ҮАНОО!

Scalable Machine Learning

 5. (Generalized) Linear Models
Alex Smola
 Yahoo! Research and ANU

http://alex.smola.org/teaching/berkeley2012
Stat 260 SP 12

Administrative stuff

- Solutions will be posted by tomorrow
- New problem set will be available by tomorrow
- Midterm project presentations are on March 13
- Describe what you will do
- Why it's important
- What you've achieved so far
- Show why you think you're going to succeed
- 10 minutes per team (6 slides maximum)
- Up to 10 pages supporting documentation

5. (Generalized) Linear Models

Click to LOOK INSIDE!

\quad| Monographs |
| ---: |
| onstatisics and |
| Applied Probability 58 |

Nonparametric
Regression and
Generalized
Linear Models
A roughness penalty approach
P.J. Green and B.W. Silverman
cramemas athucac
Monogaphs on Staisisics and Applled Probabilyy y 106
Generalized Linear
Models with
Random Effects
Unified Analysis via H-likelihood
Youngio Lee
John A. Nelder
Yudi Pawitan
CHhemman \& Halccac

(Generalized) Linear Models

- Kernel trick
- Simple kernels
- Kernel PCA
- Mean Classifier
- Support Vectors
- Support Vector Machine classification
- Regression
- Logistic regression
- Novelty detection
- Gaussian Process Estimation
- Regression
- Classification
- Heteroscedastic Regression

Kernels - a Preview

Solving XOR

$\left(x_{1}, x_{2}\right)$

$\left(x_{1}, x_{2}, x_{1} x_{2}\right)$

- XOR not linearly separable
- Mapping into 3 dimensions makes it easily solvable

Feałure Space Mapping

- Naive Nonlinearization Strategy
- Express data x in terms of features $\phi(\mathrm{x})$
- Solve problem in feature space
- Requires explicit feature computation
- Kernel trick
- Write algorithm in terms of inner products
- Replace $\left\langle x, x^{\prime}\right\rangle$ by $k\left(x, x^{\prime}\right):=\left\langle\phi(x), \phi\left(x^{\prime}\right)\right\rangle$
- Works well for dimension-insensitive methods
- Kernel matrix K is positive semidefinite

SVM with a polynomial Kernel visualization

> Created by:
> Udi Aharoni

Polynomial Kernels

- Linear

$$
k\left(x, x^{\prime}\right):=\left\langle x, x^{\prime}\right\rangle
$$

- Quadratic

$$
k\left(x, x^{\prime}\right):=\left\langle\left(x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}\right),\left(x_{1}^{\prime 2}, x_{2}^{\prime 2}, \sqrt{2} x_{1}^{\prime} x_{2}^{\prime}\right)\right\rangle=\left\langle x, x^{\prime}\right\rangle^{2}
$$

- Homogeneous polynomial

$$
k\left(x, x^{\prime}\right):=\left\langle x, x^{\prime}\right\rangle^{p}=\sum_{|\alpha|=p} \prod_{i} \alpha_{i}!\left(x_{i} x_{i}^{\prime}\right)^{\alpha_{i}} \text { with } \alpha \in \mathbb{N}_{0}^{d}
$$

- Inhomogeneous polynomial

$$
k\left(x, x^{\prime}\right):=\left(\left\langle x, x^{\prime}\right\rangle+c\right)^{p}=\sum_{i=0}^{p}\binom{p}{i}\left\langle x, x^{\prime}\right\rangle^{i}
$$

More Kernels

- Gaussian Kernel

$$
k\left(x, x^{\prime}\right):=\exp \left(-\gamma\left\|x-x^{\prime}\right\|^{2}\right)
$$

can check that this is convolution of Gaussians

- Brownian Bridge

$$
k\left(x, x^{\prime}\right):=\min \left(x, x^{\prime}\right) \text { for } x, x^{\prime} \geq 0
$$

- Set intersection

$$
k(A, B):=|A \cap B|
$$

- Strings, more fancy set kernels, graphs, etc.

Support Vector Machines

Advances in Kernel Methods

Classification

$!2 *$

Support Vectors

$\underset{w, b}{\operatorname{minimize}} \frac{1}{2}\|w\|^{2}$ subject to $y_{i}\left[\left\langle w, x_{i}\right\rangle+b\right] \geq 1$

Support Vectors

dual problem

$$
\begin{aligned}
& \underset{\alpha}{\operatorname{minimize}} \frac{1}{2} \alpha^{\top} K \alpha-1^{\top} \alpha \\
& \text { subject to } \sum_{i} \alpha_{i} y_{i}=0 \\
& \alpha_{i} \geq 0 \\
& K_{i j}= y_{i} y_{j}\left\langle x_{i}, x_{j}\right\rangle \\
& w= \sum_{i} \alpha_{i} y_{i} x_{i}
\end{aligned}
$$

$$
\underset{w, b}{\operatorname{minimize}} \frac{1}{2}\|w\|^{2} \text { subject to } y_{i}\left[\left\langle w, x_{i}\right\rangle+b\right] \geq 1
$$

Karush Kuhn Tucker conditions

KKT optimality condition $\alpha_{i}\left[y_{i}\left(\left\langle x_{i}, w\right\rangle+b\right) \geq 1\right]=0$

$$
\begin{aligned}
y_{i}\left(\left\langle x_{i}, w\right\rangle+b\right) & >1 \text { implies } \alpha_{i}=0 \\
\alpha_{i} & >0 \text { implies } y_{i}\left(\left\langle x_{i}, w\right\rangle+b\right)=1
\end{aligned}
$$

Properties

- Weight vector was weighted linear combination of instances
- Only points on margin matter (we can ignore the rest and get same solution)
- Only inner products matter
- Quadratic program
- We can replace the inner product by a kernel
- Keeps instances away from the margin

Java demo: http://svm.dcs.rhbnc.ac.uk/pagesnew/GPat.shtml

Example

Example

Number of Support Vectors: 3 (-ve: $2,+$ ve: 1) Total number of points: 15

Why large margins?

- Maximum robustness relative to uncertainty
- Symmetry breaking
- Independent of correctly classified instances
- Easy to find for easy problems

Inseparable data

Quadratic program has no feasible solution

Adding slack variables

- Hard margin problem

$$
\underset{w, b}{\operatorname{minimize}} \frac{1}{2}\|w\|^{2} \text { subject to } y_{i}\left[\left\langle w, x_{i}\right\rangle+b\right] \geq 1
$$

- With slack variables

$$
\underset{w, b}{\operatorname{minimize}} \frac{1}{2}\|w\|^{2}+C \sum_{i} \xi_{i}
$$

subject to $y_{i}\left[\left\langle w, x_{i}\right\rangle+b\right] \geq 1-\xi_{i}$ and $\xi_{i} \geq 0$
problem is always feasible. Proof:
$w=0$ and $b=0$ and $\xi_{i}=1$ (also yields upper bound)

Support Vectors

dual problem

$$
\begin{gathered}
\underset{\alpha}{\operatorname{minimize}} \\
\text { subject to } \\
\sum_{i} \alpha_{i} y_{i}=0 \\
\alpha_{i} \in[0, C] \\
K_{i j}=y_{i} y_{j}\left\langle x_{i}, x_{j}\right\rangle \\
w=\sum_{i} \alpha_{i} y_{i} x_{i}
\end{gathered}
$$

$\underset{w, b}{\operatorname{minimize}} \frac{1}{2}\|w\|^{2}+C \sum_{i} \xi_{i}$
subject to $y_{i}\left[\left\langle w, x_{i}\right\rangle+b\right] \geq 1-\xi_{i}$ and $\xi_{i} \geq 0$

Classification with errors

Nonlinear separation

- Increasing C allows for more nonlinearities
- Decreases number of errors
- SV boundary need not be contiguous

Loss function point of view

- Constrained quadratic program

$$
\underset{w, b}{\operatorname{minimize}} \frac{1}{2}\|w\|^{2}+C \sum_{i} \xi_{i}
$$

$$
\text { subject to } y_{i}\left[\left\langle w, x_{i}\right\rangle+b\right] \geq 1-\xi_{i} \text { and } \xi_{i} \geq 0
$$

- Risk minimization setting

$$
\underset{w, b}{\operatorname{minimize}} \frac{1}{2}\|w\|^{2}+C \sum_{i} \frac{\max \left[0,1-y_{i}\left[\left\langle w, x_{i}\right\rangle+b\right]\right]}{\text { empirical risk }}
$$

Follows from finding minimal slack variable for given (w, b) pair.

Soft margin as proxy for binary

- Soft margin loss $\max (0,1-y f(x))$
- Binary loss $\{y f(x)<0\}$

More loss functions

Risk minimization view

- Find function f minimizing classification error

$$
R[f]:=\mathbf{E}_{x, y \sim p(x, y)}[\{y f(x)>0\}]
$$

- Compute empirical average

$$
R_{\mathrm{emp}}[f]:=\frac{1}{m} \sum_{i=1}^{m}\left\{y_{i} f\left(x_{i}\right)>0\right\}
$$

- Minimization is nonconvex
- Overfitting as we minimize empirical error
- Compute convex upper bound on the loss
- Add regularization for capacity control

> regularization

$$
R_{\mathrm{reg}}[f]:=\frac{1}{m} \sum_{i=1}^{m} \max \left(0,1-y_{i} f\left(x_{i}\right)\right)+\lambda \Omega[f]
$$

Regression

"Under hypnosis you revealed that in your last eight lives you were ... er ... a cat."

Regression Estimation

- Find function f minimizing regression error

$$
R[f]:=\mathbf{E}_{x, y \sim p(x, y)}[l(y, f(x))]
$$

- Compute empirical average

$$
R_{\mathrm{emp}}[f]:=\frac{1}{m} \sum_{i=1}^{m} l\left(y_{i}, f\left(x_{i}\right)\right)
$$

Overfitting as we minimize empirical error

- Add regularization for capacity control

$$
R_{\mathrm{reg}}[f]:=\frac{1}{m} \sum_{i=1}^{m} l\left(y_{i}, f\left(x_{i}\right)\right)+\lambda \Omega[f]
$$

Squared loss

|1 loss

ع-insensitive Loss

Penalized leasł mean squares

- Optimization problem

$$
\underset{w}{\operatorname{minimize}} \frac{1}{m} \sum_{i=1}^{m}\left(y_{i}-\left\langle x_{i}, w\right\rangle\right)^{2}+\frac{\lambda}{2}\|w\|^{2}
$$

- Solution

$$
\begin{aligned}
\partial_{w}[\ldots] & =\frac{1}{m} \sum_{i=1}^{m}\left[x_{i} x_{i}^{\top} w-x_{i} y_{i}\right]+\lambda w \\
& =\left[\frac{1}{m} X X^{\top}+\lambda \mathbf{1}\right] w-\frac{1}{m} X y=0 \\
\text { hence } w & =\left[X X^{\top}+\lambda m \mathbf{1}\right]^{-1} X y
\end{aligned}
$$

only inner product
between X matters
matrix inverse use CG or SMW

SVM Regression (ϵ-insensitive loss)

don't care about deviations within the tube

SVM Regression (ϵ-insensitive loss)

- Optimization Problem (as constrained QP)

$$
\begin{aligned}
\underset{w, b}{\operatorname{minimize}} & \frac{1}{2}\|w\|^{2}+C \sum_{i=1}^{m}\left[\xi_{i}+\xi_{i}^{*}\right] \\
\text { subject to } & \left\langle w, x_{i}\right\rangle+b \leq y_{i}+\epsilon+\xi_{i} \text { and } \xi_{i} \geq 0 \\
& \left\langle w, x_{i}\right\rangle+b \geq y_{i}-\epsilon-\xi_{i}^{*} \text { and } \xi_{i}^{*} \geq 0
\end{aligned}
$$

- Lagrange Function

$$
\begin{aligned}
L= & \frac{1}{2}\|w\|^{2}+C \sum_{i=1}^{m}\left[\xi_{i}+\xi_{i}^{*}\right]-\sum_{i=1}^{m}\left[\eta_{i} \xi_{i}+\eta_{i}^{*} \xi_{i}^{*}\right]+ \\
& \sum_{i=1}^{m} \alpha_{i}\left[\left\langle w, x_{i}\right\rangle+b-y_{i}-\epsilon-\xi_{i}\right]+\sum_{i=1}^{m} \alpha_{i}^{*}\left[y_{i}-\epsilon-\xi_{i}^{*}-\left\langle w, x_{i}\right\rangle-b\right]
\end{aligned}
$$

SVM Regression (ϵ-insensitive loss)

- First order conditions

$$
\begin{aligned}
& \partial_{w} L=0 \\
&=w+\sum_{i}\left[\alpha_{i}-\alpha_{i}^{*}\right] x_{i} \\
& \partial_{b} L=0=\sum_{i}\left[\alpha_{i}-\alpha_{i}^{*}\right] \\
& \partial_{\xi_{i}} L=0=C-\eta_{i}-\alpha_{i} \\
& \partial_{\xi_{i}^{*}} L=0=C-\eta_{i}^{*}-\alpha_{i}^{*}
\end{aligned}
$$

- Dual problem

$$
\underset{\alpha, \alpha^{*}}{\operatorname{minimize}} \frac{1}{2}\left(\alpha-\alpha^{*}\right)^{\top} K\left(\alpha-\alpha^{*}\right)+\epsilon 1^{\top}\left(\alpha+\alpha^{*}\right)+y^{\top}\left(\alpha-\alpha^{*}\right)
$$

$$
\text { subject to } 1^{\top}\left(\alpha-\alpha^{*}\right)=0 \text { and } \alpha_{i}, \alpha_{i}^{*} \in[0, C]
$$

Properties

- Ignores 'typical' instances with small error
- Only upper or lower bound active at any time (we cannot violate both bounds simultaneously)
- Quadratic Program in $2 n$ variables can be solved as cheaply as standard SVM problem
- Robustness with respect to outliers
- 11 loss yields same problem without epsilon
- Huber's robust loss yields similar problem but with added quadratic penalty on coefficients

Regression example

Regression example

Regression example

Regression example

Support Vectors

Huber's robust loss

$$
l(y, f(x))= \begin{cases}\frac{1}{2}(y-f(x))^{2} & \text { if }|y-f(x)|<1 \\ |y-f(x)|-\frac{1}{2} & \text { otherwise }\end{cases}
$$

Novelty Detection

Basic Idea

Data

Observations generated from some $\mathrm{P}(x)$, e.g.,

- network usage patterns
- handwritten digits
- alarm sensors
- factory status

Task
Find unusual events, clean database, distinguish typical examples.

Applications

Network Intrusion Detection

Detect whether someone is trying to hack the network, downloading tons of MP3s, or doing anything else unusual on the network.
Jet Engine Failure Detection
You can't destroy jet engines just to see how they fail.
Database Cleaning
We want to find out whether someone stored bogus information in a database (typos, etc.), mislabelled digits, ugly digits, bad photographs in an electronic album.
Fraud Detection
Credit Cards, Telephone Bills, Medical Records
Self calibrating alarm devices
Car alarms (adjusts itself to where the car is parked), home alarm (furniture, temperature, windows, etc.)

Novelty Detection via Density Estimation

Key Idea

- Novel data is one that we don't see frequently.
- It must lie in low density regions.

Step 1: Estimate density

- Observations x_{1}, \ldots, x_{m}
- Density estimate via Parzen windows

Step 2: Thresholding the density

- Sort data according to density and use it for rejection
- Practical implementation: compute

$$
p\left(x_{i}\right)=\frac{1}{m} \sum_{j} k\left(x_{i}, x_{j}\right) \text { for all } i
$$

and sort according to magnitude.

- Pick smallest $p\left(x_{i}\right)$ as novel points.

Order Statistics of Densities

Typical Data
34861136
00471442
60433741
35002100
17920600

Outliers

A better way

Problems

- We do not care about estimating the density properly in regions of high density (waste of capacity).
- We only care about the relative density for thresholding purposes.
- We want to eliminate a certain fraction of observations and tune our estimator specifically for this fraction.

Solution

- Areas of low density can be approximated as the level set of an auxiliary function. No need to estimate $p(x)$ directly - use proxy of $p(x)$.
- Specifically: find $f(x)$ such that x is novel if $f(x) \leq$ c where c is some constant, i.e. $f(x)$ describes the amount of novelty.

Problems with density estimation

Maximum a Posteriori

$$
\underset{\theta}{\operatorname{minimize}} \sum_{i=1}^{m} g(\theta)-\left\langle\phi\left(x_{i}\right), \theta\right\rangle+\frac{1}{2 \sigma^{2}}\|\theta\|^{2}
$$

Advantages

- Convex optimization problem
- Concentration of measure

Problems

- Normalization $g(\theta)$ may be painful to compute
- For density estimation we need no normalized $p(x \mid \theta)$
- No need to perform particularly well in high density regions

Thresholding

Optimization Problem

Optimization Problem

$$
\begin{aligned}
\text { MAP } & \sum_{i=1}^{m}-\log p\left(x_{i} \mid \theta\right)+\frac{1}{2 \sigma^{2}}\|\theta\|^{2} \\
\text { Novelty } & \sum_{i=1}^{m} \max \left(-\log \frac{p\left(x_{i} \mid \theta\right)}{\exp (\rho-g(\theta))}, 0\right)+\frac{1}{2}\|\theta\|^{2} \\
& \sum_{i=1}^{m} \max \left(\rho-\left\langle\phi\left(x_{i}\right), \theta\right\rangle, 0\right)+\frac{1}{2}\|\theta\|^{2}
\end{aligned}
$$

Advantages

- No normalization $g(\theta)$ needed
- No need to perform particularly well in high density regions (estimator focuses on low-density regions)
- Quadratic program

Maximum Distance Hyperplane

Idea Find hyperplane, given by $f(x)=\langle w, x\rangle+b=0$ that has maximum distance from origin yet is still closer to the origin than the observations.

Hard Margin

$$
\begin{aligned}
\operatorname{minimize} & \frac{1}{2}\|w\|^{2} \\
\text { subject to } & \left\langle w, x_{i}\right\rangle \geq 1
\end{aligned}
$$

Soft Margin

$$
\begin{aligned}
\text { minimize } & \frac{1}{2}\|w\|^{2}+C \sum_{i=1}^{m} \xi_{i} \\
\text { subject to } & \left\langle w, x_{i}\right\rangle \geq 1-\xi_{i} \\
& \xi_{i} \geq 0
\end{aligned}
$$

Optimization Problem

Primal Problem

$$
\begin{aligned}
\text { minimize } & \frac{1}{2}\|w\|^{2}+C \sum_{i=1}^{m} \xi_{i} \\
\text { subject to } & \left\langle w, x_{i}\right\rangle-1+\xi_{i} \geq 0 \text { and } \xi_{i} \geq 0
\end{aligned}
$$

Lagrange Function L

- Subtract constraints, multiplied by Lagrange multipliers (α_{i} and η_{i}), from Primal Objective Function.
- Lagrange function L has saddlepoint at optimum.

$$
L=\frac{1}{2}\|w\|^{2}+C \sum_{i=1}^{m} \xi_{i}-\sum_{i=1}^{m} \alpha_{i}\left(\left\langle w, x_{i}\right\rangle-1+\xi_{i}\right)-\sum_{i=1}^{m} \eta_{i} \xi_{i}
$$

subject to $\alpha_{i}, \eta_{i} \geq 0$.

Dual Problem

Optimality Conditions

$$
\begin{aligned}
& \partial_{w} L=w-\sum_{i=1}^{m} \alpha_{i} x_{i}=0 \Longrightarrow w=\sum_{i=1}^{m} \alpha_{i} x_{i} \\
& \partial_{\xi_{i}} L=C-\alpha_{i}-\eta_{i}=0 \Longrightarrow \alpha_{i} \in[0, C]
\end{aligned}
$$

Now substitute the optimality conditions back into L. Dual Problem
minimize $\frac{1}{2} \sum_{i=1}^{m} \alpha_{i} \alpha_{j}\left\langle x_{i}, x_{j}\right\rangle-\sum_{i=1}^{m} \alpha_{i}$
subject to $\quad \alpha_{i} \in[0, C]$
All this is only possible due to the convexity of the primal problem.

Minimum enclosing ball

- Observations on surface of ball
- Find minimum enclosing ball
- Equivalent to
single class SVM

Adaptive thresholds

Problem

- Depending on C, the number of novel points will vary.
- We would like to specify the fraction ν beforehand.

Solution

Use hyperplane separating data from the origin

$$
H:=\{x \mid\langle w, x\rangle=\rho\}
$$

where the threshold ρ is adaptive.

Intuition

- Let the hyperplane shift by shifting ρ
- Adjust it such that the 'right' number of observations is considered novel.
- Do this automatically

Optimization Problem

Primal Problem

$$
\begin{aligned}
& \text { minimize } \frac{1}{2}\|w\|^{2}+\sum_{i=1}^{m} \xi_{i}-m \nu \rho \\
& \text { where }\left\langle w, x_{i}\right\rangle-\rho+\xi_{i} \geq 0 \\
& \xi_{i} \geq 0
\end{aligned}
$$

Dual Problem

$$
\operatorname{minimize} \frac{1}{2} \sum_{i=1}^{m} \alpha_{i} \alpha_{j}\left\langle x_{i}, x_{j}\right\rangle
$$

$$
\text { where } \alpha_{i} \in[0,1] \text { and } \sum_{i=1}^{m} \alpha_{i}=\nu m \text {. }
$$

The v-property theorem

- Optimization problem

$$
\begin{array}{ll}
\underset{w}{\operatorname{minimize}} & \frac{1}{2}\|w\|^{2}+\sum_{i=1}^{m} \xi_{i}-m \nu \rho \\
\text { subject to }\left\langle w, x_{i}\right\rangle \geq \rho-\xi_{i} \text { and } \xi_{i} \geq 0
\end{array}
$$

- Solution satisfies
- At most a fraction of v points are novel
- At most a fraction of (1-v) points aren't novel
- Fraction of points on boundary vanishes for large m (for non-pathological kernels)

Proof

- Move boundary at optimality
- For smaller threshold m. points on wrong side of margin contribute $\delta\left(m_{-}-\nu m\right) \leq 0$
- For larger threshold $\mathrm{m}+$ points not on 'good' side of margin yield

$$
\delta\left(m_{+}-\nu m\right) \geq 0
$$

- Combining inequalities

$$
\frac{m_{-}}{m} \leq \nu \leq \frac{m_{+}}{m}
$$

- Margin set of measure 0

Toy example

threshold and smoothness requirements

Novelty detection for OCR

- Better estimates since we only optimize in low density regions.
- Specifically tuned for small number of outliers.
- Only estimates of a level-set.
- For $\nu=1$ we get the Parzen-windows estimator back.

Classification with the v-trick

changing kernel width and threshold

Structured Estimation (preview)

Large Margin Condition

- Binary classifier

Correct class chosen with large margin y $f(x)$

- Multiple classes
- Score function per class $f(x, y)$
- Want that correct class has much larger score than incorrect class

$$
f(x, y)-f\left(x, y^{\prime}\right) \geq 1 \text { for all } y^{\prime} \neq y
$$

- Structured loss function (e.g. coal \& diamonds)

$$
\Delta\left(y, y^{\prime}\right)
$$

Large Margin Classifiers

- Large Margin without rescaling (convex) (Guestrin, Taskar, Koller)

$$
l(x, y, f)=\sup _{y^{\prime} \in \mathcal{Y}}\left[f\left(x, y^{\prime}\right)-f(x, y)+\Delta\left(y, y^{\prime}\right)\right]
$$

- Large Margin with rescaling (convex) (Tsochantaridis, Hofmann, Joachims, Altun)

$$
l(x, y, f)=\sup _{y^{\prime} \in \mathcal{Y}}\left[f\left(x, y^{\prime}\right)-f(x, y)+1\right] \Delta\left(y, y^{\prime}\right)
$$

- Both losses majorize misclassification loss

$$
\Delta\left(y, \underset{y^{\prime}}{\operatorname{argmax}} f\left(x, y^{\prime}\right)\right)
$$

- Proof by plugging argmax into the definition

Many applications

- Ranking (DCG, NDCG)
- Graph matching (linear assignment)
- ROC and F_{β} scores
- Sequence annotation (named entities, activity)
- Segmentation
- Natural Language Translation
- Image annotation / scene understanding
- Caution - this loss is generally not consistent!

Exłensions

- Invariances
- Add prior knowledge (e.g. in OCR)
- Make estimates robust against malicious abuse (e.g. spam filtering)
- Tighter upper bounds
- Convex bound can be very loose
- Overweights noisy data
- Structured version of ramp loss
- Can be shown to be consistent

More Kernel Algorithms

Kernel PCA

Principal Component Analysis

- Gaussian density model

$$
p(x ; \mu, \Sigma)=(2 \pi)^{\frac{d}{2}}|\Sigma|^{-\frac{1}{2}} \exp \left(-\frac{1}{2}(x-\mu) \Sigma^{-1}(x-\mu)\right)
$$

- Estimate variance by empirical average

$$
\hat{\Sigma}=\frac{1}{m} \sum_{i=1}^{m} x_{i} x_{i}^{\top}-\hat{\mu} \hat{\mu}^{\top} \text { where } \hat{\mu}=\frac{1}{m} \sum_{i=1}^{m} x_{i}
$$

- Good approximation by low-rank model
- Extract leading eigenvalues of covariance
- Data might lie in a subspace

Principal Component Analysis

- Generative approximation of data

$$
x=\sum_{i} \sigma_{i} v_{i} \alpha_{i} \text { where } \alpha_{i} \sim \mathcal{N}(0,1)
$$

- Heuristic

Good explanation of data implies that we have meaningful dimensions of the data.

- Linear feature extraction

$$
g_{i}(x)=\left\langle v_{i}, x\right\rangle
$$

- PCA is reconstruction with smallest I_{2} error

http://www.plantsciences.ucdavis.edu/gepts/pb143/LEC17/pq0921251003.gif

Kernel PCA

linear PCA $\quad k\left(x, x^{\prime}\right)=\left\langle x, x^{\prime}\right\rangle$

PCA via inner products

- Eigenvector condition $\Sigma v=\lambda v$

$$
\begin{aligned}
\frac{1}{m} \sum_{i} \bar{x}_{i} \bar{x}_{i}^{\top} v & =\lambda v \text { for } \bar{x}_{i}=x_{i}-\frac{1}{m} \sum_{i} x_{i} \\
\text { hence } v & =\sum_{j} \alpha_{j} \bar{x}_{j} \\
\text { using } \bar{x}_{l}^{\top} \frac{1}{m} \sum_{i} \bar{x}_{i} \bar{x}_{i}^{\top} v & =\lambda \bar{x}_{l}^{\top} v \\
\text { yields } \frac{1}{m} \bar{K} \bar{K} \alpha & =\lambda \bar{K} \alpha
\end{aligned}
$$

- Kernel PCA

$$
\frac{1}{m} \bar{K} \alpha=\lambda \alpha \text { where } \bar{K}_{i j}=\left\langle\bar{x}_{i}, \bar{x}_{j}\right\rangle
$$

Two dimensional feature extraction

noisy parabola

Eigenvalue=0.709 Eigenvalue=0.621 Eigenvalue=0.570 Eigenvalue=0.552

Eigenvalue $=0.291$ Eigenvalue $=0.345$ Eigenvalue $=0.395$ Eigenvalue $=0.418$

polynomials

 of increasing order (1 is PCA)

Eigenvalue $=0.000$ Eigenvalue $=0.034$ Eigenvalue $=0.026$ Eigenvalue $=0.021$

Feature extraction

Eigenvalue=0.251

Eigenvalue $=0.037$

Eigenvalue $=0.014$

Eigenvalue $=0.005$

Eigenvalue=0.233

Eigenvalue=0.033

Eigenvalue=0.008

Eigenvalue=0.004

Eigenvalue=0.052

Eigenvalue $=0.031$

Eigenvalue $=0.007$

Eigenvalue=0.003

Eigenvalue=0.044

Eigenvalue=0.025

Eigenvalue=0.006

Eigenvalue $=0.002$

Mean Classifier

'Trivial' classifier

- Represent each class by mean in feature space
- Classify along direction of maximum discrepancy between classes
- Trivial to 'train'

'Trivial' classifier

- Class mean

$$
\mu_{+}=\frac{1}{m_{+}} \sum_{i: y_{i}=1} \phi\left(x_{i}\right) \text { and } \mu_{-}=\frac{1}{m_{-}} \sum_{i: y_{i}=-1} \phi\left(x_{i}\right)
$$

- Classifier

$$
f(x)=\left\langle\mu_{+}-\mu_{-}, \phi(x)\right\rangle=\sum_{i} \frac{y_{i}}{m_{y_{i}}} k\left(x_{i}, x\right)-
$$

More kernel methods

- Canonical Correlation analysis
- Two sample test
- Mean in feature space is sufficient to fully represent a distribution
- Compare them by computing distance
- Independence test
- Compare joint and product of marginals
- Structured feature extraction
- Find directions of high significance and low function complexity

Conditional Models

Gaussian Processes

Weight \& height

Weight \& height

$p($ weight \mid height $)=\frac{p(\text { height }, \text { weight })}{p(\text { height })} \propto p($ height, weight $)$

keep linear and quadratic terms of exponent

The gory math

Correlated Observations

Assume that the random variables $t \in \mathbb{R}^{n}, t^{\prime} \in \mathbb{R}^{n^{\prime}}$ are jointly normal with mean $\left(\mu, \mu^{\prime}\right)$ and covariance matrix K

$$
p\left(t, t^{\prime}\right) \propto \exp \left(-\frac{1}{2}\left[\begin{array}{c}
t-\mu \\
t^{\prime}-\mu^{\prime}
\end{array}\right]^{\top}\left[\begin{array}{ll}
K_{t t} & K_{t t^{\prime}} \\
K_{t t^{\prime}}^{\top} & K_{t^{\prime} t^{\prime}}
\end{array}\right]^{-1}\left[\begin{array}{c}
t-\mu \\
t^{\prime}-\mu^{\prime}
\end{array}\right]\right) .
$$

Inference

Given t, estimate t^{\prime} via $p\left(t^{\prime} \mid t\right)$. Translation into machine learning language: we learn t^{\prime} from t.
Practical Solution
Since $t^{\prime} \mid t \sim \mathcal{N}(\tilde{\mu}, \tilde{K})$, we only need to collect all terms in $p\left(t, t^{\prime}\right)$ depending on t^{\prime} by matrix inversion, hence

$$
\tilde{K}=K_{t^{\prime} t^{\prime}}-K_{t t^{\prime}}^{\top} K_{t t}^{-1} K_{t t^{\prime}} \text { and } \tilde{\mu}=\mu^{\prime}+K_{t t^{\prime}}^{\top} \underbrace{\left[K_{t t}^{-1}(t-\mu)\right]}_{\text {independent of } t^{\prime}}
$$

Gaussian Process

Key Idea

Instead of a fixed set of random variables t, t^{\prime} we assume a stochastic process $t: \mathcal{X} \rightarrow \mathbb{R}$, e.g. $\mathcal{X}=\mathbb{R}^{n}$.
Previously we had $X=\{$ age, height, weight, $\ldots\}$.
Definition of a Gaussian Process
A stochastic process $t: X \rightarrow \mathbb{R}$, where all $\left(t\left(x_{1}\right), \ldots, t\left(x_{m}\right)\right)$ are normally distributed.
Parameters of a GP

> Mean

Covariance Function $\quad k\left(x, x^{\prime}\right):=\operatorname{Cov}\left(t(x), t\left(x^{\prime}\right)\right)$
Simplifying Assumption
We assume knowledge of $k\left(x, x^{\prime}\right)$ and set $\mu=0$.

Kernels

Covariance Function

- Function of two arguments
- Leads to matrix with nonnegative eigenvalues
- Describes correlation between pairs of observations

Kernel

- Function of two arguments
- Leads to matrix with nonnegative eigenvalues
- Similarity measure between pairs of observations

Lucky Guess

- We suspect that kernels and covariance functions are the same...

The connection

Gaussian Process on Parameters

$$
t \sim \mathcal{N}(\mu, K) \text { where } K_{i j}=k\left(x_{i}, x_{j}\right)
$$

Linear Model in Feature Space

$$
t(x)=\langle\Phi(x), w\rangle+\mu(x) \text { where } w \sim \mathcal{N}(0, \mathbf{1})
$$

The covariance between $t(x)$ and $t\left(x^{\prime}\right)$ is then given by

$$
\mathbf{E}_{w}\left[\langle\Phi(x), w\rangle\left\langle w, \Phi\left(x^{\prime}\right)\right\rangle\right]=\left\langle\Phi(x), \Phi\left(x^{\prime}\right)\right\rangle=k\left(x, x^{\prime}\right)
$$

Conclusion
A small weight vector in "feature space", as commonly used in SVM amounts to observing t with high $p(t)$.

Log prior $-\log p(t) \Longleftrightarrow$ Margin $\|w\|^{2}$
Will get back to this later again.

Regression

Joint Gaussian Model

- Random variables ($\mathbf{t}, \mathrm{t}^{\prime}$) are drawn from GP
- Observe a subset \dagger of them
- Predict the rest using

$$
\tilde{K}=K_{t^{\prime} t^{\prime}}-K_{t t^{\prime}}^{\top} K_{t t}^{-1} K_{t t^{\prime}} \text { and } \tilde{\mu}=\mu^{\prime}+K_{t t^{\prime}}^{\top}\left[K_{t t}^{-1}(t-\mu)\right]
$$

- Linear expansion (precompute things)
- Predictive uncertainty is data independent Good for experimental design
- Predictive uncertainty is data independent
- Predictive variance vanishes if K is rank deficient

Some kernels

Observation

Any function k leading to a symmetric matrix with nonnegative eigenvalues is a valid covariance function.
Necessary and sufficient condition (Mercer's Theorem) k needs to be a nonnegative integral kernel.
Examples of kernels $k\left(x, x^{\prime}\right)$

Linear
Laplacian RBF
Gaussian RBF
Polynomial
B-Spline
Cond. Expectation

$$
\begin{aligned}
& \left\langle x, x^{\prime}\right\rangle \\
& \exp \left(-\lambda\left\|x-x^{\prime}\right\|\right) \\
& \exp \left(-\lambda\left\|x-x^{\prime}\right\|^{2}\right) \\
& \left.\left(\left\langle x, x^{\prime}\right\rangle+c\right\rangle\right)^{d}, c \geq 0, d \in \mathbb{N} \\
& B_{2 n+1}\left(x-x^{\prime}\right) \\
& \mathbf{E}_{c}\left[p(x \mid c) p\left(x^{\prime} \mid c\right)\right]
\end{aligned}
$$

Linear 'GP regression'

Linear kernel: $k\left(x, x^{\prime}\right)=\left\langle x, x^{\prime}\right\rangle$

- Kernel matrix $X^{\top} X$
- Mean and covariance

$$
\begin{aligned}
\tilde{K} & =X^{\prime \top} X^{\prime}-X^{\prime \top} X\left(X^{\top} X\right)^{-1} X^{\top} X^{\prime}=X^{\prime \top}\left(1-P_{X}\right) X^{\prime} . \\
\tilde{\mu} & =X^{\prime \top}\left[X\left(X^{\top} X\right)^{-1} t\right]
\end{aligned}
$$

- $\tilde{\mu}$ is a linear function of X^{\prime}.

Problem

- The covariance matrix $X^{\top} X$ has at most rank n.
- After n observations ($x \in \mathbb{R}^{n}$) the variance vanishes. This is not realistic.
- "Flat pancake" or "cigar" distribution.

Degenerate Covariance

Additive Noise

Indirect Model

Instead of observing $t(x)$ we observe $y=t(x)+\xi$, where ξ is a nuisance term. This yields

$$
p(Y \mid X)=\int \prod_{i=1}^{m} p\left(y_{i} \mid t_{i}\right) p(t \mid X) d t
$$

where we can now find a maximum a posteriori solution for t by maximizing the integrand (we will use this later). Additive Normal Noise

- If $\xi \sim \mathcal{N}\left(0, \sigma^{2}\right)$ then y is the sum of two Gaussian random variables.
- Means and variances add up.

$$
y \sim \mathcal{N}\left(\mu, K+\sigma^{2} \mathbf{1}\right)
$$

Data

Predictive mean $k(x, X)^{\top}\left(K(X, X)+\sigma^{2} 1\right)^{-1} y$

Variance

Putting it all together

Putting it all together

Ugly details

Covariance Matrices

- Additive noise

$$
K=K_{\text {kernel }}+\sigma^{2} \mathbf{1}
$$

- Predictive mean and variance

$$
\tilde{K}=K_{t^{\prime} t^{\prime}}-K_{t t^{\prime}}^{\top} K_{t t}^{-1} K_{t t^{\prime}} \text { and } \tilde{\mu}=K_{t t^{\prime}}^{\top} K_{t t}^{-1} t
$$

Pointwise prediction

$$
\begin{aligned}
K_{t t} & =K+\sigma^{2} \mathbf{1} \\
K_{t^{\prime} t^{\prime}} & =k(x, x)+\sigma^{2} \\
K_{t t^{\prime}} & =\left(k\left(x_{1}, x\right), \ldots, k\left(x_{m}, x\right)\right)
\end{aligned}
$$

Plug this into the mean and covariance equations.

Gaussian Process Conditional Models

Exponential Families

Exponential Families

- Density function

$$
\begin{aligned}
p(x ; \theta) & =\exp (\langle\phi(x), \theta\rangle-g(\theta)) \\
\text { where } g(\theta) & =\log \sum_{x^{\prime}} \exp \left(\left\langle\phi\left(x^{\prime}\right), \theta\right\rangle\right)
\end{aligned}
$$

Exponential Families

- Density function

$$
\begin{aligned}
p(x ; \theta) & =\exp (\langle\phi(x), \theta\rangle-g(\theta)) \\
\text { where } g(\theta) & =\log \sum_{x^{\prime}} \exp \left(\left\langle\phi\left(x^{\prime}\right), \theta\right\rangle\right)
\end{aligned}
$$

- Log partition function generates cumulants

$$
\begin{aligned}
\partial_{\theta} g(\theta) & =\mathbf{E}[\phi(x)] \\
\partial_{\theta}^{2} g(\theta) & =\operatorname{Var}[\phi(x)]
\end{aligned}
$$

Exponential Families

- Density function

$$
\begin{aligned}
p(x ; \theta) & =\exp (\langle\phi(x), \theta\rangle-g(\theta)) \\
\text { where } g(\theta) & =\log \sum_{x^{\prime}} \exp \left(\left\langle\phi\left(x^{\prime}\right), \theta\right\rangle\right)
\end{aligned}
$$

- Log partition function generates cumulants

$$
\begin{aligned}
\partial_{\theta} g(\theta) & =\mathbf{E}[\phi(x)] \\
\partial_{\theta}^{2} g(\theta) & =\operatorname{Var}[\phi(x)]
\end{aligned}
$$

- g is convex (second derivative is p.s.d.)

Conditional Exponential Families

$$
\begin{aligned}
& \qquad \begin{aligned}
p(y \mid x ; \theta) & =\exp (\langle\phi(x, y), \theta\rangle-g(\theta \mid x)) \\
\text { where } g(\theta \mid x) & =\log \sum_{y^{\prime}} \exp \left(\left\langle\phi\left(x, y^{\prime}\right), \theta\right\rangle\right)
\end{aligned} \\
& \qquad \begin{aligned}
\partial_{\theta} g(\theta \mid x) & =\mathbf{E}[\phi(x, y) \mid x] \\
\partial_{\theta}^{2} g(\theta \mid x) & =\operatorname{Var}[\phi(x, y) \mid x]
\end{aligned}
\end{aligned}
$$

Conditional Exponential Families

- Density function

$$
\begin{aligned}
p(y \mid x ; \theta) & =\exp (\langle\phi(x, y), \theta\rangle-g(\theta \mid x)) \\
\text { where } g(\theta \mid x) & =\log \sum_{y^{\prime}} \exp \left(\left\langle\phi\left(x, y^{\prime}\right), \theta\right\rangle\right)
\end{aligned}
$$

$$
\begin{aligned}
\partial_{\theta} g(\theta \mid x) & =\mathbf{E}[\phi(x, y) \mid x] \\
\partial_{\theta}^{2} g(\theta \mid x) & =\operatorname{Var}[\phi(x, y) \mid x]
\end{aligned}
$$

Conditional Exponential Families

- Density function

$$
\begin{aligned}
p(y \mid x ; \theta) & =\exp (\langle\phi(x, y), \theta\rangle-g(\theta \mid x)) \\
\text { where } g(\theta \mid x) & =\log \sum_{y^{\prime}} \exp \left(\left\langle\phi\left(x, y^{\prime}\right), \theta\right\rangle\right)
\end{aligned}
$$

- Log partition function generates cumulants

$$
\begin{aligned}
\partial_{\theta} g(\theta \mid x) & =\mathbf{E}[\phi(x, y) \mid x] \\
\partial_{\theta}^{2} g(\theta \mid x) & =\operatorname{Var}[\phi(x, y) \mid x]
\end{aligned}
$$

Conditional Exponential Families

- Density function

$$
\begin{aligned}
p(y \mid x ; \theta) & =\exp (\langle\phi(x, y), \theta\rangle-g(\theta \mid x)) \\
\text { where } g(\theta \mid x) & =\log \sum_{y^{\prime}} \exp \left(\left\langle\phi\left(x, y^{\prime}\right), \theta\right\rangle\right)
\end{aligned}
$$

- Log partition function generates cumulants

$$
\begin{aligned}
\partial_{\theta} g(\theta \mid x) & =\mathbf{E}[\phi(x, y) \mid x] \\
\partial_{\theta}^{2} g(\theta \mid x) & =\operatorname{Var}[\phi(x, y) \mid x]
\end{aligned}
$$

- g is convex (second derivative is p.s.d.)

Key Idea

- Gaussian Process indexed by (x, y)
- Binary y yields classification
- Set for y yields multiclass
- Integer y yields Poisson regression
- Scalar y yields heteroscedastic regression
- Sequence for y yields CRF
- ... and lots more ...
- The GP is in the latent variables
(Regression is special case where we can integrate)

Conditional GP Model

- Data likelihood

$$
\begin{aligned}
p(y \mid x, t(x)) & :=e^{t(x, y)-g(t(x))} \\
\text { where } g(t(x)) & =\sum_{y} e^{t(x, y)}
\end{aligned}
$$

- Prior

$$
t \sim \mathcal{N}(\mu, K)
$$

- Posterior distribution

$$
p(t \mid X, Y) \propto \exp \left(\sum_{i} t\left(x_{i}, y_{i}\right)-g\left(t\left(x_{i}\right)\right)-\frac{1}{2} t^{\top} K^{-1} t\right)
$$

- Maximize with respect to t for MAP estimate

Logistic Regression

Binomial Model

- Binary label space $\{-1,1\}$
- We can center $\mathrm{t}(\mathrm{x}, \mathrm{y})$ as $\mathrm{y} \dagger(\mathrm{x})$ (constant offset doesn't change model)
- Log-likelihood

$$
-\log p(y \mid t)=\log \left[e^{t}+e^{-t}\right]-y t=\log \left[1+e^{-2 y t}\right]
$$

- After rescaling by 2 this is the logistic loss
- MAP estimation problem

$$
\underset{t}{\operatorname{minimize}} \frac{1}{2} t^{\top} K^{-1} t+\sum_{i=1}^{m} \log \left[1+e^{-y_{i} t_{i}}\right]
$$

More loss functions

Clean Data

Noisy Data

Heteroscedastic Estimation

Motivation

- GP Regression has variance estimate independent of observed data
- Assumes that we know variance globally beforehand
- This is nonsense!
- Estimate mean and variance jointly
- Easily possible in an exponential family model

$$
\text { Le, Canu, Smola, } 2005
$$

Recall - Normal distributions

Engineer's favorite

$$
p(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right) \text { where } x \in \mathbb{R}=: X
$$

Massaging the math

$$
p(x)=\exp (\langle\underbrace{\left\langle\left(x,-0.5 x^{2}\right)\right.}_{\phi(x)}, \theta\rangle-\underbrace{\left(\frac{\mu^{2}}{2 \sigma^{2}}+\frac{1}{2} \log \left(2 \pi \sigma^{2}\right)\right)}_{g(\theta)})
$$

Using the substitution $\theta_{2}:=\sigma^{-2}$ and $\theta_{1}:=\mu \sigma^{-2}$ yields

$$
g(\theta)=\frac{1}{2}\left[\theta_{1}^{2} \theta_{2}^{-1}+\log 2 \pi-\log \theta_{2}\right]
$$

Basic Idea

Sufficient Statistic

We pick $\phi(x, y)=\left(y \phi_{1}(x), y^{2} \phi_{2}(x)\right)$, that is

$$
k\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=k_{1}\left(x, x^{\prime}\right) y y^{\prime}+k_{2}\left(x, x^{\prime}\right) y^{2} y^{\prime 2} \text { where } y, y^{\prime} \in \mathbb{R}
$$

Hence estimate mean and variance simultaneously.
Optimization Problem

$$
\begin{aligned}
& \begin{aligned}
\operatorname{minimize} \sum_{i=1}^{m} & {\left[-\frac{1}{4}\left[\sum_{j=1}^{m} \alpha_{1 j} k_{1}\left(x_{i}, x_{j}\right)\right]^{\top}\left[\sum_{j=1}^{m} \alpha_{2 j} k_{2}\left(x_{i}, x_{j}\right)\right]^{-1}\left[\sum_{j=1}^{m} \alpha_{1 j} k_{1}\left(x_{i}, x_{j}\right)\right]\right.} \\
& \left.-\frac{1}{2} \log \operatorname{det}-2\left[\sum_{j=1}^{m} \alpha_{2 j} k_{2}\left(x_{i}, x_{j}\right)\right]-\sum_{j=1}^{m}\left[y_{i}^{\top} \alpha_{1 j} k_{1}\left(x_{i}, x_{j}\right)+\left(y_{j}^{\top} \alpha_{2 j} y_{j}\right) k_{2}\left(x_{i}, x_{j}\right)\right]\right] \\
& +\frac{1}{2 \sigma^{2}} \sum_{i, j} \alpha_{1 i}^{\top} \alpha_{1 j} k_{1}\left(x_{i}, x_{j}\right)+\operatorname{tr}\left[\alpha_{2 i} \alpha_{2 j}^{\top}\right] k_{2}\left(x_{i}, x_{j}\right)
\end{aligned} \\
& \text { subject to } 0 \succ \sum_{i=1}^{m} \alpha_{2 i} k\left(x_{i}, x_{j}\right)
\end{aligned}
$$

- The problem is convex
- The log-determinant from the normalization of the Gaussian acts as a barrrier function, i.e. a nice SDP.

Computational Issues

Newton Method with CG Solver

Use Newton method to compute update direction, CG solver instead of inverting Hessian.

Lazy Evaluation

Never build explicit Hessian.
Reduced Rank
Use incomplete Cholesky factorization for low-rank approximation.
Result

m	100	200	500	$1 k$	$2 k$	$5 k$	$10 k$	$20 k$
Direct Hessian	8	18	90	607	3551	-	-	-
Hessian vector	9	15	38	115	752	-	-	-
Reduced rank	7	7	12	30	54	179	368	727
This yields scaling of $O\left(m^{2.1}\right), O\left(m^{1.4}\right)$, and $O\left(m^{0.95}\right)$.								

Standard GP

Hełeroscedastic GP mean

Heteroscedastic GP variance

(Generalized) Linear Models

- Kernel trick
- Simple kernels
- Kernel PCA
- Mean Classifier
- Support Vectors
- Support Vector Machine classification
- Regression
- Logistic regression
- Novelty detection
- Gaussian Process Estimation
- Regression
- Classification
- Heteroscedastic Regression

Further reading

- Ramp loss consistency http://books.nips.cc/papers/files/nips24/NIPS2011 1222.pdf
- Ranking and structured estimation http://users.cecs.anu.edu.au/~ chteo/pub/LeSmoChaTeo09.pdf
- Invariances and convexity http://mitpress.mit.edu/catalog/item/default.asp? ttype=2\&tid=11755
- Ramp loss for structured estimation http://users.cecs.anu.edu.au/~chteo/pub/Chaetal09.pdf
- Structured estimation (with margin rescaling) http://ttic.uchicago.edu/~altun/pubs/AltHofTso06.pdf
- Structured estimation (without margin rescaling) http://www.seas.upenn.edu/~ taskar/pubs/icml05.pdf
- Ben Taskar's tutorial http://www.seas.upenn.edu/~ taskar/nips07tut/nips07tut.ppt

Further reading

- SVM Tutorial (regression) http://alex.smola.org/papers/2003/SmoSch03b.pdf
- SVM Tutorial (classification) http://www.umiacs.umd.edu/~~ioseph/support-vectormachines4.pdf
- Introductory chapter of Kernel book http://alex.smola.org/teaching/berkeley2012/slides/ lwk chapter 1.pdf
- Introductory chapter of structured estimation book http://alex.smola.org/teaching/berkeley2012/slides/ se chapter2.pdf
- Kernel PCA
http://dl.acm.org/citation.cfm?id=295919.295960

