated in the ν-parameterization given in
(8.17). Figure 8.5 displays a 2-D toy example, illustrating how the choice of ν and
the kernel width influence the solution.

ν, width c 0.5, 0.5 0.5, 0.5 0.1, 0.5 0.5, 0.1

frac. SVs/OLs 0.54, 0.43 0.59, 0.47 0.24, 0.03 0.65, 0.38

margin ρ/‖w‖ 0.84 0.70 0.62 0.48

Figure 8.5 First two pictures: A single-class SVM applied to two toy problems; ν =
c = 0.5, domain: [−1, 1]2. Note how in both cases, at least a fraction 1− ν of all examples
is in the estimated region (cf. table). The large value of ν causes the additional data
points in the upper left corner to have almost no influence on the decision function. For
smaller values of ν, such as 0.1 (third picture), these points can no longer be ignored.
Alternatively, we can force the algorithm to take these ‘outliers’ (OLs) into account by
changing the kernel width (8.5): in the fourth picture, using c = 0.1, ν = 0.5, the data are
effectively analyzed on a different length scale, which leads the algorithm to consider the
outliers as meaningful points.

Proposition 8.4 (Resistance) Local movements of outliers parallel to w do not
change the hyperplane.Resistance

Proof (Proposition 8.4) Suppose xo is an outlier, for which ξo > 0; hence by
the KKT conditions (Chapter 6) αo = 1/(νm). Transforming it into x′

o := xo+δ ·w,
where |δ| < ξo/‖w‖, leads to a slack which is still nonzero, ξ′o > 0, hence we still have
αo = 1/(νm). Therefore, α′ = α is still feasible, as is the primal solution (w′, ξ′, ρ′).
Here, we use ξ′i = (1 + δ · αo)ξi for i != o, w′ = (1 + δ · αo)w, and ρ′ as computed
from (8.16). Finally, the KKT conditions are still satisfied, as α′

o = 1/(νm) still
holds. Thus (Chapter 6), α remains the optimal solution.

threshold and smoothness requirements



Novelty detection for OCRUSPS Digits

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 16

Better estimates since we only optimize in low density
regions.
Specifically tuned for small number of outliers.
Only estimates of a level-set.
For ⌫ = 1 we get the Parzen-windows estimator back.



Classification with the ν-trick

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2012/01/14 15:35

216 Pattern Recognition

Figure 7.9 Toy problem (task: separate circles from disks) solved using ν-SV classifi-
cation, with parameter values ranging from ν = 0.1 (top left) to ν = 0.8 (bottom right).
The larger we make ν, the more points are allowed to lie inside the margin (depicted by
dotted lines). Results are shown for a Gaussian kernel, k(x, x′) = exp(−‖x− x′‖2).

Table 7.1 Fractions of errors and SVs, along with the margins of class separation, for
the toy example in Figure 7.9.
Note that ν upper bounds the fraction of errors and lower bounds the fraction of SVs,
and that increasing ν, i.e., allowing more errors, increases the margin.

ν 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

fraction of errors 0.00 0.07 0.25 0.32 0.39 0.50 0.61 0.71

fraction of SVs 0.29 0.36 0.43 0.46 0.57 0.68 0.79 0.86

margin ρ/‖w‖ 0.005 0.018 0.115 0.156 0.364 0.419 0.461 0.546

slightly more complicated. We consider the Lagrangian

L(w, ξ, b, ρ,α,β, δ) =
1

2
‖w‖2 − νρ+ 1

m

m
∑

i=1

ξi

−
m
∑

i=1

(αi(yi(〈xi,w〉+ b)− ρ+ ξi) + βiξi)− δρ, (7.44)

using multipliers αi,βi, δ ≥ 0. This function has to be mimimized with respect to
the primal variables w, ξ, b, ρ, and maximized with respect to the dual variables
α,β, δ. To eliminate the former, we compute the corresponding partial derivatives
and set them to 0, obtaining the following conditions:

w =
m
∑

i=1

αiyixi, (7.45)

changing kernel width and threshold



Structured Estimation (preview)



Large Margin Condition
• Binary classifier

Correct class chosen with large margin y f(x)
• Multiple classes

• Score function per class f(x,y)
• Want that correct class has much larger score 

than incorrect class

• Structured loss function (e.g. coal & diamonds)

f(x, y)� f(x, y

0
) � 1 for all y

0 6= y

�(y, y0)



Large Margin Classifiers
• Large Margin without rescaling (convex)

(Guestrin, Taskar, Koller)

• Large Margin with rescaling (convex)
(Tsochantaridis, Hofmann, Joachims, Altun)

• Both losses majorize misclassification loss

• Proof by plugging argmax into the definition

l(x, y, f) = sup
y02Y

[f(x, y0)� f(x, y) +�(y, y0)]

l(x, y, f) = sup
y02Y

[f(x, y0)� f(x, y) + 1]�(y, y0)

�

✓
y, argmax

y0
f(x, y

0
)

◆



Many applications
• Ranking (DCG, NDCG)
• Graph matching (linear assignment)
• ROC and Fβ scores
• Sequence annotation (named entities, activity)
• Segmentation
• Natural Language Translation
• Image annotation / scene understanding

• Caution - this loss is generally not consistent!



Extensions
• Invariances

• Add prior knowledge (e.g. in OCR)
• Make estimates robust against malicious 

abuse (e.g. spam filtering)
• Tighter upper bounds

• Convex bound can be very loose
• Overweights noisy data
• Structured version of ramp loss
• Can be shown to be consistent



More Kernel Algorithms



Kernel PCA



Principal Component Analysis
• Gaussian density model

• Estimate variance by empirical average

• Good approximation by low-rank model
• Extract leading eigenvalues of covariance
• Data might lie in a subspace

p(x;µ,⌃) = (2⇡)

d
2 |⌃|� 1

2
exp

✓
�1

2

(x� µ)⌃

�1
(x� µ)

◆

⌃̂ =
1

m

mX

i=1

xix
>
i � µ̂µ̂

> where µ̂ =
1

m

mX

i=1

xi



Principal Component Analysis
• Generative approximation of data

• Heuristic
Good explanation of data implies that we have 
meaningful dimensions of the data.

• Linear feature extraction

• PCA is reconstruction with smallest l2 error

x =
X

i

�ivi↵i where ↵i ⇠ N (0, 1)

gi(x) = hvi, xi



http://www.plantsciences.ucdavis.edu/gepts/pb143/LEC17/pq0921251003.gif

good for exploratory
data analysis

http://www.plantsciences.ucdavis.edu/gepts/pb143/LEC17/pq0921251003.gif
http://www.plantsciences.ucdavis.edu/gepts/pb143/LEC17/pq0921251003.gif


Kernel PCA

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2012/01/14 15:35

444 Kernel Feature Extraction

R2

linear PCA

R2

H
Φ

kernel PCA

k

k(x,x’) = < x,x’>

e.g. k(x,x’) = < x,x’>d

x

x
x xx

x

x

x
xx

x

x

x

x
x xx

x

x

x
xx

x

x

x

x
x

x

x
x

x

x x
x

x

x

Figure 14.1 The basic idea of Kernel
PCA. In some high-dimensional feature
space H (bottom right), we perform linear
PCA, as with classical PCA in input space
(top). Since H is nonlinearly related to in-
put space (via Φ), the contour lines of con-
stant projections onto the principal eigen-
vector (drawn as an arrow) are nonlinear in
input space. We cannot draw a pre-image
of the eigenvector in input space, as it may
not even exist. Crucial to Kernel PCA is
the fact that there is no need to perform
the map into H: all necessary computations
are carried out using a kernel function k in
input space (here: R2).

Σ (v ,Φ(x)) = Σ αi k (xi,x)

input vector x

sample x1, x2, x3,...

comparison: k(xi,x)

feature value

weights (eigenvector
               coefficients)α1 α2  α3  α4

k k k k

Figure 14.2 Feature extractor constructed using Kernel PCA (cf. (14.16)). In the first
layer, the input vector is compared to the sample via a kernel function, chosen a priori (e.g.
polynomial, Gaussian, or sigmoid). The outputs are then linearly combined using weights,
which are found by solving an eigenvector problem. As shown in the text, the function
of the network can be thought of as the projection onto an eigenvector of a covariance
matrix in a high-dimensional feature space. As a function on input space, it is nonlinear.

The principal components are uncorrelated

The first q principal components have maximal mutual information (see [133,
126]) with respect to the inputs (this holds under Gaussianity assumptions in H,
and thus strongly depends on the particular kernel chosen and on the data)

Proof All these statements are completely analogous to the case of standard
PCA. As an example, we prove the second property, in the simple case where
the data x1, . . . ,xm in feature space are centered. We consider an orthogonal basis
transformation W , and use the notation Pq for the projector on the first q canonical
basis vectors {e1, . . . , eq}. Then the mean squared reconstruction error using q



PCA via inner products
• Eigenvector condition

• Kernel PCA

⌃v = �v

1

m

X

i

x̄ix̄
>
i v = �v for x̄i = xi �

1

m

X

i

xi

hence v =

X

j

↵j x̄j

using x̄

>
l
1

m

X

i

x̄ix̄
>
i v = �x̄

>
l v

yields

1

m

¯

K

¯

K↵ = �

¯

K↵

1

m

K̄↵ = �↵ where K̄ij = hx̄i, x̄ji



Two dimensional feature extraction

noisy 
parabola

polynomials 
of increasing 
order
(1 is PCA)

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2012/01/14 15:35

14.3 Kernel PCA Experiments 449

14.3 Kernel PCA Experiments

In this section, we present a set of experiments in which Kernel PCA is used (in
the form taking into account centering in H) to extract principal components.
First, we take a look at a simple toy example; following this, we describe real-world
experiments where we assess the utility of the extracted principal components in
classification tasks.

−1 0 1
−0.5

0

0.5

1

Eigenvalue=0.000
−1 0 1

−0.5

0

0.5

1

Eigenvalue=0.291
−1 0 1

−0.5

0

0.5

1

Eigenvalue=0.709

−1 0 1
−0.5

0

0.5

1

Eigenvalue=0.034
−1 0 1

−0.5

0

0.5

1

Eigenvalue=0.345
−1 0 1

−0.5

0

0.5

1

Eigenvalue=0.621

−1 0 1
−0.5

0

0.5

1

Eigenvalue=0.026
−1 0 1

−0.5

0

0.5

1

Eigenvalue=0.395
−1 0 1

−0.5

0

0.5

1

Eigenvalue=0.570

−1 0 1
−0.5

0

0.5

1

Eigenvalue=0.021
−1 0 1

−0.5

0

0.5

1

Eigenvalue=0.418
−1 0 1

−0.5

0

0.5

1

Eigenvalue=0.552

Figure 14.3 Two-dimensional toy example, with data generated as follows: x-values
have uniform distribution in [−1, 1], y-values are generated from yi = x2

i + υ, where υ
is normal noise with standard deviation 0.2. From left to right, the polynomial degree in
the kernel (14.21) increases from 1 to 4; from top to bottom, the first 3 eigenvectors are
shown, in order of decreasing eigenvalue size (eigenvalues are normalized to sum to 1). The
figures contain lines of constant principal component value (contour lines); in the linear
case (d = 1), these are orthogonal to the eigenvectors. We did not draw the eigenvectors,
as in the general case, they belong in a higher-dimensional feature space. Note, finally,
that for d = 1, there are only 2 nonzero eigenvectors, this number being equal to the
dimension of the input space.

To provide insight into how PCA in H behaves in input space, we describe a setToy Examples
of experiments with an artificial 2-D data set, using polynomial kernels,

k(x, x′) = 〈x, x′〉d , (14.21)



Feature extraction

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2012/01/14 15:35

450 Kernel Feature Extraction

of degree d = 1, . . . , 4 (see Figure 14.3). Linear PCA (on the left) leads to just 2
nonzero eigenvalues, as the input dimensionality is 2. By contrast, nonlinear PCA
allows the extraction of further components. In the figure, note that nonlinear
PCA produces contour lines of constant feature value, which reflect the structure
in the data better than in linear PCA. In all cases, the first principal component
varies monotonically along the parabola that underlies the data. In the nonlinear
cases, the second and the third components also show behaviour which is similar
across different polynomial degrees. The third component, which comes with small
eigenvalues (rescaled to sum to 1), seems to pick up the variance caused by the
noise, as can be seen in the case of degree 2. Dropping this component would thus
amount to noise reduction.

Further toy examples, using radial basis function kernels (2.74) and neural
network type sigmoid kernels (2.75), are shown in figures 14.4 – 14.6.

Eigenvalue=0.251 Eigenvalue=0.233 Eigenvalue=0.052 Eigenvalue=0.044

Eigenvalue=0.037 Eigenvalue=0.033 Eigenvalue=0.031 Eigenvalue=0.025

Eigenvalue=0.014 Eigenvalue=0.008 Eigenvalue=0.007 Eigenvalue=0.006

Eigenvalue=0.005 Eigenvalue=0.004 Eigenvalue=0.003 Eigenvalue=0.002

Figure 14.4 Two-dimensional toy example with three data clusters (Gaussians with
standard deviation 0.1; depicted region, [−1, 1] × [−0.5, 1]): first 16 nonlinear principal
components extracted with k(x, x′) = exp

(

−‖x− x′‖2/0.1
)

. Note that the first 2 principal
component (top left), which possess the largest eigenvalues, nicely separate the three
clusters. The components 3 – 5 split the clusters into halves. Similarly, components 6 – 8
split them again, in a manner orthogonal to the above splits. The higher components
are more difficult to describe. They look for finer structure in the data set, identifying
higher-order moments.



Mean Classifier



‘Trivial’ classifier

• Represent each class by mean in feature space
• Classify along direction of maximum 

discrepancy between classes
• Trivial to ‘train’

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2012/01/14 15:35

1.2 A Simple Pattern Recognition Algorithm 5

o
+

+

+

+

o
o

c+

c-

x-c

w

x

c
.

Figure 1.1 A simple geometric classification algorithm: given two classes of points
(depicted by ‘o’ and ‘+’), compute their means c+, c− and assign a test pattern x to
which its mean is closer. This can be done by looking at the dot product between x − c
(where c = (c+ + c−)/2) and w := c+ − c−, which changes sign as the enclosed angle
passes through π/2. Note that the corresponding decision boundary is a hyperplane (the
dotted line) orthogonal to w.

= sgn




1

m+

∑

{i:yi=+1}

k(x, xi)−
1

m−

∑

{i:yi=−1}

k(x, xi) + b



 . (1.11)

Similarly, the offset becomes

b :=
1

2




1

m2
−

∑

{(i,j):yi=yj=−1}

k(xi, xj)−
1

m2
+

∑

{(i,j):yi=yj=+1}

k(xi, xj)



 . (1.12)

Surprisingly, it turns out that this rather simple-minded approach contains a well-
known statistical classification method as a special case. Assume that the class
means have the same distance to the origin (hence b = 0), and that k can be viewed
as a probability density when one of its arguments is fixed. By this we mean that
it is positive and has unit integral,3
∫

X

k(x, x′)dx = 1 for all x′ ∈ X. (1.13)

In this case, (1.11) takes the form of the so-called Bayes classifier separating the
two classes, subject to the assumption that the two classes of patterns were gen-
erated by sampling from two probability distributions that are correctly estimated
by the Parzen windows estimators of the two class densities,Parzen Windows

p+(x) :=
1

m+

∑

{i:yi=+1}

k(x, xi), (1.14)

3. In order to state this assumption, we have to require that we can define an integral on
X.



‘Trivial’ classifier

• Class mean

• Classifier

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2012/01/14 15:35

1.2 A Simple Pattern Recognition Algorithm 5

o
+

+

+

+

o
o

c+

c-

x-c

w

x

c
.

Figure 1.1 A simple geometric classification algorithm: given two classes of points
(depicted by ‘o’ and ‘+’), compute their means c+, c− and assign a test pattern x to
which its mean is closer. This can be done by looking at the dot product between x − c
(where c = (c+ + c−)/2) and w := c+ − c−, which changes sign as the enclosed angle
passes through π/2. Note that the corresponding decision boundary is a hyperplane (the
dotted line) orthogonal to w.

= sgn




1

m+

∑

{i:yi=+1}

k(x, xi)−
1

m−

∑

{i:yi=−1}

k(x, xi) + b



 . (1.11)

Similarly, the offset becomes

b :=
1

2




1

m2
−

∑

{(i,j):yi=yj=−1}

k(xi, xj)−
1

m2
+

∑

{(i,j):yi=yj=+1}

k(xi, xj)



 . (1.12)

Surprisingly, it turns out that this rather simple-minded approach contains a well-
known statistical classification method as a special case. Assume that the class
means have the same distance to the origin (hence b = 0), and that k can be viewed
as a probability density when one of its arguments is fixed. By this we mean that
it is positive and has unit integral,3
∫

X

k(x, x′)dx = 1 for all x′ ∈ X. (1.13)

In this case, (1.11) takes the form of the so-called Bayes classifier separating the
two classes, subject to the assumption that the two classes of patterns were gen-
erated by sampling from two probability distributions that are correctly estimated
by the Parzen windows estimators of the two class densities,Parzen Windows

p+(x) :=
1

m+

∑

{i:yi=+1}

k(x, xi), (1.14)

3. In order to state this assumption, we have to require that we can define an integral on
X.

µ+ =
1

m+

X

i:yi=1

�(xi) and µ� =
1

m�

X

i:yi=�1

�(xi)

like Watson 
Nadaraya

f(x) = hµ+ � µ�,�(x)i =
X

i

yi

myi

k(xi, x)



More kernel methods
• Canonical Correlation analysis
• Two sample test

• Mean in feature space is sufficient to fully 
represent a distribution

• Compare them by computing distance
• Independence test

• Compare joint and product of marginals
• Structured feature extraction

• Find directions of high significance and low 
function complexity



Conditional Models



Gaussian Processes



Weight & heightA simple problem

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 23



Weight & heightA simple problem

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 23

assume Gaussian correlation



Inference

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 24

p(weight|height) =

p(height,weight)
p(height) / p(height,weight)



Inference

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 24

p(weight|height) =

p(height,weight)
p(height) / p(height,weight)

p(x2|x1) / exp

"
�1

2


x1 � µ1

x2 � µ2

�> 
⌃11 ⌃12

⌃12 ⌃22

��1 
x1 � µ1

x2 � µ2

�#

keep linear and quadratic terms of exponent



The gory mathInference in Normal Distributions

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 27

Correlated Observations
Assume that the random variables t 2 Rn, t0 2 Rn0 are
jointly normal with mean (µ, µ0) and covariance matrix K

p(t, t0) / exp

 
�1

2


t� µ
t0 � µ0

�> 
Ktt Ktt0

K>
tt0 Kt0t0

��1


t� µ
t0 � µ0

�!
.

Inference
Given t, estimate t0 via p(t0|t). Translation into machine
learning language: we learn t0 from t.

Practical Solution
Since t0|t ⇠ N(µ̃, ˜K), we only need to collect all terms in
p(t, t0) depending on t0 by matrix inversion, hence

˜K = Kt0t0 �K>
tt0K

�1

tt Ktt0 and µ̃ = µ0 + K>
tt0
⇥
K�1

tt (t� µ)

⇤
| {z }
independent of t0



Gaussian ProcessGaussian Process

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 28

Key Idea
Instead of a fixed set of random variables t, t0 we assume
a stochastic process t : X ! R, e.g. X = Rn.
Previously we had X = {age, height, weight, . . .}.

Definition of a Gaussian Process
A stochastic process t : X ! R, where all
(t(x

1

), . . . , t(xm)) are normally distributed.
Parameters of a GP

Mean µ(x) := E[t(x)]

Covariance Function k(x, x0) := Cov(t(x), t(x0))

Simplifying Assumption
We assume knowledge of k(x, x0) and set µ = 0.



Kernels ...Gaussian Processes and Kernels

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 35

Covariance Function
Function of two arguments
Leads to matrix with nonnegative eigenvalues
Describes correlation between pairs of observations

Kernel
Function of two arguments
Leads to matrix with nonnegative eigenvalues
Similarity measure between pairs of observations

Lucky Guess
We suspect that kernels and covariance functions are
the same . . .



The connectionThe Support Vector Connection

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 36

Gaussian Process on Parameters
t ⇠ N(µ, K) where Kij = k(xi, xj)

Linear Model in Feature Space
t(x) = h�(x), wi + µ(x) where w ⇠ N(0,1)

The covariance between t(x) and t(x0) is then given by
Ew [h�(x), wihw, �(x0)i] = h�(x), �(x0)i = k(x, x0)

Conclusion
A small weight vector in “feature space”, as commonly
used in SVM amounts to observing t with high p(t).

Log prior � log p(t) () Margin kwk2

Will get back to this later again.



Regression



Joint Gaussian Model
• Random variables (t,t’) are drawn from GP
• Observe a subset t of them
• Predict the rest using 

• Linear expansion (precompute things)
• Predictive uncertainty is data independent

Good for experimental design
• Predictive uncertainty is data independent
• Predictive variance vanishes if K is rank deficient

K̃ = Kt0t0 �K>
tt0K

�1
tt Ktt0 and µ̃ = µ0 +K>

tt0
⇥
K�1

tt (t� µ)
⇤



Some kernelsSome Covariance Functions

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 29

Observation
Any function k leading to a symmetric matrix with non-
negative eigenvalues is a valid covariance function.

Necessary and sufficient condition (Mercer’s Theorem)
k needs to be a nonnegative integral kernel.

Examples of kernels k(x, x0
)

Linear hx, x0i
Laplacian RBF exp (��kx � x0k)
Gaussian RBF exp

�
��kx � x0k2

�

Polynomial (hx, x0i + ci)d , c � 0, d 2 N
B-Spline B

2n+1

(x � x0
)

Cond. Expectation Ec[p(x|c)p(x0|c)]



Linear ‘GP regression’Example: Linear Regression

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 38

Linear kernel: k(x, x0) = hx, x0i
Kernel matrix X>X
Mean and covariance
˜K = X 0>X 0 � X 0>X(X>X)

�1X>X 0
= X 0>

(1� PX)X 0.

µ̃ = X 0>⇥
X(X>X)

�1t
⇤

µ̃ is a linear function of X 0.
Problem

The covariance matrix X>X has at most rank n.
After n observations (x 2 Rn) the variance vanishes.
This is not realistic.
“Flat pancake” or “cigar” distribution.



Degenerate CovarianceDegenerate Covariance

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 39



Additive NoiseAdditive Noise

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 40

Indirect Model
Instead of observing t(x) we observe y = t(x) + ⇠, where
⇠ is a nuisance term. This yields

p(Y |X) =

Z mY

i=1

p(yi|ti)p(t|X)dt

where we can now find a maximum a posteriori solution
for t by maximizing the integrand (we will use this later).

Additive Normal Noise
If ⇠ ⇠ N(0, �2

) then y is the sum of two Gaussian ran-
dom variables.
Means and variances add up.

y ⇠ N(µ, K + �21).



Training Data

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 41

Data



Predictive meanMean ~k>(x)(K + �21)

�1y

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 42

k(x,X)>(K(X,X) + �

21)�1
y



VarianceVariance k(x, x) + �2 � ~k>(x)(K + �21)

�1~k(x)

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 43



Putting it all togetherPutting everything together . . .

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 44



Putting it all togetherAnother Example

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 45



Ugly detailsThe ugly details

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 46

Covariance Matrices
Additive noise

K = K
kernel

+ �21

Predictive mean and variance
˜K = Kt0t0 �K>

tt0K
�1

tt Ktt0 and µ̃ = K>
tt0K

�1

tt t

Pointwise prediction
Ktt = K + �21

Kt0t0 = k(x, x) + �2

Ktt0 = (k(x
1

, x), . . . , k(xm, x))

Plug this into the mean and covariance equations.



Gaussian Process Conditional Models



Exponential Families



Exponential Families

• Density function

p(x; �) = exp (h⇥(x), �i � g(�))

where g(�) = log

X

x

0

exp (h⇥(x0
), �i)



Exponential Families

• Density function

• Log partition function generates cumulants

p(x; �) = exp (h⇥(x), �i � g(�))

where g(�) = log

X

x

0

exp (h⇥(x0
), �i)

@✓g(✓) = E [�(x)]

@

2
✓g(✓) = Var [�(x)]



Exponential Families

• Density function

• Log partition function generates cumulants

• g is convex (second derivative is p.s.d.)

p(x; �) = exp (h⇥(x), �i � g(�))

where g(�) = log

X

x

0

exp (h⇥(x0
), �i)

@✓g(✓) = E [�(x)]

@

2
✓g(✓) = Var [�(x)]



Conditional Exponential Families

p(y|x; ✓) = exp (h�(x, y), ✓i � g(✓|x))

where g(✓|x) = log

X

y0

exp (h�(x, y0), ✓i)

@✓g(✓|x) = E [�(x, y)|x]
@

2
✓g(✓|x) = Var [�(x, y)|x]



Conditional Exponential Families

• Density function
p(y|x; ✓) = exp (h�(x, y), ✓i � g(✓|x))

where g(✓|x) = log

X

y0

exp (h�(x, y0), ✓i)

@✓g(✓|x) = E [�(x, y)|x]
@

2
✓g(✓|x) = Var [�(x, y)|x]



Conditional Exponential Families

• Density function

• Log partition function generates cumulants

p(y|x; ✓) = exp (h�(x, y), ✓i � g(✓|x))

where g(✓|x) = log

X

y0

exp (h�(x, y0), ✓i)

@✓g(✓|x) = E [�(x, y)|x]
@

2
✓g(✓|x) = Var [�(x, y)|x]



Conditional Exponential Families

• Density function

• Log partition function generates cumulants

• g is convex (second derivative is p.s.d.)

p(y|x; ✓) = exp (h�(x, y), ✓i � g(✓|x))

where g(✓|x) = log

X

y0

exp (h�(x, y0), ✓i)

@✓g(✓|x) = E [�(x, y)|x]
@

2
✓g(✓|x) = Var [�(x, y)|x]



Key Idea
• Gaussian Process indexed by (x,y)

• Binary y yields classification
• Set for y yields multiclass
• Integer y yields Poisson regression
• Scalar y yields heteroscedastic regression
• Sequence for y yields CRF
• ... and lots more ...

• The GP is in the latent variables
(Regression is special case where we can integrate)



Conditional GP Model
• Data likelihood

• Prior

• Posterior distribution

• Maximize with respect to t for MAP estimate

p(y|x, t(x)) := e

t(x,y)�g(t(x))

where g(t(x)) =
X

y

e

t(x,y)

t ⇠ N (µ,K)

p(t|X,Y ) / exp

 
X

i

t(xi, yi)� g(t(xi))�
1

2

t

>
K

�1
t

!



Logistic Regression



Binomial Model
• Binary label space {-1, 1}
• We can center t(x,y) as y t(x)

(constant offset doesn’t change model)
• Log-likelihood

• After rescaling by 2 this is the logistic loss
• MAP estimation problem

� log p(y|t) = log

⇥
et + e�t

⇤
� yt = log

⇥
1 + e�2yt

⇤

minimize

t

1

2

t>K�1t+
mX

i=1

log

⇥
1 + e�yiti

⇤



More loss functions

• Logistic
• Huberized loss

• Soft margin

8
><

>:

0 if f(x) > 1
1
2 (1� f(x))2 if f(x) 2 [0, 1]
1
2 � f(x) if f(x) < 0

max(0, 1� f(x))

(asymptotically)
linear

(asymptotically) 0

log

h
1 + e�f(x)

i



Clean DataA Toy Example

Alex J. Smola: Exponential Families for Estimation, Page 14



Noisy DataNoisy Data

Alex J. Smola: Exponential Families for Estimation, Page 15



Heteroscedastic Estimation



Motivation

• GP Regression has variance estimate 
independent of observed data

• Assumes that we know variance globally 
beforehand

•This is nonsense!
• Estimate mean and variance jointly
• Easily possible in an exponential family model

Le, Canu, Smola, 2005



Recall - Normal distributions
Example: Normal Distribution

Alex J. Smola: Exponential Families for Estimation, Page 4

Engineer’s favorite

p(x) =

1p
2⇡�2

exp

✓
� 1

2�2

(x� µ)

2

◆
where x 2 R =: X

Massaging the math

p(x) = exp

⇣
h(x,�0.5x2

)| {z }
�(x)

, ✓i �
⇣ µ2

2�2

+

1

2

log(2⇡�2

)

⌘

| {z }
g(✓)

⌘

Using the substitution ✓
2

:= ��2 and ✓
1

:= µ��2 yields

g(✓) =

1

2

⇥
✓2

1

✓�1

2

+ log 2⇡ � log ✓
2

⇤



Basic IdeaHeteroscedastic GP Regression

Alex J. Smola: Exponential Families for Estimation, Page 21

Sufficient Statistic
We pick �(x, y) = (y�

1

(x), y2�
2

(x)), that is
k((x, y), (x0, y0

)) = k
1

(x, x0
)yy0

+k
2

(x, x0
)y2y02 where y, y0 2 R

Hence estimate mean and variance simultaneously.
Optimization Problem

minimize
mX

i=1

2

4�1

4

"
mX

j=1

↵1jk1(xi, xj)

#> "
mX

j=1

↵2jk2(xi, xj)

#�1 "
mX

j=1

↵1jk1(xi, xj)

#

�1

2

log det�2

"
mX

j=1

↵2jk2(xi, xj)

#
�

mX

j=1

h
y

>
i ↵1jk1(xi, xj) + (y

>
j ↵2jyj)k2(xi, xj)

i#

+

1

2�

2

X

i,j

↵

>
1i↵1jk1(xi, xj) + tr

h
↵2i↵

>
2j

i
k2(xi, xj).

subject to 0 �
mX

i=1

↵2ik(xi, xj)

The problem is convex
The log-determinant from the normalization of the
Gaussian acts as a barrrier function, i.e. a nice SDP.



Heteroscedastic Regression

Alex J. Smola: Exponential Families for Estimation, Page 22



Variance Estimate

Alex J. Smola: Exponential Families for Estimation, Page 23



Computational Issues

Alex J. Smola: Exponential Families for Estimation, Page 24

Newton Method with CG Solver
Use Newton method to compute update direction, CG
solver instead of inverting Hessian.

Lazy Evaluation
Never build explicit Hessian.

Reduced Rank
Use incomplete Cholesky factorization for low-rank ap-
proximation.

Result
m 100 200 500 1k 2k 5k 10k 20k
Direct Hessian 8 18 90 607 3551 - - -
Hessian vector 9 15 38 115 752 - - -
Reduced rank 7 7 12 30 54 179 368 727
This yields scaling of O(m2.1

), O(m1.4
), and O(m0.95

).

Computational Issues



Standard GPStandard Gaussian Process

Alex J. Smola: Exponential Families for Estimation, Page 26



Heteroscedastic GP (mean)

Alex J. Smola: Exponential Families for Estimation, Page 27

Heteroscedastic GP mean



Heteroscedastic GP varianceHeteroscedastic GP (variance)

Alex J. Smola: Exponential Families for Estimation, Page 28



• Kernel trick
• Simple kernels
• Kernel PCA
• Mean Classifier

• Support Vectors
• Support Vector Machine classification
• Regression
• Logistic regression
• Novelty detection 

• Gaussian Process Estimation
• Regression
• Classification
• Heteroscedastic Regression

(Generalized) Linear Models



Further reading
• Ramp loss consistency

http://books.nips.cc/papers/files/nips24/NIPS2011_1222.pdf
• Ranking and structured estimation

http://users.cecs.anu.edu.au/~chteo/pub/LeSmoChaTeo09.pdf
• Invariances and convexity

http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=11755
• Ramp loss for structured estimation

http://users.cecs.anu.edu.au/~chteo/pub/Chaetal09.pdf
• Structured estimation (with margin rescaling)

http://ttic.uchicago.edu/~altun/pubs/AltHofTso06.pdf
• Structured estimation (without margin rescaling)

http://www.seas.upenn.edu/~taskar/pubs/icml05.pdf
• Ben Taskar’s tutorial

http://www.seas.upenn.edu/~taskar/nips07tut/nips07tut.ppt

http://books.nips.cc/papers/files/nips24/NIPS2011_1222.pdf
http://books.nips.cc/papers/files/nips24/NIPS2011_1222.pdf
http://users.cecs.anu.edu.au/~chteo/pub/LeSmoChaTeo09.pdf
http://users.cecs.anu.edu.au/~chteo/pub/LeSmoChaTeo09.pdf
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=11755
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=11755
http://users.cecs.anu.edu.au/~chteo/pub/Chaetal09.pdf
http://users.cecs.anu.edu.au/~chteo/pub/Chaetal09.pdf
http://ttic.uchicago.edu/~altun/pubs/AltHofTso06.pdf
http://ttic.uchicago.edu/~altun/pubs/AltHofTso06.pdf
http://www.seas.upenn.edu/~taskar/pubs/icml05.pdf
http://www.seas.upenn.edu/~taskar/pubs/icml05.pdf
http://www.seas.upenn.edu/~taskar/nips07tut/nips07tut.ppt
http://www.seas.upenn.edu/~taskar/nips07tut/nips07tut.ppt


Further reading 
• SVM Tutorial (regression)

http://alex.smola.org/papers/2003/SmoSch03b.pdf
• SVM Tutorial (classification)

http://www.umiacs.umd.edu/~joseph/support-vector-
machines4.pdf

• Introductory chapter of Kernel book
http://alex.smola.org/teaching/berkeley2012/slides/
lwk_chapter1.pdf

• Introductory chapter of structured estimation book
http://alex.smola.org/teaching/berkeley2012/slides/
se_chapter2.pdf

• Kernel PCA
http://dl.acm.org/citation.cfm?id=295919.295960

http://alex.smola.org/papers/2003/SmoSch03b.pdf
http://alex.smola.org/papers/2003/SmoSch03b.pdf
http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf
http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf
http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf
http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf
http://alex.smola.org/teaching/berkeley2012/slides/lwk_chapter1.pdf
http://alex.smola.org/teaching/berkeley2012/slides/lwk_chapter1.pdf
http://alex.smola.org/teaching/berkeley2012/slides/lwk_chapter1.pdf
http://alex.smola.org/teaching/berkeley2012/slides/lwk_chapter1.pdf
http://alex.smola.org/teaching/berkeley2012/slides/lwk_chapter1.pdf
http://alex.smola.org/teaching/berkeley2012/slides/lwk_chapter1.pdf
http://alex.smola.org/teaching/berkeley2012/slides/lwk_chapter1.pdf
http://alex.smola.org/teaching/berkeley2012/slides/lwk_chapter1.pdf
http://dl.acm.org/citation.cfm?id=295919.295960
http://dl.acm.org/citation.cfm?id=295919.295960

