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Problem Set 4 — Dynamic Programming

1 Set Algebra and Junction Trees (10)

1.1 Semiring Property

Denote by X a domain and let ∪ and ∩ be set union and intersection between subsets of X respectively.
Prove that they form a semiring. Which operation corresonds to ⊕ and ⊗ respectively?

1.2 Junction Tree Generation

Denote by G(V,E) a graph with vertices V and edges E. Without loss of generality assume that G is
connected. We want to generate a valid junction tree from the graph. As a first step we form a spanning
tree T on G(V,E).

To turn this into a proper junction tree we need to attach cliques cv with each vertex v ∈ V such that
they satisfy the running intersection property. That is, if any variable is part of two cliques then also all
cliques on the connecting path must contain this variable. Your goal is to design design an algorithm that
achieves this using a message passing algorithm.

1. Denote by Di the set of variables owned by vertex i. This is the set of variables associated with the
clique potential that also contains i. Moreover denote by Rij the set of variables reachable to j from i.
Show that Rij satisfies

Rij = Di ∪

 ⋃
k∈N (i)\{j}

Rki

 . (1)

Here N (i) denotes the neighbors of i in the spanning tree.
2. As a result of running this algorithm we obtain a set of vertices Ci associated with each vertex i with
i ∈ Ci. Show that Ci also contains all vertices v with the property that v ∈ Rji ∩Rj′i with j 6= j′. That
is, show that

Ci = Di ∪

 ⋃
k,k′∈N (i) with k 6=k′

Rki ∩Rk′i

 (2)

These sets Ci form the junction tree. Note that it is quite common that adjacent Ci are identical.
3. Show that invoking (1) repeatedly on the spanning tree will converge to the correct solution. Hint —

show first that the algorithm will converge. Secondly use the semiring property of the set algebra.
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2 Sparse Matrices (10)

Sparse matrices share some of the properties typically encountered in graphical models. This is not sur-
prising since typical linear algebra operations arise when dealing with Gaussians. In the following we will
derive a number of algorithms in sparse linear algebra.

2.1 Gaussian Markov Random Field

Assume that x ∈ Rn is drawn from a Gaussian x ∼ N (µ,Σ) with mean µ and covariance Σ. Moreover
assume that there is an undirected graph G(V,E) with |V | = n vertices and E edges which reflect the
conditional independence properties observed in x.

1. Derive conditions for sparsity of Σ or Σ−1 based on G (argue why you picked Σ or Σ−1 respectively).
Hint — use the Hammersley Clifford decomposition and compare it to the terms in a Gaussian.

2. Prove that for any graph G there exists a normal distribution that satisfies the associated conditional
independence conditions. Hint — give a universal example.

2.2 Banded Matrix

Assume that we are given a symmetric banded diagonal matrix with one off-diagonal row each, that is

M =



m11 m12

m21 m22 m23

m23 m33 m34

. . . . . . . . .
mn−1,n−2 mn−1,n−1 mn−1,n

mn,n−1 mnn


Note all off-diagonal elements beyond the ones described above are zero. Furthermore assume that M has
full rank. Derive an efficient O(n) algorithm for solving the equation Mx = y.

2.3 Ring Matrix

We now modify the banded matrix M by assuming that also m1n = mn1 6= 0, i.e. we now have

M =



m11 m12 m1n

m21 m22 m23

m23 m33 m34

. . . . . . . . .
mn−1,n−2 mn−1,n−1 mn−1,n

mn1 mn,n−1 mnn


What happens to the problem solving Mx = y? State the new algorithm.

2.4 Gaussian Elimination

Assume that we have x ∼ N (µ,Σ) as in Section 2.1. Now assume that we want to integrate out xi.

1. Given an expression for the reduced distribution. Hint — the random variables are Gaussian.
2. What if we condition on a variable? Can you interpret the operation as solving a linear system?
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3 Personalized Sequence Recommendation (10)

When users review movies we experience the effect of grounding. That is, the previously watched movie
has considerable influence on how the current movie is being rated. For instance, after a very good movie,
subsequent ones are measured against a very high standard. On the other hand, compared to Plan 9 from
Outer Space almost any movie will be considered a masterpiece.

3.1 Independent Model

A first step is to develop an independent regression model. That is, assume that we have a latent factor
per user vu and a latent factor per movie vm with vu, vm ∈ Rd. Write out the negative log-likelihood for an
additive Gaussian approach. It needs to incorporate the following aspects:

• We observe rating pairs (u,m, y) and want to minimize the negative log-likelihood of misprediction,
i.e. we assume that

y ∼ N (〈vu, vm〉 , σ2). (3)

• We assume that both vu and vm are drawn from a normal distribution vu, vm ∼ N (0, λ21). Here 1 is
the identity matrix.

3.2 Sequential Recommendation

Now assume that for any given user the ratings are observed in sequence, that is, we have sets

{u; (m1, y1), . . . , (mnu
, ynu

)} (4)

where obviously the (mi, yi) pairs are different for different users. As before assume that vu, vm ∼ N (0, λ21).
However, now rather than using an additive Gaussian model as in (3) we assume that y is based on 〈vu, vm〉
but with correlated noise. That is

(y1, . . . , ynu
) ∼ N ((〈vu, vm1

〉 , . . .
〈
vu, vmnu

〉
),Σ). (5)

To simplify things we assume that Σ−1 is band diagonal and sparse with only one off-diagonal band on
each side.

1. Write out the joint log-likelihood in terms of vu, vm and Σ and λ2.
2. Assume that we fix vu, vm, λ2. Assuming a conjugate prior on Σ how can you compute a maximum

a posteriori estimate for Σ? Hint — you’re basically estimating an anticorrelation correction between
adjacent ratings (yi, yi+1).
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4 Collaborative Filtering (20)

Your task is to implement a simple collaborative filtering algorithm and test it at scale. A simple dataset can
be downloaded as part of the MovieLens collection http://grouplens.org/node/12. You will work
with the MovieLens 10M collection, i.e. a collection of 10 million ratings. It can be downloaded from

http://www.grouplens.org/sites/www.grouplens.org/external_files/data/ml-10m.zip

4.1 Eachmovie Dataset

1. Download the file. Read README.html for a description of the content. The files of interest for this
assignment are movies.dat which contains Movie IDs, titles, and a set of categories.

2. Discuss why a random 80/20 split as suggested by default in the preprocessing scripts is a bad idea.
Explain why the validation errors might be systematically lower than the actual errors.

3. Generate a proper 80/20 split by using the timestamps of the ratings (look at the description of the
file to find out the time format). That is, use the last 20% of all ratings as the test set and the first 80%
as the training set.

4. Explain why the validation error on this split is likely to be systematically higher than the actual errors
of a deployed system.

5. Discard all movies / ratings which only appear in the test set.
6. Randomly permute the order of the instances in the training set.

4.2 Stochastic Gradient Descent for Factorization

Next you are going to implement a very simple collaborative filtering algorithm. That is, it uses the follow-
ing model for ratings:

f(u,m) = bu + bm + 〈vu, vm〉 (6)

and the loss function∑
(u,m)∈Ratings

1

2
(bu + bm + 〈vu, vm〉 − yum)

2
+
λ

2

[∑
u

‖vu‖2 + b2u +
∑
m

‖vm‖2 + b2m

]
(7)

1. Implement a stochastic gradient descent algorithm on (7) using an O(t−
1
2 ) learning rate. Hint — you

need to perform several iterations through the training set.
2. Adjust λ such as to obtain good generalization performance on the test set. Report the performance.

Hint — for the sake of simplicity you can just pick 50 dimensions. This should ensure that you don’t run
out of memory (only 400 bytes per user and movie respectively). Also, you only need to update one (movie,
user) pair at a time.

4.3 Movie Attributes

As an extension we make use of the movie category attributes. In its simplest form this is achieved by
estimating category-specific attribute vectors vc and to replace the movie attribute vector vm by one that
has categories added.

vm ← vm +
∑

c∈categories(m)

vc (8)

Here categories(m) represents the set of categories specific to movie m.
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1. Specify the objective function which includes vc. You can use a least mean squares quadratic penalty
on vc, too.

2. Extend the stochastic gradient descent algorithm.
3. Evaluate the performance of the new algorithm relative to the one without categories. For which

movies do you see the biggest changes?
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