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4. Optimization



Basic Techniques
• Gradient descent
• Newton's method
• Conjugate Gradient Descent
• Broden-Fletcher-Goldfarb-Shanno (BFGS)

• Constrained Convex Optimization
• Properties
• Lagrange function
• Wolfe dual

• Batch methods
• Distributed subgradient
• Bundle methods

• Online methods
• Unconstrained subgradient
• Gradient projections
• Parallel optimization

Optimization



Why



Parameter Estimation
• Maximum a Posteriori with Gaussian Prior

• We have lots of data
• Does not fit on single machine
• Bandwidth constraints
• May grow in real time

• Regularized Risk Minimization yields similar problems
(more on this in a later lecture)

� log p(✓|X) =

1

2�

2
k✓k2 +

mX

i=1

g(✓)� h�(xi), ✓i+ const.

prior data



Batch and Online
• Batch

• Very large dataset available
• Require parameter only at the end

• optical character recognition
• speech recognition
• image annotation / categorization
• machine translation

• Online
• Spam filtering
• Computational advertising
• Content recommendation / collaborative filtering



Many parameters

• 100 million to 1 Billion users
Personalized content provision - impossible to 
adjust all parameters by heuristic/manually

• 1,000-10,000 computers
Cannot exchange all data between machines,
Distributed optimization, multicore

• Large networks
Nontrivial parameter dependence structure



4.1 Unconstrained Problems



Convexity 101
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6.1 Convex Optimization 157

There exist several ways to define convex sets. A convenient method is to define
them via below sets of convex functions, such as the sets for which f(x) ≤ c, for
instance.

Lemma 6.3 (Convex Sets as Below-Sets) Denote by f : X → R a convex
function on a convex set X. Then the set

X := {x|x ∈ X and f(x) ≤ c}, for some c ∈ R, (6.3)

is convex.

Proof We must show condition (6.1). For any x, x′ ∈ X, we have f(x), f(x′) ≤ c.
Moreover, since f is convex, we also have

f(λx+ (1− λ)x′) ≤ λf(x) + (1− λ)f(x′) ≤ c for all λ ∈ [0, 1]. (6.4)

Hence, for all λ ∈ [0, 1], we have (λx + (1 − λ)x′) ∈ X, which proves the claim.
Figure 6.1 depicts this situation graphically.
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Figure 6.1 Left: Convex Function in two variables. Right: the corresponding convex
level sets {x|f(x) ≤ c}, for different values of c.

Lemma 6.4 (Intersection of Convex Sets) Denote by X,X ′ ⊂ X two convex
sets. Then X ∩X ′ is also a convex set.

Intersections

Proof Given any x, x′ ∈ X ∩ X ′, then for any λ ∈ [0, 1], the point xλ :=
λx+ (1− λ)x′ satisfies xλ ∈ X and xλ ∈ X ′, hence also xλ ∈ X ∩X ′.

See also Figure 6.2. Now we have the tools to prove the central theorem of this
section.

Theorem 6.5 (Minima on Convex Sets) If the convex function f : X→ R has
a minimum on a convex set X ⊂ X, then its arguments x ∈ X, for which the
minimum value is attained, form a convex set. Moreover, if f is strictly convex,
then this set will contain only one element.

Convexity 101

• Convex set

• Convex function
For x, x

0 2 X it follows that �x+ (1� �)x

0 2 X for � 2 [0, 1]

��f(x) + (1� �)f(x

0
) � f(�x+ (1� �)x

0
) for � 2 [0, 1]
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Convexity 101
• Below-set of convex function is convex

• Convex functions don’t have local minima
Proof by contradiction - linear interpolation 
breaks local minimum condition
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160 Optimization

Theorem 6.11 (Convex Sets and Vertices) A compact convex set is the con-
vex hull of its vertices.

Reconstructing
Convex Sets from
Vertices

The proof is slightly technical, and not central to the understanding of kernel
methods. See Rockafellar [419, Chapter 18] for details, along with further theorems
on convex functions. We now proceed to the second key theorem in this section.

Theorem 6.12 (Maxima of Convex Functions on Convex Compact Sets)
Denote by X a compact convex set in X, by |X the vertices of X, and by f a convex
function on X. Then

sup{f(x)|x ∈ X} = sup{f(x)|x ∈ |X}. (6.10)

Proof Application of Theorem 6.10 and Theorem 6.11 proves the claim, since
under the assumptions made on X, we have X = co (|X). Figure 6.4 depicts the
situation graphically.

Figure 6.4 A convex func-
tion on a convex polyhedral set.
Note that the minimum of this
function is unique, and that the
maximum can be found at one
of the vertices of the constrain-
ing domain.

6.2 Unconstrained Problems

After the characterization and uniqueness results (Theorem 6.5, Corollary 6.6, and
Lemma 6.7) of the previous section, we will now study numerical techniques to
obtain minima (or maxima) of convex optimization problems. While the choice of
algorithms is motivated by applicability to kernel methods, the presentation here is
not problem specific. For details on implementation, and descriptions of applications
to learning problems, see Chapter 10.

6.2.1 Functions of One Variable

We begin with the easiest case, in which f depends on only one variable. Some of
the concepts explained here, such as the interval cutting algorithm and Newton’s
method, can be extended to the multivariate setting (see Problem 6.5). For the sake
of simplicity, however, we limit ourselves to the univariate case.

• Vertex of a convex set
Point which cannot
be extrapolated
within convex set

• Convex hull

• Convex hull of set is a convex set (proof trivial)

Convexity 101

�x+ (1� �)x

0 62 X for � > 1 for all x

0 2 X
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6.1 Convex Optimization 159

Lemma 6.7 (Convex Maximization on an Interval) Denote by f a convex
function on [a, b] ∈ R. Then the problem of maximizing f on [a, b] has f(a) and
f(b) as the only possible solutions.

Maxima on
Extreme Points

Proof Any x ∈ [a, b] can be written as b−x
b−aa+

(

1− b−x
b−a

)

b, and hence

f(x) ≤ b− x

b− a
f(a) +

(

1− b− x

b− a

)

f(b) ≤ max(f(a), f(b)). (6.7)

Therefore the maximum of f on [a, b] is obtained on one of the points a, b.

We will next show that the problem of convex maximization on a convex set is
typically a hard problem, in the sense that the maximum can only be found at one
of the extreme points of the constraining set. We must first introduce the notion of
vertices of a set.

Definition 6.8 (Vertex of a Set) A point x ∈ X is a vertex of X if, for all
x′ ∈ X with x′ $= x, and for all λ < 0, the point λx+ (1− λ)x′ $∈ X.

This definition implies, for instance, that in the case of X being an "2 ball, the
vertices of X make up its surface. In the case of an "∞ ball, we have 2n vertices in
n dimensions, and for an "1 ball, we have only 2n of them. These differences will
guide us in the choice of admissible sets of parameters for optimization problems
(see, e.g., Section 14.4). In particular, there exists a connection between suprema
on sets and their convex hulls. To state this link, however, we need to define the
latter.

Definition 6.9 (Convex Hull) Denote by X a set in a vector space. Then the
convex hull coX is defined as

coX :=

{

x̄

∣
∣
∣
∣
∣
x̄ =

n
∑

i=1

αixi where n ∈ N,αi ≥ 0 and
n
∑

i=1

αi ≤ 1

}

. (6.8)

Theorem 6.10 (Suprema on Sets and their Convex Hulls) Denote by X a
set and by coX its convex hull. Then for a convex function f

sup{f(x)|x ∈ X} = sup{f(x)|x ∈ coX}. (6.9)
Evaluating
Convex Sets on
Extreme Points

Proof Recall that the below set of convex functions is convex (Lemma 6.3), and
that the below set of f with respect to c = sup{f(x)|x ∈ X} is by definition a
superset of X. Moreover, due to its convexity, it is also a superset of coX.

This theorem can be used to replace search operations over sets X by subsets
X ′ ⊂ X, which are considerably smaller, if the convex hull of the latter generates
X. In particular, the vertices of convex sets are sufficient to reconstruct the whole
set.
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Convexity 101

sup
x2X

f(x) = sup
x2coX

f(x)

• Supremum on convex hull

Proof by contradiction
• Maximum over convex function

on convex set is obtained on vertex
• Assume that maximum inside line segment
• Then function cannot be convex
• Hence it must be on vertex



Gradient descent



One dimensional problems

• Key Idea
• For differentiable f search for x with f’(x) = 0
• Interval bisection (derivative is monotonic)
• Need log (A-B) - log ε to converge

• Can be extended to nondifferentiable problems
(exploit convexity in upper bound and keep 5 points)
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6.2 Unconstrained Problems 161

Assume we want to minimize f : R → R on the interval [a, b] ⊂ R. If we cannot
make any further assumptions regarding f , then this problem, as simple as it may
seem, cannot be solved numerically.

731 2456
Figure 6.5 Interval Cutting Algorithm. The selection of points is ordered according to
the numbers beneath (points 1 and 2 are the initial endpoints of the interval).

If f is differentiable, the problem can be reduced to finding f ′(x) = 0 (seeContinuous
Differentiable
Functions

Problem 6.4 for the general case). If in addition to the previous assumptions, f is
convex, then f ′ is monotonic, and we can find a fast, simple algorithm (Algorithm
6.1) to solve our problem (see Figure 6.5).

Algorithm 6.1 Interval Cutting

Require: a, b, Precision ε
Set A = a,B = b
repeat

if f ′ (A+B
2

)

> 0 then
B = A+B

2
else

A = A+B
2

end if
until (B −A)min(|f ′(A)|, |f ′(B)|) ≤ ε

Output: x = A+B
2

Interval Cutting
This technique works by halving the size of the interval that contains the

minimum x∗ of f , since it is always guaranteed by the selection criteria for B
and A that x∗ ∈ [A,B]. We use the following Taylor series expansion to determine
the stopping criterion.

Theorem 6.13 (Taylor Series) Denote by f : R → R a function that is d times
differentiable. Then for any x, x′ ∈ R, there exists a ξ with |ξ| ≤ |x− x′|, such that

f(x′) =
d−1
∑

i=0

1

i!
f (i)(x)(x′ − x)i +

ξd

d!
f (d)(x+ ξ). (6.11)

Now we may apply (6.11) to the stopping criterion of Algorithm 6.1. We denoteProof of Linear
Convergence
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solution on the left



• Key idea
• Gradient points into descent direction
• Locally gradient is good 

approximation of objective function
• GD with Line Search

• Get descent direction
• Unconstrained line search
• Exponential convergence for strongly 

convex objective

Gradient descent
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As usual ‖·‖ is the Euclidean norm. For small γ the linear contribution in the Taylor
expansion will be dominant, hence for some γ > 0 we have f(xn − γgn) < f(xn).
It can be shown (see e.g. [315]) that after a (possibly infinite) number of steps,
gradient descent (see Algorithm 6.3) will converge.

Algorithm 6.3 Gradient Descent

Require: x0, Precision ε
n = 0
repeat

Compute g = f ′(xn)
Perform line search on f(xn − γg) for optimal γ.
xn+1 = xn − γg
n = n+ 1

until ‖f ′(xn)‖ ≤ ε
Output: xn

Problems of
Convergence In spite of this, the performance of gradient descent is far from optimal. Depend-

ing on the shape of the landscape of values of f , gradient descent may take a long
time to converge. Figure 6.6 shows two examples of possible convergence behavior
of the gradient descent algorithm.

Figure 6.6 Left: Gradient descent takes a long time to converge, since the landscape
of values of f forms a long and narrow valley, causing the algorithm to zig-zag along the
walls of the valley. Right: due to the homogeneous structure of the minimum, the algorithm
converges after very few iterations. Note that in both cases, the next direction of descent
is orthogonal to the previous one, since line search provides the optimal step length.

6.2.3 Convergence Properties of Gradient Descent

Let us analyze the convergence properties of Algorithm 6.3 in more detail. To keep
matters simple, we assume that f is a quadratic function, i.e.

f(x) =
1

2
(x− x∗)"K(x− x∗) + c0, (6.18)

466 9 Unconstrained minimization

then we start to check whether the inequality f(x + t∆x) ≤ f(x) + αt∇f(x)T ∆x
holds.

The parameter α is typically chosen between 0.01 and 0.3, meaning that we
accept a decrease in f between 1% and 30% of the prediction based on the linear
extrapolation. The parameter β is often chosen to be between 0.1 (which corre-
sponds to a very crude search) and 0.8 (which corresponds to a less crude search).

9.3 Gradient descent method

A natural choice for the search direction is the negative gradient ∆x = −∇f(x).
The resulting algorithm is called the gradient algorithm or gradient descent method.

Algorithm 9.3 Gradient descent method.

given a starting point x ∈ dom f .

repeat

1. ∆x := −∇f(x).
2. Line search. Choose step size t via exact or backtracking line search.
3. Update. x := x + t∆x.

until stopping criterion is satisfied.

The stopping criterion is usually of the form ‖∇f(x)‖2 ≤ η, where η is small and
positive. In most implementations, this condition is checked after step 1, rather
than after the update.

9.3.1 Convergence analysis

In this section we present a simple convergence analysis for the gradient method,
using the lighter notation x+ = x+ t∆x for x(k+1) = x(k) + t(k)∆x(k), where ∆x =
−∇f(x). We assume f is strongly convex on S, so there are positive constants m
and M such that mI % ∇2f(x) % MI for all x ∈ S. Define the function f̃ : R → R
by f̃(t) = f(x − t∇f(x)), i.e., f as a function of the step length t in the negative
gradient direction. In the following discussion we will only consider t for which
x − t∇f(x) ∈ S. From the inequality (9.13), with y = x − t∇f(x), we obtain a
quadratic upper bound on f̃ :

f̃(t) ≤ f(x) − t‖∇f(x)‖2
2 +

Mt2

2
‖∇f(x)‖2

2. (9.17)

Analysis for exact line search

We now assume that an exact line search is used, and minimize over t both sides
of the inequality (9.17). On the lefthand side we get f̃(texact), where texact is the
step length that minimizes f̃ . The righthand side is a simple quadratic, which



Convergence Analysis
• Strongly convex function

• Progress guarantees (minimum x*)

• Lower bound on the minimum (set y= x*)
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Convergence Analysis
• Bounded Hessian

Using strong convexity

• Iteration bound
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Distributed Implementation



Basic steps
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Scalability analysis
• Linear time in number of instances
• Linear storage in problem size, not data
• Logarithmic time in accuracy
• ‘perfect’ scalability

• 10s of passes through dataset for each iteration
(line search is very expensive)

• MapReduce loses state at each iteration
• Single master as bottleneck 

(important if the state space is several GB)



A Better Algorithm
• Avoiding the line search

• Not used in convergence proof anyway
• Simply pick update

• Only single pass through data per iteration
• Only single MapReduce pass per iteration
• Logarithmic iteration bound (as before)
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Newton’s Method

Isaac Newton



Newton Method
• Convex objective function f
• Nonnegative second derivative

• Taylor expansion

• Minimize approximation & iterate til converged
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Convergence Analysis
• There exists a region around optimality where 

Newton’s method converges quadratically if f is 
twice continuously differentiable

• For some region around x* gradient is well 
approximated by Taylor expansion

• Expand Newton update
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Convergence Analysis
• Two convergence regimes

• As slow as gradient descent outside the 
region where Taylor expansion is good

• Quadratic convergence once the bound holds

• Newton method is affine invariant
(proof by chain rule)
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See Boyd and Vandenberghe, Chapter 9.5 for much more



Newton method rescales space
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wrong metric



Newton method rescales space

from Boyd & Vandenberghe
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PSfrag replacements
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x + ∆xnt
x + ∆xnsd

Figure 9.17 The dashed lines are level curves of a convex function. The
ellipsoid shown (with solid line) is {x + v | vT∇2f(x)v ≤ 1}. The arrow
shows −∇f(x), the gradient descent direction. The Newton step ∆xnt is
the steepest descent direction in the norm ‖ · ‖∇2f(x). The figure also shows
∆xnsd, the normalized steepest descent direction for the same norm.

Steepest descent direction in Hessian norm

The Newton step is also the steepest descent direction at x, for the quadratic norm
defined by the Hessian ∇2f(x), i.e.,

‖u‖∇2f(x) = (uT∇2f(x)u)1/2.

This gives another insight into why the Newton step should be a good search
direction, and a very good search direction when x is near x!.

Recall from our discussion above that steepest descent, with quadratic norm
‖ · ‖P , converges very rapidly when the Hessian, after the associated change of
coordinates, has small condition number. In particular, near x!, a very good choice
is P = ∇2f(x!). When x is near x!, we have ∇2f(x) ≈ ∇2f(x!), which explains
why the Newton step is a very good choice of search direction. This is illustrated
in figure 9.17.

Solution of linearized optimality condition

If we linearize the optimality condition ∇f(x!) = 0 near x we obtain

∇f(x + v) ≈ ∇f(x) + ∇2f(x)v = 0,

which is a linear equation in v, with solution v = ∆xnt. So the Newton step ∆xnt is
what must be added to x so that the linearized optimality condition holds. Again,
this suggests that when x is near x! (so the optimality conditions almost hold),
the update x + ∆xnt should be a very good approximation of x!.

When n = 1, i.e., f : R → R, this interpretation is particularly simple. The
solution x! of the minimization problem is characterized by f ′(x!) = 0, i.e., it is

locally adaptive 
metric



Parallel Newton Method

• Good rate of convergence
• Few passes through data needed
• Parallel aggregation of gradient and Hessian
• Gradient requires O(d) data
• Hessian requires O(d2) data
• Update step is O(d3) & nontrivial to parallelize
• Use it only for low dimensional problems



Conjugate Gradient Descent



Key Idea
• Minimizing quadratic function 

takes cubic time (e.g. Cholesky factorization)
• Matrix vector products and orthogonalization

• Vectors x, x’ are K orthogonal if
• m mutually K orthogonal vectors

• form a basis
• allow expansion
• solve linear system 

x

>
Kx

0 = 0

xi 2 Rm

(K ⌫ 0)

z =
mX

i=1

xi
x

>
i Kz

x

>
i Kxi

z =

mX

i=1

xi
x

>
i y

x

>
i Kxi

for y = Kz

f(x) =
1

2
x

>
Kx� l

>
x+ c



• m mutually K orthogonal vectors
• form a basis
• allow expansion
• solve linear system 

• Show linear independence by contradiction

• Reconstruction - expand z into basis

• For linear system plug in y = Kz

Proof
xi 2 Rm

z =
mX

i=1

xi
x

>
i Kz

x

>
i Kxi

z =

mX

i=1

xi
x

>
i y

x

>
i Kxi

for y = Kz

X

i

↵ixi = 0 hence 0 = x

>
j K

X

i

↵ixi = x

>
j Kxj↵j

z =
X

i

↵ixi hence x

>
j Kz = x

>
j K

X

i

↵ixi = x

>
j Kxj↵j



???

• Need vectors xi

• Need to orthogonalize the vectors
• How to select them

• K-orthogonal vectors whiten the space since 

has trivial solution x = l

f(x) =
1

2
x

>
x� l

>
x+ c



Conjugate Gradient Descent
• Gradient computation

• Algorithm

deflation step

K orthogonal

f(x) =
1

2
x

>
Kx� l

>
x+ c hence g(x) = Kx� l

initialize x0 and v0 = g0 = Kx0 � l and i = 0
repeat

xi+1 = xi � vi
g>
i vi

v>
i Kvi

gi+1 = Kxi+1 � l

vi+1 = �gi+1 + vi
g>
i+1Kvi

v>
i Kvi

i i+ 1
until gi = 0



Proof - Deflation property

• First assume that the vi are K orthogonal and show that 
xi+1 is optimal in span of {v1 .. vi}

• Enough if we show that 
• For j=i expand

• For smaller j a consequence of K orthogonality

xi+1 = xi � vi
g>
i vi

v>
i Kvi

gi+1 = Kxi+1 � l

vi+1 = �gi+1 + vi
g>
i+1Kvi

v>
i Kvi

v

>
i gi+1 = v

>
i


Kxi � l �Kvi

g

>
i vi

v

>
i Kvi

�

= v

>
i gi � v

>
i Kvi

g

>
i vi

v

>
i Kvi

= 0

v>j gi = 0 for all j < i



Proof - K orthogonality

• Need to check that vi+1 is K orthogonal to all vj

(rest automatically true by construction)

xi+1 = xi � vi
g>
i vi

v>
i Kvi

gi+1 = Kxi+1 � l

vi+1 = �gi+1 + vi
g>
i+1Kvi

v>
i Kvi

v>j Kvi+1 = �v>j Kgi+1 + v>j Kvi
g>i+1Kvi
v>i KVi

0 by K orthogonality0 by deflation



Properties

• Subspace expansion method for optimality
(g, Kg, K2g, K3g, ...)

• Focuses on leading eigenvalues
• Often sufficient to take only a few steps

(whenever the eigenvalues decay rapidly)



Extensions
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Table 6.1 Non-quadratic modifications of conjugate gradient descent.

Generic Method Compute Hessian Ki := f ′′(xi) and update αi,βi with

αi = − g!i vi
v!
i Kivi

βi =
g!i+1Kivi

v!
i Kivi

This requires calculation of the Hessian at each iteration.

Fletcher–Reeves [163] Find αi via a line search and use Theorem 6.20 (iii) for βi

αi = argminαf(xi + αvi)

βi =
g!i+1gi+1

g!i gi

Polak–Ribiere [398] Find αi via a line search

αi = argminαf(xi + αvi)

βi =
(gi+1−gi)

!gi+1

g!i gi

Experimentally, Polak–Ribiere tends to be better than

Fletcher–Reeves.

be able to achieve roughly the same goal without computing the quadratic term
explicitly, or more generally, obtain the performance of higher order methods
without actually implementing them.

This can in fact be achived using predictor-corrector methods. These work by
computing a tentative update xi → xpred

i+1 (predictor step), then using xpred
i+1 to

account for higher order changes in the objective function, and finally obtaining
a corrected value xcorr

i+1 based on these changes. A simple example illustrates the
method. Assume we want to find the solution to the equationPredictor

Corrector
Methods for
Quadratic
Equations

f(x) = 0 where f(x) = f0 + ax+
1

2
bx2. (6.32)

We assume a, b, f0, x ∈ R. Exact solution of (6.32) requires taking a square root.
Let us see whether we can find an approximate method that avoids this (in general
b will be an m ×m matrix, so this is a worthwhile goal). The predictor corrector
approach works as follows: first solve

f0 + ax = 0 and hence xpred = −f0
a
. (6.33)

Second, substitute xpred into the nonlinear parts of (6.32) to obtain

f0 + axcorr +
1

2
b

(
f0
a

)2

= 0 and hence xcorr = −f0
a

(

1 +
1

2

bf0
a2

)

. (6.34)

Comparing xpred and xcorr, we see that 1
2
bf0
a2 is the correction term that takes the

effect of the changes in x into account.No Quadratic
Residuals Since neither of the two values (xpred or xcorr) will give us the exact solution

to f(x) = 0 in just one step, it is worthwhile having a look at the errors of both
approaches.

f(xpred) =
1

2

bf2
0

a2
and f(xcorr) = 2

f2(xpred)

f0
+

f3(xpred)

f2
0

. (6.35)

x and v updates



BFGS algorithm
Broyden-Fletcher-Goldfarb-Shanno



Basic Idea
• Newton-like method to compute descent direction

• Line search on f in direction

• Update B with rank 2 matrix

• Require that Quasi-Newton condition holds

�

i

= B

�1
i

@

x

f(x
i�1)

xi+1 = xi � ↵i�i

Bi+1 = Bi + uiu
>
i + viv

>
i

B

i+1(xi+1 � x

i

) = @

x

f(x
i+1)� @

x

f(x
i

)

Bi+1 = Bi +
gig>i
↵i�>i gi

� Bi�i�>i Bi

�>i Bi�i



Properties

• Simple rank 2 update for B
• Use matrix inversion lemma to update inverse
• Memory-limited versions L-BFGS
• Use toolbox if possible (TAO, MATLAB)

(typically slower if you implement it yourself)
• Works well for nonlinear nonconvex objectives

(often even for nonsmooth objectives)



4.2 Constrained Convex Problems



Basic Convexity



• Optimization problem

• Common constraints
• linear inequality constraints

• quadratic cone constraints

• semidefinite constraints
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Theorem 6.11 (Convex Sets and Vertices) A compact convex set is the con-
vex hull of its vertices.

Reconstructing
Convex Sets from
Vertices

The proof is slightly technical, and not central to the understanding of kernel
methods. See Rockafellar [419, Chapter 18] for details, along with further theorems
on convex functions. We now proceed to the second key theorem in this section.

Theorem 6.12 (Maxima of Convex Functions on Convex Compact Sets)
Denote by X a compact convex set in X, by |X the vertices of X, and by f a convex
function on X. Then

sup{f(x)|x ∈ X} = sup{f(x)|x ∈ |X}. (6.10)

Proof Application of Theorem 6.10 and Theorem 6.11 proves the claim, since
under the assumptions made on X, we have X = co (|X). Figure 6.4 depicts the
situation graphically.

Figure 6.4 A convex func-
tion on a convex polyhedral set.
Note that the minimum of this
function is unique, and that the
maximum can be found at one
of the vertices of the constrain-
ing domain.

6.2 Unconstrained Problems

After the characterization and uniqueness results (Theorem 6.5, Corollary 6.6, and
Lemma 6.7) of the previous section, we will now study numerical techniques to
obtain minima (or maxima) of convex optimization problems. While the choice of
algorithms is motivated by applicability to kernel methods, the presentation here is
not problem specific. For details on implementation, and descriptions of applications
to learning problems, see Chapter 10.

6.2.1 Functions of One Variable

We begin with the easiest case, in which f depends on only one variable. Some of
the concepts explained here, such as the interval cutting algorithm and Newton’s
method, can be extended to the multivariate setting (see Problem 6.5). For the sake
of simplicity, however, we limit ourselves to the univariate case.

Constrained Convex Minimization

minimize

x

f(x)

subject to c

i

(x)  0 for all i

hwi, xi+ bi  0

x

>
Qx+ b

>
x  c with Q ⌫ 0

M ⌫ 0 or M0 +

X

i

xiMi ⌫ 0



• Optimization problem

• Common constraints
• linear inequality constraints

• quadratic cone constraints

• semidefinite constraints
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Theorem 6.11 (Convex Sets and Vertices) A compact convex set is the con-
vex hull of its vertices.

Reconstructing
Convex Sets from
Vertices

The proof is slightly technical, and not central to the understanding of kernel
methods. See Rockafellar [419, Chapter 18] for details, along with further theorems
on convex functions. We now proceed to the second key theorem in this section.

Theorem 6.12 (Maxima of Convex Functions on Convex Compact Sets)
Denote by X a compact convex set in X, by |X the vertices of X, and by f a convex
function on X. Then

sup{f(x)|x ∈ X} = sup{f(x)|x ∈ |X}. (6.10)

Proof Application of Theorem 6.10 and Theorem 6.11 proves the claim, since
under the assumptions made on X, we have X = co (|X). Figure 6.4 depicts the
situation graphically.

Figure 6.4 A convex func-
tion on a convex polyhedral set.
Note that the minimum of this
function is unique, and that the
maximum can be found at one
of the vertices of the constrain-
ing domain.

6.2 Unconstrained Problems

After the characterization and uniqueness results (Theorem 6.5, Corollary 6.6, and
Lemma 6.7) of the previous section, we will now study numerical techniques to
obtain minima (or maxima) of convex optimization problems. While the choice of
algorithms is motivated by applicability to kernel methods, the presentation here is
not problem specific. For details on implementation, and descriptions of applications
to learning problems, see Chapter 10.

6.2.1 Functions of One Variable

We begin with the easiest case, in which f depends on only one variable. Some of
the concepts explained here, such as the interval cutting algorithm and Newton’s
method, can be extended to the multivariate setting (see Problem 6.5). For the sake
of simplicity, however, we limit ourselves to the univariate case.

Constrained Convex Minimization

minimize

x

f(x)

subject to c

i

(x)  0 for all i

hwi, xi+ bi  0

x

>
Qx+ b

>
x  c with Q ⌫ 0

M ⌫ 0 or M0 +

X

i

xiMi ⌫ 0

Equality is special case 
Why?



Example - Support Vectors

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2012/01/14 15:35

12 A Tutorial Introduction

,
w

{x | <w  x> + b = 0},

{x | <w  x> + b = −1},
{x | <w  x> + b = +1},

x2
x1

Note:
<w  x1> + b = +1
<w  x2> + b = −1

=>       <w  (x1−x2)> =   2

=> (x1−x2)   =w
||w||< >

,
,

,

, 2
||w||

yi = −1

yi = +1❍
❍

❍

❍
❍

◆

◆

◆

◆

Figure 1.5 A binary classification toy problem: separate balls from diamonds. The
optimal hyperplane (1.24) is shown as a solid line. The problem being separable, there
exists a weight vector w and a threshold b such that yi(〈w,xi〉 + b) > 0 (i = 1, . . . ,m).
Rescaling w and b such that the point(s) closest to the hyperplane satisfy | 〈w,xi〉+b| = 1,
we obtain a canonical form (w, b) of the hyperplane, satisfying yi(〈w,xi〉 + b) ≥ 1. Note
that in this case, the margin, measured perpendicularly to the hyperplane, equals 2/‖w‖.
This can be seen by considering two points x1,x2 on opposite sides of the margin, that is,
〈w,x1〉+ b = 1, 〈w,x2〉+ b = −1, and projecting them onto the hyperplane normal vector
w/‖w‖.

of w, as in (1.25). If ‖w‖ were 1, then the left hand side of (1.26) would equal
the distance from xi to the hyperplane (cf. (1.24)). In general, we have to divide
yi(〈w,xi〉 + b) by ‖w‖ to transform it into this distance. Hence, if we can satisfy
(1.26) for all i = 1, . . . ,m with an w of minimal length, then the overall margin
will be maximized.

A more detailed explanation of why this leads to the maximummargin hyperplane
will be given in Chapter 7. A short summary of the argument is also given in
Figure 1.5.

The function τ in (1.25) is called the objective function, while (1.26) are called
inequality constraints. Together, they form a so-called constrained optimization
problem. Problems of this kind are dealt with by introducing Lagrange multipliers
αi ≥ 0 and a Lagrangian7Lagrangian

L(w, b,α) =
1

2
‖w‖2 −

m
∑

i=1

αi (yi(〈xi,w〉+ b)− 1) . (1.27)

The Lagrangian L has to be minimized with respect to the primal variables w and
b and maximized with respect to the dual variables αi (in other words, a saddle
point has to be found). Note that the constraint has been incorporated into the
second term of the Lagrangian; it is not necessary to enforce it explicitly.

7. Henceforth, we use boldface Greek letters as a shorthand for corresponding vectors
α = (α1, . . . ,αm).

minimize

w,b

1

2

kwk2 subject to yi [hw, xii+ b] � 1

hw, x1i+ b = 1

hw, x2i+ b = �1

hence hw, x1 � x2i+ b = 2

hence

⌧
w

kwk , x1 � x2

�
=

2

kwk

margin



Lagrange Multipliers
• Lagrange function

• Saddlepoint Condition
If there are x* and nonnegative α* such that 

then x* is an optimal solution to the 
constrained optimization problem

L(x,↵) := f(x) +
nX

i=1

↵ici(x) where ↵i � 0

L(x⇤
,↵)  L(x⇤

,↵

⇤)  L(x,↵⇤)



Proof

• From first inequality we see that x* is feasible

• Setting some         yields KKT conditions

• Consequently we have

This proves optimality 

L(x⇤
,↵)  L(x⇤

,↵

⇤)  L(x,↵⇤)

(↵i � ↵

⇤
i )ci(x

⇤
)  0 for all ↵i � 0

↵i = 0

↵

⇤
i ci(x

⇤) = 0

L(x⇤
,↵

⇤) = f(x⇤)  L(x,↵⇤) = f(x) +
X

i

↵

⇤
i ci(x)  f(x)



Constraint gymnastics
(all three conditions are equivalent)

• Slater’s condition
There exists some x such that for all i

• Karlin’s condition
For all nonnegative α there exists some x such that

• Strict constraint qualification
The feasible region contains at least two distinct 
elements and there exists an x in X such that all 
ci(x) are strictly convex at x with respect to X

ci(x) < 0

X

i

↵ici(x)  0



Necessary Kuhn-Tucker Conditions
• Assume optimization problem

• satisfies the constraint qualifications
• has convex differentiable objective + constraints

• Then the KKT conditions are necessary & sufficient

@

x

L(x

⇤
,↵

⇤
) = @

x

f(x

⇤
) +

X

i

↵

⇤
i

@

x

c

i

(x

⇤
) = 0 (Saddlepoint in x

⇤
)

@

↵iL(x
⇤
,↵

⇤
) = c

i

(x

⇤
)  0 (Saddlepoint in ↵

⇤
)

X

i

↵

⇤
i

c

i

(x

⇤
) = 0 (Vanishing KKT-gap)

Yields algorithm for solving optimization problems
Solve for saddlepoint and KKT conditions



Proof

f(x)� f(x

⇤
) � [@

x

f(x

⇤
)]

>
(x� x

⇤
) (by convexity)

= �
X

i

↵

⇤
i

[@

x

c

i

(x

⇤
)]

>
(x� x

⇤
) (by Saddlepoint in x

⇤
)

� �
X

i

↵

⇤
i

(c

i

(x)� c

i

(x

⇤
)) (by convexity)

=

X

i

↵

⇤
i

c

i

(x) (by vanishing KKT gap)

� 0



Linear and Quadratic Programs



Linear Programs
• Objective

• Lagrange function

• Optimality conditions

• Dual problem

minimize

x

c

>
x subject to Ax+ d  0

L(x,↵) = c

>
x+ ↵

>(Ax+ d)

@

x

L(x,↵) = A

>
↵+ c = 0

@

↵

L(x,↵) = Ax+ d  0

0 = ↵

>(Ax+ d)

0  ↵

maximize

i
d>↵ subject to A>↵+ c = 0 and ↵ � 0



Linear Programs
• Objective

• Lagrange function

• Optimality conditions

• Dual problem

minimize

x

c

>
x subject to Ax+ d  0

L(x,↵) = c

>
x+ ↵

>(Ax+ d)

@

x

L(x,↵) = A

>
↵+ c = 0

@

↵

L(x,↵) = Ax+ d  0

0 = ↵

>(Ax+ d)

0  ↵

maximize

i
d>↵ subject to A>↵+ c = 0 and ↵ � 0

plug into Lplug into L



Linear Programs
• Objective

• Lagrange function

• Optimality conditions

• Dual problem

minimize

x

c

>
x subject to Ax+ d  0

L(x,↵) = c

>
x+ ↵

>(Ax+ d)

@

x

L(x,↵) = A

>
↵+ c = 0

@

↵

L(x,↵) = Ax+ d  0

0 = ↵

>(Ax+ d)

0  ↵

maximize

i
d>↵ subject to A>↵+ c = 0 and ↵ � 0

plug into Lplug into L



Linear Programs
• Primal

• Dual

• Free variables become equality constraints
• Equality constraints become free variables
• Inequalities become inequalities
• Dual of dual is primal

minimize

x

c

>
x subject to Ax+ d  0

maximize

i
d>↵ subject to A>↵+ c = 0 and ↵ � 0



• Objective

• Lagrange function

• Optimality conditions

Quadratic Programs

plug into L

minimize

x

1

2

x

>
Qx+ c

>
x subject to Ax+ d  0

L(x,↵) =
1

2
x

>
Qx+ c

>
x+ ↵

>(Ax+ d)

@

x

L(x,↵) = Qx+A

>
↵+ c = 0

@

↵

L(x,↵) = Ax+ d  0

0 = ↵

>(Ax+ d)

0  ↵



Quadratic Program
• Eliminating x from the Lagrangian via

• Lagrange function
Qx+A

>
↵+ c = 0

L(x,↵) =
1

2
x

>
Qx+ c

>
x+ ↵

>(Ax+ d)

= �1

2
x

>
Qx+ ↵

>
d

= �1

2
(A>

↵+ c)>Q�1(A>
↵+ c) + ↵

>
d

= �1

2
↵

>
AQ

�1
A

>
↵+ ↵

> ⇥
d�AQ

�1
c

⇤
� 1

2
c

>
Q

�1
c

subject to ↵ � 0



dual

Quadratic Program
• Eliminating x from the Lagrangian via

• Lagrange function
Qx+A

>
↵+ c = 0

L(x,↵) =
1

2
x

>
Qx+ c

>
x+ ↵

>(Ax+ d)

= �1

2
x

>
Qx+ ↵

>
d

= �1

2
(A>

↵+ c)>Q�1(A>
↵+ c) + ↵

>
d

= �1

2
↵

>
AQ

�1
A

>
↵+ ↵

> ⇥
d�AQ

�1
c

⇤
� 1

2
c

>
Q

�1
c

subject to ↵ � 0



• Primal

• Dual

• Dual constraints are simpler
• Possibly many fewer variables
• Dual of dual is not (always) primal

(e.g. in SVMs x is in a Hilbert Space)

Quadratic Programs

minimize

x

1

2

x

>
Qx+ c

>
x subject to Ax+ d  0

minimize

↵

1

2

↵>AQ�1A>↵+ ↵> ⇥
AQ�1c� d

⇤
subject to ↵ � 0



Interior Point Solvers



Constrained Newton Method
• Objective
• Lagrange function and optimality conditions

• Taylor expansion of gradient

• Plug back into the constraints and solve

minimize

x

f(x) subject to Ax = b

L(x,↵) = f(x) + ↵

> [Ax� b]

@

x

L(x,↵) = @

x

f(x) +A

>
↵ = 0

@

↵

L(x,↵) = Ax� b = 0

@
x

f(x) = @
x

f(x0) + @2
x

f(x0) [x� x0] +O(kx� x0k2)

yields 
optimality


@

2
x

f(x0) A

>

A

� 
x

↵

�
=


@

2
x

f(x0)x0 � @

x

f(x0)
b

�

No need to be initially feasible!



General Strategy
• Optimality conditions

• Solve equations repeatedly. 
• Yields primal and dual solution variables
• Yields size of primal/dual gap
• Feasibility not necessary at start
• KKT conditions are problematic - need approximation

@

x

L(x

⇤
,↵

⇤
) = @

x

f(x

⇤
) +

X

i

↵

⇤
i

@

x

c

i

(x

⇤
) = 0 (Saddlepoint in x

⇤
)

@

↵iL(x
⇤
,↵

⇤
) = c

i

(x

⇤
)  0 (Saddlepoint in ↵

⇤
)

X

i

↵

⇤
i

c

i

(x

⇤
) = 0 (Vanishing KKT-gap)



Quadratic Programs
• Optimality conditions

• Relax KKT conditions

• Solve linearization of nonlinear system

• Predictor/corrector step for nonlinearity
• Iterate until converged

Qx+A

>
↵+ c = 0

Ax+ d+ ⇠ = 0

↵i⇠i = 0

↵, ⇠ � 0
slack

↵i⇠i = 0 relaxed to ↵i⇠i = µ


Q A

>

A �D

� 
�x

�↵

�
=


c

x

c

↵

�



Implementation details
• Dominant cost is solving reduced KKT system

Solve linear system with (dense) Q and A
• Solve linear system twice (predictor / corrector)
• Update steps are only taken far enough to 

ensure nonnegativity of dual and slack
• Tighten up KKT constraints by decreasing μ
• Only 10-20 iterations typically needed


Q A

>

A �D

� 
�x

�↵

�
=


c

x

c

↵

�



Solver Software
• OOQP 

http://pages.cs.wisc.edu/~swright/ooqp/
Object oriented quadratic programming solver

• LOQO
http://www.princeton.edu/~rvdb/loqo/LOQO.html
Interior point path following solver

• HOPDM
http://www.maths.ed.ac.uk/~gondzio/software/hopdm.html
Linear and nonlinear infeasible IP solver

• CVXOPT
http://abel.ee.ucla.edu/cvxopt/
Python package for convex optimization

• SeDuMi
http://sedumi.ie.lehigh.edu/
Semidefinite programming solver

http://pages.cs.wisc.edu/~swright/ooqp/
http://pages.cs.wisc.edu/~swright/ooqp/
http://www.princeton.edu/~rvdb/loqo/LOQO.html
http://www.princeton.edu/~rvdb/loqo/LOQO.html
http://www.maths.ed.ac.uk/~gondzio/software/hopdm.html
http://www.maths.ed.ac.uk/~gondzio/software/hopdm.html
http://abel.ee.ucla.edu/cvxopt/
http://abel.ee.ucla.edu/cvxopt/
http://sedumi.ie.lehigh.edu/
http://sedumi.ie.lehigh.edu/


Solver Software
• OOQP 

http://pages.cs.wisc.edu/~swright/ooqp/
Object oriented quadratic programming solver

• LOQO
http://www.princeton.edu/~rvdb/loqo/LOQO.html
Interior point path following solver

• HOPDM
http://www.maths.ed.ac.uk/~gondzio/software/hopdm.html
Linear and nonlinear infeasible IP solver

• CVXOPT
http://abel.ee.ucla.edu/cvxopt/
Python package for convex optimization

• SeDuMi
http://sedumi.ie.lehigh.edu/
Semidefinite programming solver

nontrivial to 
parallelize

http://pages.cs.wisc.edu/~swright/ooqp/
http://pages.cs.wisc.edu/~swright/ooqp/
http://www.princeton.edu/~rvdb/loqo/LOQO.html
http://www.princeton.edu/~rvdb/loqo/LOQO.html
http://www.maths.ed.ac.uk/~gondzio/software/hopdm.html
http://www.maths.ed.ac.uk/~gondzio/software/hopdm.html
http://abel.ee.ucla.edu/cvxopt/
http://abel.ee.ucla.edu/cvxopt/
http://sedumi.ie.lehigh.edu/
http://sedumi.ie.lehigh.edu/


Bundle Methods
simple parallelization



Some optimization problems
• Density estimation

• Penalized regression

minimize

✓

mX

i=1

� log p(xi|✓)� log p(✓)

equivalently minimize

✓

mX

i=1

[g(✓)� h�(xi), ✓i] +
1

2�

2
k✓k2

minimize
✓

mX

i=1

l (yi � h�(xi), ✓i) +
1

2�2
k✓k2

e.g. squared loss regularizer



Basic Idea

• Loss
• Convex but expensive to compute 
• Line search just as expensive as new computation
• Gradient almost free with function value computation
• Easy to compute in parallel

• Regularizer
• Convex and cheap to compute and to optimize

• Strategy
• Compute tangents on loss
• Provides lower bound on objective
• Solve dual optimization problem (fewer parameters)

minimize
✓

mX

i=1

li(✓) + �⌦[✓]



Bundle MethodBundle Approximation

Alexander J. Smola: Bundle Methods for Machine Learning 18 / 36

empirical risk



Lower Bound

Regularized Risk Minimization

minimize
w

R
emp

[w ] + �⌦[w ]

Taylor Approximation for R
emp

[w ]

R
emp

[w ] � R
emp

[wt ] + hw � wt , @wR
emp

[wt ]i = hat , wi+ bt

where at = @wR
emp

[wt�1] and bt = R
emp

[wt�1]� hat , wt�1i.
Bundle Bound

R
emp

[w ] � Rt [w ] := max
it

hai , wi+ bi

Regularizer ⌦[w ] solves stability problems.

Alexander J. Smola: Bundle Methods for Machine Learning 19 / 36

Lower bound



PseudocodeAlgorithm
Pseudocode

Initialize t = 0, w0 = 0, a0 = 0, b0 = 0
repeat

Find minimizer

wt := argmin
w

Rt(w) + �⌦[w ]

Compute gradient at+1 and offset bt+1.
Increment t  t + 1.

until ✏t  ✏
Convergence Monitor Rt+1[wt ]� Rt [wt ]

Since Rt+1[wt ] = R
emp

[wt ] (Taylor approximation) we have

Rt+1[wt ] + �⌦[wt ] � min
w

R
emp

[w ] + �⌦[w ] � Rt [wt ] + �⌦[wt ]

Alexander J. Smola: Bundle Methods for Machine Learning 20 / 36



Dual ProblemDual Problem

Good News
Dual optimization for ⌦[w ] = 1

2 kwk
2
2 is Quadratic Program

regardless of the choice of the empirical risk R
emp

[w ].
Details

minimize
�

1
2��>AA>� � �>b

subject to �i � 0 and k�k1 = 1

The primal coefficient w is given by w = ���1A>�.
General Result

Use Fenchel-Legendre dual of ⌦[w ], e.g. k·k1 ! k·k1.
Very Cheap Variant

Can even use simple line search for update (almost as good).

Alexander J. Smola: Bundle Methods for Machine Learning 21 / 36



PropertiesFeatures

Parallelization
Empirical risk sum of many terms: MapReduce
Gradient sum of many terms, gather from cluster.
Possible even for multivariate performance scores.
Data is local. Combine data from competing entities.

Solver independent of loss
No need to change solver for new loss.

Loss independent of solver/regularizer
Add new regularizer without need to re-implement loss.

Line search variant
Optimization does not require QP solver at all!
Update along gradient direction in the dual.
We only need inner product on gradients!

http://users.rsise.anu.edu.au/~chteo/BMRM.html

Alexander J. Smola: Bundle Methods for Machine Learning 22 / 36



Implementation
empirical

risk
empirical

risk
empirical

risk
empirical

risk

reducers

bundle
solver



GuaranteesConvergence
Theorem

The number of iterations to reach ✏ precision is bounded by

n  log2
�R

emp

[0]

G2 +
8G2

�✏
� 4

steps. If the Hessian of R
emp

[w ] is bounded, convergence to
any ✏  �/2 takes at most the following number of steps:

n  log2
�R

emp

[0]

4G2 +
4
�

max
⇥
0, 1� 8G2H⇤/�

⇤
� 4H⇤

�
log 2✏

Advantages
Linear convergence for smooth loss
For non-smooth loss almost as good in practice (as long
as smooth on a course scale).
Does not require primal line search.

Alexander J. Smola: Bundle Methods for Machine Learning 25 / 36



Proof ideaProof Idea

Duality Argument
Dual of Ri [w ] + �⌦[w ] lower bounds minimum of
regularized risk R

emp

[w ] + �⌦[w ].
Ri+1[wi ] + �⌦[wi ] is upper bound.
Show that the gap �i := Ri+1[wi ]� Ri [wi ] vanishes.

Dual Improvement
Give lower bound on increase in dual problem
in terms of �i and the subgradient @w [R

emp

[w ] + �⌦[w ]].
For unbounded Hessian we have �� = O(�2).
For bounded Hessian we have �� = O(�).

Convergence
Solve difference equation in �t to get desired result.

Alexander J. Smola: Bundle Methods for Machine Learning 26 / 36



More
• Dual decomposition methods

• Optimization problem with many constraints
• Replicate variable & add equality constraints
• Solve relaxed problem
• Gradient descent in dual variables

• Prox operator
• Problems with smooth & nonsmooth objective
• Generalization of Bregman projections 



4.3 Online Methods



The Perceptron



The Perceptron

Spam
Ham



The Perceptron

Spam
Ham



The Perceptron

• Nothing happens if classified correctly
• Weight vector is linear combination
• Classifier is linear combination of

inner products 

initialize w = 0 and b = 0

repeat
if yi [hw, xii+ b]  0 then
w  w + yixi and b b+ yi

end if
until all classified correctly

w =
X

i2I

xi

f(x) =
X

i2I

hxi, xi+ b



Convergence Theorem
• If there exists some          with unit length and

then the perceptron converges to a linear 
separator after a number of steps bounded by

• Dimensionality independent
• Order independent (i.e. also worst case)
• Scales with ‘difficulty’ of problem

(w⇤, b⇤)

yi [hxi, w
⇤i+ b

⇤
] � ⇢ for all i

⇣
b

⇤2 + 1
⌘ �

r

2 + 1
�
⇢

�2 where kxik  r



ProofProof, Part I

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 14

Starting Point
We start from w1 = 0 and b1 = 0.

Step 1: Bound on the increase of alignment
Denote by w

i

the value of w at step i (analogously b

i

).

Alignment: h(w
i

, b

i

), (w

⇤
, b

⇤
)i

For error in observation (x

i

, y

i

) we get

h(w
j+1, bj+1) · (w

⇤
, b

⇤
)i

= h[(w
j

, b

j

) + y

i

(x

i

, 1)] , (w

⇤
, b

⇤
)i

= h(w
j

, b

j

), (w

⇤
, b

⇤
)i + y

i

h(x
i

, 1) · (w

⇤
, b

⇤
)i

� h(w
j

, b

j

), (w

⇤
, b

⇤
)i + ⇢

� j⇢.

Alignment increases with number of errors.



ProofProof, Part II

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 15

Step 2: Cauchy-Schwartz for the Dot Product
h(w

j+1, bj+1) · (w

⇤
, b

⇤
)i  k(w

j+1, bj+1)k k(w⇤
, b

⇤
)k

=

p
1 + (b

⇤
)

2k(w
j+1, bj+1)k

Step 3: Upper Bound on k(w
j

, b

j

)k
If we make a mistake we have

k(w
j+1, bj+1)k2

= k(w
j

, b

j

) + y

i

(x

i

, 1)k2

= k(w
j

, b

j

)k2
+ 2y

i

h(x
i

, 1), (w

j

, b

j

)i + k(x
i

, 1)k2

 k(w
j

, b

j

)k2
+ k(x

i

, 1)k2

 j(R

2
+ 1).

Step 4: Combination of first three steps

j⇢ 
p

1 + (b

⇤
)

2k(w
j+1, bj+1)k 

p
j(R

2
+ 1)((b

⇤
)

2
+ 1)

Solving for j proves the theorem.



Consequences
• Only need to store errors.

This gives a compression bound for perceptron.
• Stochastic gradient descent on hinge loss

• Fails with noisy data
l(xi, yi, w, b) = max (0, 1� yi [hw, xii+ b])

do NOT train your 
avatar with perceptrons

Black & White



Stochastic Gradient Descent



Stochastic gradient descent
• Empirical risk as expectation

• Stochastic gradient descent (pick random x,y)

• Often we require that parameters are restricted 
to some convex set X, hence we project on it

1

m

mX

i=1

l (yi � h�(xi), ✓i) = Ei⇠{1,..m} [l (yi � h�(xi), ✓i)]

here ⇡

X

(✓) = argmin
x2X

kx� ✓k

✓t+1  ✓t � ⌘t@✓ (yt, h�(xt), ✓ti)

✓

t+1  ⇡

x

[✓
t

� ⌘

t

@

✓

(y
t

, h�(x
t

), ✓
t

i)]



Convergence in Expectation

• Proof
Show that parameters converge to minimum

E
✓̄

⇥
l(✓̄)

⇤
� l

⇤ 
R

2 + L

2
P

T�1
t=0 ⌘

2
t

2
P

T�1
t=0 ⌘

t

where

l(✓) = E(x,y) [l(y, h�(x), ✓i)] and l

⇤ = inf
✓2X

l(✓) and ✓̄ =

P
T�1
t=0 ✓

t

⌘

tP
T�1
t=0 ⌘

t

expected loss parameter average

✓⇤ 2 argmin
✓2X

l(✓) and set rt := k✓⇤ � ✓tk

from Nesterov and Vial

initial loss



Proof

• Summing over inequality for t proves claim
• This yields randomized algorithm for 

minimizing objective functions (try log times 
and pick the best / or average median trick)

r2t+1 = k⇡X [✓t � ⌘tgt]� ✓⇤k2

 k✓t � ⌘tgt � ✓⇤k2

= r2t + ⌘2t kgtk
2 � 2⌘t h✓t � ✓⇤, gti

hence E
⇥
r2t+1 � r2t

⇤
 ⌘2tL

2 + 2⌘t [l
⇤ �E[l(✓t)]]

 ⌘2tL
2 + 2⌘t

⇥
l⇤ �E[l(✓̄)]

⇤ by convexityby convexity



Rates
• Guarantee

• If we know R, L, T pick constant learning rate

• If we don’t know T pick 
This costs us an additional log term

E✓̄

⇥
l(✓̄)

⇤
� l⇤ 

R2 + L2
PT�1

t=0 ⌘2t
2
PT�1

t=0 ⌘t

⌘ =
R

L
p
T

and hence E✓̄[l(✓̄)]� l⇤  R[1 + 1/T ]L

2
p
T

<
LRp
T

⌘t = O(t�
1
2 )

E✓̄[l(
¯✓)]� l⇤ = O

✓
log Tp

T

◆



Strong Convexity

• Use this to bound the expected deviation

• Exponentially decaying averaging

and plugging this into the discrepancy yields

li(✓
0) � li(✓) + h@✓li(✓), ✓0 � ✓i+ 1

2
� k✓ � ✓0k2

r2t+1  r2t + ⌘2t kgtk
2 � 2⌘t h✓t � ✓⇤, gti

 r2t + ⌘2tL
2 � 2⌘t [lt(✓t)� lt(✓

⇤)]� 2�⌘tr
2
k

hence E[r2t+1]  (1� �ht)E[r2t ]� 2⌘t [E [l(✓t)]� l⇤]

✓̄ =
1� �

1� �T

T�1X

t=0

�T�1�t✓t

l(¯✓)� l⇤  2L2

�T
log

"
1 +

�RT
1
2

2L

#
for ⌘ =

2

�T
log

"
1 +

�RT
1
2

2L

#



More variants
• Adversarial guarantees

has low regret (average instantaneous cost) for 
arbitrary orders (useful for game theory)
• Ratliff, Bagnell, Zinkevich          

         learning rate
• Shalev-Shwartz, Srebro, Singer (Pegasos)

         learning rate (but need constants)
• Bartlett, Rakhlin, Hazan

(add strong convexity penalty)

✓

t+1  ⇡

x

[✓
t

� ⌘

t

@

✓

(y
t

, h�(x
t

), ✓
t

i)]

O(t�
1
2 )

O(t�1)



Parallel distributed variants



Online Learning
• General Template

• Get instance
• Compute instantaneous gradient
• Update parameter vector

• Problems
• Sequential execution (single core)
• CPU core speed is no longer increasing
• Disk/network bandwidth: 300GB/h
• Does not scale to TBs of data
• Batch subgradient has 50x penalty



Parallel Online Templates

• Data parallel

• Parameter parallel

loss
gradient

data
source

x

data

source
data

part n

x

part n

updater



Delayed Updates

• Data parallel
• n processors compute gradients
• delay is n-1 between gradient computation 

and application 
• Parameter parallel

• delay between partial computation and 
feedback from joint loss

• delay logarithmic in processors



• Optimization Problem

• Algorithm

Delayed Updates

minimize
w

�

i

fi(w)

Input: scalar ⇥ > 0 and delay ⇤
for t = ⇤ + 1 to T + ⇤ do

Obtain ft and incur loss ft(wt)
Compute gt := ⇥ft(wt) and set �t = 1

�(t�⇥)

Update wt+1 = wt � �tgt�⇥

end for



Theoretical Guarantees

• Worst case guarantee
SGD with delay τ on τ processors is no worse 
than sequential SGD

• Lower bound is tight
Proof: send same instance τ times

• Better bounds with iid data
• Penalty is covariance in features
• Vanishing penalty for smooth f(w)



• Linear function classes

Algorithm converges no worse than with serial 
execution. Up to a factor of 4 as tight.

• Strong convexity

Each loss function is strongly convex with modulus λ. 
Constant offset depends on the degree of parallelism.

Theoretical Guarantees

E[fi(w)]  4RL
p

⌧T

R[X]  �⌧R +

⇥
1
2 + ⌧

⇤ L2

�
(1 + ⌧ + log T )



• Lipschitz continuous loss gradients

Asymptotic rate does no longer depend on amount of 
parallelism

• Strong convexity and Lipschitz gradients

This only works when the objective function is very 
close to a parabola (upper and lower bound)

• Lock-free updates
(Hogwild - Recht, Wright, Re http://pages.cs.wisc.edu/~brecht/papers/hogwildTR.pdf)

Nonadversarial Guarantees

E[R[X]] 

28.3R2H +

2

3

RL +

4

3

R2H log T

�
⌧2

+

8

3

RL
p

T .

E[R[X]]  O(⌧2
+ log T )

http://pages.cs.wisc.edu/~brecht/papers/hogwildTR.pdf
http://pages.cs.wisc.edu/~brecht/papers/hogwildTR.pdf


Lazy updates & sparsity
• Sparse gradients (easy with l2 regularizer)

• General coordinate-based penalty

• Key insight - we only need to know the accurate 
value of wj whenever we use it
• Store wj with timestamp of last update
• Before using wj update using past stepsizes
• Approximate sum over stepsizes by integral

(Quadrianto et al, 2010; Li and Langford, 2009)

w  w � �tg(w, xt)xt

Eemp [l(xi, yi, w)] + ⇥
X

j

�j(wj)



Convergence on TREC
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Convergence on Y!Data
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Speedup on TREC
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Multiple Machines



MapReduce variant
• Idiot proof simple algorithm

• Perform stochastic gradient on each 
computer for a random subset of the data 
(drawn with replacement)

• Average parameters
• Benefits

• No communication during optimization
• Single pass MapReduce
• Latency is not a problem



Guarantees
• Requirements

• Strongly convex loss
• Lipschitz continuous gradient

• Theorem

• Not sample size dependent
• Regularization limits parallelization
• For runtime 

Ew2DT,k
⌘

[c(w)]�min
w

c(w)  8⌘G2

p
k�

q
k@ckL +

8⌘G2 k@ckL

k�
+ (2⌘G2)

T = ln k�(ln ⌘+ln �)
2⌘�



4.4 Discrete Problems



Integer programming relaxations
• Optimization problem

• Relax to linear program if vertices are integral 
since LP has vertex solution

minimize

x

c

>
x subject to Ax  b and x 2 Zn



Integer programming relaxations
• Totally unimodular constraint matrix A

• Inverse of each submatrix must be integral
• RHS of constraints must be integral
• Many useful sufficient conditions for TU.



Example - Hungarian Marriage
• Optimization Problem

• n Hungarian men
• n Hungarian women
• Compatibility cij between them

• Find optimal matching

• All vertices of the constraint matrix are integral

maximize

⇡

X

ij

⇡ijCij

subject to ⇡ij 2 {0, 1} and

X

i

⇡ij = 1 and

X

j

⇡ij = 1



Randomization
• Maximum finding

• Very large set of instances
• Find approximate maximum

• Draw a random set of n terms
• Take maximum over subset 

(59 for 95% with 95% confidence)

x x x x xx x

Pr

n

F [max

i
xi] < ✏

o

= (1� ✏)

n
= �

hence n =

log �

log(1� ✏)

 � log �

✏



Randomization
• Find good solution

• Show that expected value is well behaved
• Show that tails are bounded
• Sufficiently large random draw must contain at least one 

good element (e.g. CM sketch)
• Find good majority

• Show that majority satisfies condition
• Bound probability of minority being overrepresented (e.g. 

Mean-Median theorem)
• Much more in these books

• Raghavan & Motwani (Randomized Algorithms)
• Alon & Spencer (Probabilistic Method)



+ + +

> > > > >

Submodular maximization
• Submodular function

• Defined on sets
• Diminishing returns property

• Example
For web search results we might have individually

But if we can show only 4 we should probably pick

f(A [ C)� f(A) � f(B [ C)� f(B) for A ✓ B



Submodular maximization
• Optimization problem

Often NP hard even to find tight approximation

• Greedy optimization procedure

• Start with empty set X

• Find x such that               is maximized

• Add x to the set and repeat until |X|=k

max

X2X
f(X) subject to |X|  k

f(X [ {x})



Applications
• Feature selection

• Active learning and experimental design

• Disease spread detection in networks

• Document summarization

• Learning graphical models

• Extensions to

• Weighted item sets

• Decision trees



Basic Techniques
• Gradient descent
• Newton's method
• Conjugate Gradient Descent
• Broden-Fletcher-Goldfarb-Shanno (BFGS)

• Constrained Convex Optimization
• Properties
• Lagrange function
• Wolfe dual

• Batch methods
• Distributed subgradient
• Bundle methods

• Online methods
• Unconstrained subgradient
• Gradient projections
• Parallel optimization

Optimization



Further reading
• Nesterov and Vial (expected convergence)

http://dl.acm.org/citation.cfm?id=1377347
• Bartlett, Hazan, Rakhlin (strong convexity SGD)

http://books.nips.cc/papers/files/nips20/NIPS2007_0699.pdf
• TAO (toolkit for advanced optimization)

http://www.mcs.anl.gov/research/projects/tao/
• Ratliff, Bagnell, Zinkevich

http://martin.zinkevich.org/publications/ratliff_nathan_2007_3.pdf
• Shalev-Shwartz, Srebro, Singer (Pegasos paper)

http://dl.acm.org/citation.cfm?id=1273598
• Langford, Smola, Zinkevich (slow learners are fast)

http://arxiv.org/abs/0911.0491
• Hogwild (Recht, Wright, Re)

http://pages.cs.wisc.edu/~brecht/papers/hogwildTR.pdf
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