Scalable Machine Learning
4. Optimization

Alex Smola
Yahoo! Research and ANU

hitp://alex.smola.org/teaching/berkeley2012
Stat 260 SP 12

http://alex.smola.org/teaching/berkeley2012
http://alex.smola.org/teaching/berkeley2012

Optimization

Basic Techniques

e Gradient descent

e Newton's method

e Conjugate Gradient Descent

e Broden-Fletcher-Goldfarb-Shanno (BFGS)
e Constrained Convex Optimization

e Properties
e Lagrange function

e Wolfe dual
e Batch methods

e Distributed subgradient

e Bundle methods
e Online methods

e Unconstrained subgradient
e Gradient projections
e Parallel optimization

Parameter Estimation

e Maximum a Posteriori with Gaussian Prior

—log p(|X) = HHII +Zg ,6) + const.

e We have lots of data
* Does not fit on single machine
e Bandwidth constraints

* May grow in real time

* Regularized Risk Minimization yields similar problems
(more on this in a later lecture)

Batch and Online

e Batch
* Very large dataset available
* Require parameter only at the end
» optical character recognition

* speech recognition
* image annotation / categorization
* machine translation

e Online

* Spam filtering

* Computational advertising

* Content recommendation / collaborative filtering N ETHFLIN

Many parameters

e 100 million to 1 Billion users
Personalized content provision - impossible to
adjust all parameters by heuristic/manually

e 1,000-10,000 computers

Cannot exchange all data between machines,
Distributed optimization, multicore

* Large networks
Nontrivial parameter dependence structure

Convexity 101

Convexity 1

=

"I

* Convex set
For z,2’ € X it follows that Az + (1 — M)z’ € X for A € [0, 1]

 Convex function
M) + (1= N) > FOz+ (1= Na!) for A € [0, 1]

Convexity 1

=

"I

* Convex set
For z,2’ € X it follows that Az + (1 — M)z’ € X for A € [0, 1]

 Convex function
M) + (1= N) > FOz+ (1= Na!) for A € [0, 1]

Convexity 101

e Below-set of convex function is convex

fOz+ (1 =N)2") <Af(z) + (1= A)f(a
hence Az + (1 — A2’ € X for z,2" € X
e Convex functions don’t have local minima
Proof by contradiction - linear interpolation
breaks local minimum condition

Convexity 101

e Below-set of convex function is convex

fOz+ (1 =N)2") <Af(z) + (1= A)f(a
hence Az + (1 — A2’ € X for z,2" € X
e Convex functions don’t have local minima
Proof by contradiction - linear interpolation
breaks local minimum condition

Convexity 101

e Vertex of a convex set

Point which cannot

be extrapolated
within convex set

A+ (1 =Nz € Xfor \>1forallz’ € X

e Convex hull

’

coX ‘=T a_;:Zozia;i where n € N, a; > 0 and Zaz— < 1}
i=1

1=1

\

* Convex hull of set is a convex set (proof trivial)

Convexity 101

e Maximum over convex function

on convex set is obtained on vertex

e Supremum on convex hull

sup f(z) = sup f(x)
reX recoX

Proof by contradiction

* Assume that maximum inside line segment
* Then function cannot be convex

e Hence it must be on vertex

Gradient descent

One dimensional problems

Require: a,b, Precision €
\ Set A=a,B=b
repeat
if f) > (0 then
+B

2

] I _ else
1 3675 4 2 A= 448
end if
until (B —) min(|f'(A)]|f (B))) <
o Key lIdea Output: = = =35

* For differentiable f search for x with '(x) =
* Interval bisection (derivative is monotonic)
* Need log (A-B) - log € to converge

* Can be extended to nondifferentiable problems
(exploit convexity in upper bound and keep 5 points)

Gradient descent

 Key idea
e Gradient points into descent direction

* Locally gradient is good
approximation of objective function

& e GD with Line Search

e Get descent direction

e Unconstrained line search

* Exponential convergence for strongly
given a starting point x € dom f. convex objective

repeat
1. Ax := =V f(x).
2. Line search. Choose step size t via exact or backtracking line search.
3. Update. x := x + tAx.

until stopping criterion is satisfied.

Convergence Analysis

» Strongly convex function
f(y) > f@) + {y — 2,00/ (@) + 2 lly = o]

* Progress guarantees (minimum x)
m™m

f(@) = f(@®) = 5 o=

* Lower bound on the minimum (set y= x’)
m

f(z) = fa) < (& =", 0: f(2)) — 5 " — |

Convergence Analysis

e Bounded Hessian

F) < F(2) + (g~ 2.0:f (@) + o lly —]
— f(o+19.) < F@) — gl + Tt ol
< (@)~ 57 el

oM
Using strong convexity
2M

= f(r +1g2) — f(z7) < f(z) = f(z7)

< fl@) - fla*) [1- 2

M
* |teration bound M e &) = f@)
™m €

1

2
19]

Distributed Implementation

Basic steps

given a starting point £ € dom f.

repeat
1. Ax := =V f(x).
2. Line search. Choose step size t via exact or backtracking line search.
3. Update. x := x + tAx.

until stopping criterion is satisfied.

Basic steps

given a starting point r € dom f.

repeat
1. Ax := =V f(x).
2. Line search. Choose step size t via exact or backtracking line search.
3. Update. x := x + tAx.

until stopping criterion is satisfied.

Basic steps

given a starting point r € dom f.

repeat
1. Ax := =V f(x)-
2. Line search. Choose step size t via exact or backtracking line search.
3. Update. x := x + tAx.

until stopping criterion is satisfied.

Basic steps

given a starting point r € dom f.

repeat
1. Ax := =V f(x)-
2. Line search. Choose step size t via exact or backtracking line search.
3. Update. x := x + A,

until stopping criterion is satisfied.

Basic steps

given a starting point r € dom f.

repeat
1. Ax := =V f(x)-
2. Line search. Choose step size t via exact or backtracking line search.
3. Update. x := x + A,

until stopping criterion is satisfied.

Basic steps

given a starting point £ € dom f.

repeat
1. Ax := =V f(x).
2. Line search. Choose step size t via exact or backtracking line search.
3. Update. x := x + tAx.

until stopping criterion is satisfied.

* Map: compute gradient on subblock and emit
* Reduce: aggregate parts of the gradients

e Communicate the aggregate gradient back to all machines

Basic steps

given a starting point r € dom f.

repeat
1. Ax := =V f(x).
2. Line search. Choose step size t via exact or backtracking line search.
3. Update. x := x + tAx.

until stopping criterion is satisfied.

* Map: compute gradient on subblock and emit
* Reduce: aggregate parts of the gradients

 Communicate the aggregate gradient back to all machines

Basic steps

given a starting point r € dom f.

repeat
1. Ax := =V f(x)-
2. Line search. Choose step size t via exact or backtracking line search.
3. Update. x := x + tAx.

until stopping criterion is satisfied.

* Map: compute gradient on subblock and emit
* Reduce: aggregate parts of the gradients

 Communicate the aggregate gradient back to all machines

Basic steps

e Repeat until converged
 Map: compute function & derivative at given parameter t
e Reduce: aggregate parts of function and derivative
 Decide based on f(x) and f'(x) which interval to pursue
 Send updated parameter to all machines

repeat
1. Ax := =V f(x).
2. Line search. Choose step size t via exact or backtracking line search.
3. Update. x := x + tAx.

until stopping criterion is satisfied.

Basic steps

e Repeat until converged
 Map: compute function & derivative at given parameter t
e Reduce: aggregate parts of function and derivative
 Decide based on f(x) and f'(x) which interval to pursue
 Send updated parameter to all machines

repeat
1. Ax := =V f(x).
2. Line search. Choose step size t via exact or backtracking line search.
3. Update. x := x + t%a
until stopping criterion is satis

update value in search

direction and feed back

Basic steps

e Repeat until converged
 Map: compute function & derivative at given parameter t
e Reduce: aggregate parts of function and derivative
 Decide based on f(x) and f'(x) which interval to pursue
 Send updated parameter to all machines

repeat
1. Ax := =V f(x).
2. Line search. Choose step size t via exact or backtracking line search.
3. Update. x := x + t%a
until stopping criterion is satis

update value in search

direction and feed back

Scalability analysis

Linear time in number of instances
Linear storage in problem size, not data
Logarithmic time in accuracy

‘perfect’ scalability

10s of passes through dataset for each iteration
(line search is very expensive)

MapReduce loses state at each iteration

Single master as bottleneck
(important if the state space is several GB)

A Better Algorithm

* Avoiding the line search

* Not used in convergence proof anyway
e Simply pick update

T4 x — %&Bf(x)

* Only single pass through data per iteration
* Only single MapReduce pass per iteration

* Logarithmic iteration bound (as before)

% log f(x) —Ef(x*)

Newton’s Method

Isaac Newton

Newton Method

* Convex obijective function f

* Nonnegative second derivative
0, f(x) = 0

* Taylor expansion 1
fl@+08) = f(x) +(0,0:f(x)) + 50" £ ()0 + O(5°)

* Minimize approximation & iterate til converged
T4 T — [5’§f(x)}_1 0. f(x)

Convergence Analysis

* There exists a region around optimality where
Newton’s method converges quadratically if f is
twice continuously differentiable

* For some region around x™* gradient is well
approximated by Taylor expansion

|02 f(2%) = 02 f () = (2" — 2,8 f(2))[| < v l|l=" — 2
* Expand Newton update

|41 — || = |20 — 2% = [02f(20)] " [0uf(wn) - H
= [(02 @) [0 @a)lon — 2] axf<xn>+amf<x*>]H
<y |[02f(zn)]

2 — ||

Convergence Analysis

* Two convergence regimes

* As slow as gradient descent outside the
region where Taylor expansion is good

|02 f () = 00 f(2) = (2" — 2,82 f(2))| < vll2” — =]
* Quadratic convergence once the bound holds
2 (@n)] ||z — 2
* Newton method is affine invariant

(proof by chain rule)

i1 — 2 <7

See Boyd and Vandenberghe, Chapter 9.5 for much more

ewton
method rescales space

/ ~
/ 4 _-
/ / P o~
/ / 4 -5
;o _\- = et
/ / - : o3
| ’ / T) ~~ .
(l / - © - - -~
l I s - _ ~ o T~
‘ . - \\\
| | / \ : -
| ~
W) . 2
| ! | / ¥ 5 ~ R
| \ | \ N
| ”) N
~ N~
| | \ ‘ \ ”ﬁ‘f’"v)) \\\
AL) ™
| S) \
\ | | \ % 00 < D
oL \ h)) | j\
oo \ N /// . ’ |
\ \ \ \ ~ | ///,/ /// // ////
N ‘“él f,/,—/*" e St
\ N Q) e - -7 -7
— /// E :]
\\ | \ __—_’//// ////’:/-"d;//
~ // /////
\ \ \—————’//,// ////://-
~ ~ //////'///

f
rom Boyd & Vandenberghe

method rescales space

Boyd & Vandenberghe

Parallel Newton Method

Good rate of convergence

Few passes through data needed

Parallel aggregation of gradient and Hessian
Gradient requires O(d) data

Hessian requires O(d?) data

Update step is O(d®) & nontrivial to parallelize
Use it only for low dimensional problems

Conjugate Gradient Descent

Key Idea

* Minimizing quadratic function (¥ = 0)

1
flz) = §$TKCE — 'z +c

takes cubic time (e.g. Cholesky factorization)
* Matrix vector products and orthogonalization
* Vectors x, x’ are K orthogonal if " K2" =0

* m mutually K orthogonal vectors z; € R™

* form a basis o z’”‘:$ vl Kz
e gl - - — zxz-Tsz-
allow expansion =1

-
Li Y
for y = Kz

1

* solve linear system == =i~
1=1

Proof

* m mutually K orthogonal vectors = ¢ R™

e form a basis) — Em::,; r; Kz
.) P ‘rv] Kx,
* allow expansion nT,
_ -y _
* solve linear system ~~ ;xzzﬁ(% for y = Kz

* Show linear independence by contradiction
Z o;x; = 0 hence 0 = %-TKZO%%' — ijKa:jozj

* Reconstruction - expand z into basis
z = Z%‘ﬂfi hence a:JTKz — xJTKZ ;T = a;‘jTKajjozj

+ For linear system plug iny = Kz

e Need vectors x;

* Need to orthogonalize the vectors

e How to select them

» K-orthogonal vectors whiten the space since

1
flz) == ; vz —1"z+c

has trivial solution z=1

Conjugate Gradient Descent

* Gradient computation

1
f(x) = ixTK:C — 1"z + c hence g(z) = Kz — 1

® Algorithm initialize x¢o and vg = g9 = Kaxg— [l and 1 =0

repeat

-
_ 9g; Vi
Litl = L = Ui fU.TszUr,;
(2

giv1 = Kziyq1 — 1

_
_ 9,15V
Vit1 = —Gi+1 T Vi~ T

14— 1+ 1
until g, =0

Proof - Deflation property

* First assume that the vi are K orthogonal and show that

xi+1 is optimal in span of {v1 .. vi}

* Enough if we show that v /g; =0 forall j <:

e For =i expand [glvi
71 exp o ginr = v |Kay—1— Ko
) 1 _
_
T T 9i Vi
=, g; —v; Kv; =0
7 g’b 1 z?};_KUi

* For smaller | a consequence of K orthogonality

Proof - K orthogonality

* Need to check that vi+1 is K orthogonal to all v;
(rest automatically true by construction)

9;1]{@7;

'UZ-TKVZ-

T T T
v; Kuv;i 1 = —U, Kgii1+ v; Kv;

* Subspace expansion method for optimality
(g9, Kg, K?g, K3g, ...)
* Focuses on leading eigenvalues

e Often sufficient to take only a few steps
(whenever the eigenvalues decay rapidly)

Extensions

Generic Method

Compute Hessian K; := f"(x;) and update «;, 8; with

-
o — — 9i Vi
L ”UTK,L"U,L'
T 1
5' L 97;_|_1Kivi
v U,;—Ki’l)i

This requires calculation of the Hessian at each iteration.

Fletcher—Reeves [163]

Find «; via a line search and use Theorem 6.20 (iii) for 3;

a; = argmin_ f(z; + av;)

-
6' _ 9i4+19i+1
’ g9, g

Polak—Ribiere [398]

Find «; via a line search

a; = argmin_ f(z; + av;)

B, = (git1—9s) ' git1
i = T
g, 91

Experimentally, Polak—Ribiere tends to be better than

Fletcher—Reeves.

BFGS algorithm
Broyden-Fletcher-Goldfarb-Shanno

- | . J— . 1 }
- [P R . PR |
B LN ’
4%
B e LA
25 L ame “ a
= - 5
| N
v Vi pr e ‘:’ : i &
?) =
-

Basic Idea

* Newton-like method to compute descent direction
0; = By "0pf(xi1)
* Line search on fin direction

Tit+1 = Tj — Q;0;

e Update B with rank 2 matrix

Bii1 = B; +uju; + vv;
* Require that Quasi-Newton condition holds
Bit1(ziv1 — xi) = 0z f(xiv1) — Oz f(24)

9i9; Bid;d; B

Bit1 = B;H
i azéjgz 5;3152

e Simple rank 2 update for B

e Use matrix inversion lemma to update inverse

* Memory-limited versions L-BFGS

* Use toolbox if possible (TAO, MATLAB)
(typically slower if you implement it yourself)

* Works well for nonlinear nonconvex objectives
(often even for nonsmooth objectives)

Basic Convexity

Constrained Convex Minimization

* Optimization problem
minimize f(x)

subject to ¢;(x) < 0 for all ¢

e Common constraints
* linear inequality constraints
(wi,x) +b; <0
e quadratic cone constraints
'Qr+b'x <ecwith Q=0
* semidefinite constraints
M >0 or MO+Z:13Z-M7; ~ 0

Constrained Convex Minimization

* Optimization problem

minimize f(x) q
" ﬂ
. . < ° ° -
subject to ¢;(x) < 0 fo EqUCllli')’ is SpeClClI case

e Common constraints Why?
* linear inequality
(wi,x) +b; <0
e quadratic cone constraints
'Qr+b'x <ecwith Q=0
* semidefinite constraints
M = 0or Mo+ Y a;M; =0

Example - Support Vectors

(x

<W,x>+b = +1}

\

v, hence (w,x; — x3) +b =2

N w 2
\ ¥ hence (——, 21 — 22) = ——

y
[w] |w]
| _
A\ \
o 3 \
y \

_______________________________________ @ {X | <W,X>+b:()}

\ \
\ \
\ \

1
minirilize 5 |w||? subject to y; [(w, z;) + b] > 1

Lagrange Multipliers

* Lagrange function

L(z,a) = f(x) + Z%Cz‘(ﬂf) where a; > 0
i=1

e Saddlepoint Condition
If there are x* and nonnegative &™ such that

L(z", o) < L(z",a™) < L(x,a™)

then x™ is an optimal solution to the
constrained optimization problem

Lz", a) < L(x*,a") < L(z,a™)

* From first inequality we see that x* is feasible
(; —a;)ei(xz™) <0 for all a; >0

* Setting some «; =0 yields KKT conditions
a;c; () =0

e Consequently we have
L(z*, ") = f(z*) < L(z,a” +Zoz ci(z) <
This proves ophmallty

Constraint gymnastics

(all three conditions are equivalent)

e Slater’s condition
There exists some x such that for all i

ci(x) <0

e Karlin’s condition
For all nonnegative « there exists some x such that

Z a;ci(z) <0

e Strict constraint qualification
The teasible region contains at least two distinct
elements and there exists an x in X such that dll
ci(x) are strictly convex at x with respect to X

Necessary Kuhn-Tucker Conditions

* Assume optimization problem
* satisfies the constraint qualifications
* has convex differentiable objective + constraints

* Then the KKT conditions are necessary & sufficient

O L(x", a”) + Z o 0ci(x = 0 (Saddlepoint in ™)
On, L(x™, ™) = ¢; (™) < 0 (Saddlepoint in ™)
Z a;c;(z™) = 0 (Vanishing KKT-gap)

Yields algorithm for solving optimization problems

Solve for saddlepoint and KKT conditions

(by convexity)

(by Saddlepoint in z*)
(by convexity)

(by vanishing KKT gap)

Linear and Quadratic Programs

Linear Programs

* Obijective

minimize ¢' 2 subject to Az + d < 0
xXr

* Lagrange function
L(z,a)=c'z+a' (Az +d)
e Optimality conditions
OxL(z,a) =A'a+c=0
OuL(x,0) = Ax+d <0
0=oa'(Az +d)

0<
* Dual problem =

maximize d ' o subject to A'a+c¢=0 and a > 0
1

Linear Programs

* Obijective

minimize ¢' 2 subject to Az + d < 0
X

* Lagrange function

L(z,a) =c'z+a' (Az + d)
e Optimality conditions
OpL(z,0) =A'a+c=0
OuL(x,0) = Ax+d <0

0=a'(4eF d)
0.< ¢

* Dual problem

maximize d ' o subject to A'a+c¢=0 and a > 0
1

Linear Programs

* Obijective

minimize ¢' 2 subject to Az + d < 0
X

* Lagrange function

L(z,a) :-+-+ d)

e Optimality conditions
OyL(z,0)=A"a+c=0 plug into L
OuL(x,0) = Ax+d <0

0=a'(4eF d)
0.< ¢

* Dual problem

maximize d ' o subject to A'a+c¢=0 and a > 0
1

Linear Programs

Primal

minimizec' subject to Ax +d <0
X

Dual

maximize d' o subject to Ala+e=0and o > ()
(/

Free variables become equality constraints
Equality constraints become free variables
Inequalities become inequalities

Dual of dual is primal

Quadratic Programs

* Objective 1

minimize ixTQm + ¢z subject to Az +d <0

T

* Lagrange function

1
L(z,a) = §Zl’JTQ£E +c'z+a' (Az +d)

* Optimality conditions
OxL(z,0) =Qr+A'a4+c=0
OuL(x,0) = Ax+d <0

0=oa'(Az + d)
0 <«

Quadratic Program

* Eliminating x from the Lagrangian via
Qr+A'a+c=0

* Lagrange function

1
L(z,a) = §£IZTQZE +c'z+a' (Az+d)

1
= —§xTQx +a'd

1
= —§(AT04 +¢) QM A'a+c)+a'd

1 1
— —§aTAQ_1ATa +al [d — AQ_lc] — icTQ_lc

subject to a > 0

Quadratic Program

* Eliminating x from the Lagrangian via
Qr+A'a+c=0

* Lagrange function

1
L(z,a) = §£IZTQ.CE +c'z+a' (Az+d)

1
= —§xTQx +a'd

1
= —§(AT04 +¢) QM A'a+c)+a'd

1

1
subject to a > 0

Quadratic Programs

* Primal
1
minimize — : ' Qz + ¢' x subject to Az +d < 0
e Dudl
1
mmlmlze QozTAQ lATa + o [AQ c—] subject to a > 0

. Dual constraints are simpler
* Possibly many fewer variables

* Dual of dual is not (always) primal
(e.g. in SVMs x is in a Hilbert Space)

Interior Point Solvers

Constrained Newton Method

¢ Obiective minimize f(x) subject to Ax =b

* Lagrange function and optimality conditions
L(z,a) = f(z) + o' [Az — V]
OpL(z,a) =0pf(x) + A'a =0
OuL(x,0) =lAx —b=10
* Taylor expansion of gradient

On f () = 00 f(0) + 05 f (o) [& — wo] + O(||& — o]

* Plug back into the constraints and solve
O3 f(wo) AV || x| _ | 9if(wo)wo — Opf(x0)

A Q b

No need to be initially feasible!

General Strategy

Optimality conditions

0. L(x™,a”) + Za*a ci(x = 0 (Saddlepoint in z*)
On,L(z™, ™) = ¢c;(x") < 0 (Saddlepoint in ™)
Z a;c;(x™) = 0 (Vanishing KKT-gap)

Solve equations repeatedly.

Yields primal and dual solution variables
Yields size of primal/dual gap
Feasibility not necessary at start

KKT conditions are problematic - need approximation

Quadratic Programs

e Optimality conditions Or+ ATa+c=0
Ar+d+£=0
;& =0

e Relax KKT conditions @620

;& = 0 relaxed to o;& =

* Solve linearization of nonlinear system
i Q AT 11 ox] i Co]

_A —D__éoz_ Ca

* Predictor/corrector step for nonlinearity

* lterate until converged

Implementation details

* Dominant cost is solving reduced KKT system
Q AT | [z] [e

_A —D__5a_ | Ca

Solve linear system with (dense) Q and A
e Solve linear system twice (predictor / corrector)

* Update steps are only taken far enough to
ensure nonnegativity of dual and slack

* Tighten up KKT constraints by decreasing p
e Only 10-20 iterations typically needed

Solver Software

e OOQP
hitp://pages.cs.wisc.edu/ ™ swright/ooqp/

Object oriented quadratic programming solver
¢ LOQO
ttp://www.princeton.edu/ " rvdb/logo/LOQO.html
nterior point path following solver

e« HOPDM
ttp://www.maths.ed.ac.uk/™ gondzio/software /hopdm.html
Linear and nonlinear infeasible IP solver

e CVXOPT
hitp://abel.ee.ucla.edu/cvxopt/
Python package for convex optimization

e SeDuMi
http://sedumi.ie.lehigh.edu/

Semidefinite programming solver

http://pages.cs.wisc.edu/~swright/ooqp/
http://pages.cs.wisc.edu/~swright/ooqp/
http://www.princeton.edu/~rvdb/loqo/LOQO.html
http://www.princeton.edu/~rvdb/loqo/LOQO.html
http://www.maths.ed.ac.uk/~gondzio/software/hopdm.html
http://www.maths.ed.ac.uk/~gondzio/software/hopdm.html
http://abel.ee.ucla.edu/cvxopt/
http://abel.ee.ucla.edu/cvxopt/
http://sedumi.ie.lehigh.edu/
http://sedumi.ie.lehigh.edu/

Solver Software

e OOQP
hitp://pages.cs.wisc.edu/ ™ swright/oogp/

Object oriented quadratic programming solver
¢ LOQO
hitp://www.princeton.edu/ " rvdb/logo/LOQO.himl

Interior point path following solver

e« HOPDM
hitp://www.maths.ed.ac.uk/™ gondzio/software/hopdm.html
Linear and nonlinear infeasible IP solver

 CVXOPT
hitp://abel.ee.ucla.edu/cvxopt/
Python package for convex optimization nOﬂi'l'iViClI to
 SeDuMi el
hitp://sedumi.ie.lehigh.edu/ PC"'C| eliZe

Semidefinite programming solver

http://pages.cs.wisc.edu/~swright/ooqp/
http://pages.cs.wisc.edu/~swright/ooqp/
http://www.princeton.edu/~rvdb/loqo/LOQO.html
http://www.princeton.edu/~rvdb/loqo/LOQO.html
http://www.maths.ed.ac.uk/~gondzio/software/hopdm.html
http://www.maths.ed.ac.uk/~gondzio/software/hopdm.html
http://abel.ee.ucla.edu/cvxopt/
http://abel.ee.ucla.edu/cvxopt/
http://sedumi.ie.lehigh.edu/
http://sedumi.ie.lehigh.edu/

Bundle Methods

simple parallelization

Some optimization problems

* Density estimation
minimize Z — log p(x;]60) — log p(0)

m

1=1
m

. L 1 2
equivalently 10(11](11910{11zeizz1 g(0) — (¢(x5),0)] 53 10

* Penalized regression

R - o1 2
mininize Y1 4~ (60,0 + .03 10

Basic Idea

m
minimize > 1i(0) + AQ[6]
* Loss i=1
* Convex but expensive to compute
* Line search just as expensive as new computation
* Gradient almost free with function value computation
 Easy to compute in parallel
e Regularizer
* Convex and cheap to compute and to optimize
e Strategy
e Compute tangents on loss
* Provides lower bound on objective

e Solve dual optimization problem (fewer parameters)

Bundle Method

Lower bound

Regularized Risk Minimization

minimize Renp[W] + AQ[w]

Taylor Approximation for R, |w]
Remp[W] Z Remp[Wt] + <W T Wl‘a aW'l:")elrnp[Wl‘]> — <al‘7 W> + bl‘

where a; = 0y Remp|Wi—1] @and by = Repp [We—1] — (@1, Wi—1).
Bundle Bound

Remp[W] > Riw] = max (@i, W) + b

Regularizer Q2[w] solves stability problems.

Pseudocode

Initialize t = O,wy=0,a =0, by =0
repeat
Find minimizer

w; ;= argmin Ry(w) + AQ[w]

w

Compute gradient a;, 1 and offset b, .
Increment t — t+ 1.
until €t S €

Convergence Monitor R;. {|[w;] — R:[w]
Since R:1|wy] = R.mp[W:] (Taylor approximation) we have

Rioq|we] + AQ[wy] > mvjn Remp[W] + AQ[w] > Ri[wi| + AQ[wy]

Dual Problem

Good News
Dual optimization for Q[w] = 1 ||w||5 is Quadratic Program
regardless of the choice of the empirical risk R.,,[W].

Details
minignize ~B'AA'3—p3"b
subjectto 5; > 0 and ||3||, =1

The primal coefficient w is givenby w = —\"1A' 3.

General Result
Use Fenchel-Legendre dual of Q2[w], e.g. ||-||; — |||

Very Cheap Variant
Can even use simple line search for update (almost as good).

Properties

Parallelization

@ Empirical risk sum of many terms: MapReduce

@ Gradient sum of many terms, gather from cluster.
@ Possible even for multivariate performance scores.
@ Data is local. Combine data from competing entities.

Solver independent of loss
No need to change solver for new loss.

Loss independent of solver/regularizer
Add new regularizer without need to re-implement loss.

Line search variant

@ Optimization does not require QP solver at all!
@ Update along gradient direction in the dual.
@ We only need inner product on gradients!

\\ z/
|

Guarantees

Theorem
The number of iterations to reach ¢ precision is bounded by
AR..,[0] 8G?
< P
n < log, o2 ~ 4

steps. If the Hessian of R.,,,[w] is bounded, convergence to
any ¢ < \/2 takes at most the following number of steps:

Ml 4 10,1 — 8G2H /)] 41:

| log 2
e D) J€

n < log,

Advantages

@ Linear convergence for smooth loss

@ For non-smooth loss almost as good in practice (as long
as smooth on a course scale).

@ Does not require primal line search.

Proof idea

Duality Argument
@ Dual of Ri[w]| + AQ[w] lower bounds minimum of
regularized risk Renp|W| + AQ2[w].
@ R 1[wj] + \Q[w;] is upper bound.
@ Show that the gap +; :== R;.1[w;] — Ri[w;] vanishes.
Dual Improvement
@ Give lower bound on increase in dual problem
in terms of ~; and the subgradient 0y, [Remp[W] + AQ[wW]].
@ For unbounded Hessian we have 6y = O(~?).
@ For bounded Hessian we have 6y = O(7).

Convergence
@ Solve difference equation in +; to get desired result.

* Dual decomposition methods

e Optimization problem with many constraints
* Replicate variable & add equality constraints
e Solve relaxed problem
* Gradient descent in dual variables

* Prox operator
* Problems with smooth & nonsmooth objective

e Generalization of Bregman projections

4.3 Online Methds

L~

The Perceptron

The Perceptron

The Perceptron

The Perceptron

initialize w = 0 and b = 0
repeat
if y; [(w, x;) + b] <0 then
w +— w—+ y;x; and b <+ b+ y;
end if

until all classified correctly

* Nothing happens if classified correctly

* Weight vector is linear combination w=> =,
e Classifier is linear combination of !
inner products f(z) =Y (z;,2) +0

el

Convergence Theorem

If there exists some («*,5*) with unit length and
yi [{x;, w™) +b*] > p for all

then the perceptron converges to a linear
separator after a number of steps bounded by

(b*2 + 1) (r* +1) p~? where ||a;]| <r
Dimensionality independent

Order independent (i.e. also worst case)
Scales with ‘difficulty’ of problem

Proof

Starting Point
We start from w; = 0 and b; = 0.
Step 1: Bound on the increase of alighment
Denote by w; the value of w at step ¢ (analogously b;).

Alignment: ((w;, b;), (w™, b*))
For error in observation (z;, y;) we get
(wjt1,0j41) - (W, 07))
— <[(wj7 bj) + yi(ziv 1)] 7 (w*v b*)>
= ((wy, bj), (W™, b%)) + yil(wi, 1) - (w7, 7))
> ((wy, by), (W, 07)) + p
> 7p-
Alignment increases with number of errors.

Proof

Step 2: Cauchy-Schwartz for the Dot Product

(wjy1,0511) - (w5, 07)) < [[(wjp1, b)) [[(w™, 67)
\/1 (%)% w]+1abj+1)

Step 3: Upper Bound on ||(w;,b,)|
If we make a mistake we have

I° (wjvb)ﬂLyz(% D
(wj, bj> + 2yi((@i, 1), (wy, b5)) + |[(z, 1)H2

(w;, bj)||* + || (s, 1)
(R4 1).

Step 4: Combination of first three steps

7P < AV1H)2 (w)ir,)| < VI(R2+1)((09)2 + 1)
Solving for 5 proves the theorem.

‘ (w]-|-17 j—l—l)

IA Al

Consequences

* Only need to store errors.
This gives a compression bound for perceptron.

» Stochastic gradient descent on hinge loss
[(z;,y;,w,b) = max (0,1 — y; [{w, x;) + b])
* Fails with noisy data R

do NOT train your

avatar with perceptrons

Stochastic Gradient Descent

Stochastic gradient descent

e Empirical risk as expectation

% Zl (yz — <¢(CBZ), (9>) = EiN{l,..’lﬂ} [l (yz — <¢(a7%)7 ‘9>)]

 Stochastic gradient descent (pick random x,y)

011 < 0 — 1:Op (s, (P(x¢), 04))
* Often we require that parameters are restricted
to some convex set X, hence we project on it

Orr1 < T3 |0 — 10t0p (Ys, (P(¢), 0r))]

here mwx () = argmin ||z — 0|
reX

Convergence in Expectation

: N Z;F—_ol aur
[(0) =E z, U(y, (p(x),0))] and [* = inf [(f) and 0 = =
() 0cX Zfzol m,

* Proof
Show that parameters converge to minimum

0* € argminl(6) and set r; := ||0* — ;|
0cX

from Nesterov and Vial

Proof

rivr = |mx [0 — nege] — H*HQ

<16y — mgr — 0"’

ri g lgell” — 20 (0: — 0%, g)
hence E |7, — 7| <nfL? + 2n: [I* — E[l(6)H
<npL? + 2, [I* — E[l(6)H

e Summing over inequality for t proves claim

* This yields randomized algorithm for
minimizing objective functions (try log times
and pick the best / or average median trick)

e Guarantee

R2+L2Zt 0 77t

POl = e
* If we know R, L, T pick constant learning rate
R s . RQU+1/TIL LR
n_L\/T and hence Ez|l(0)] — " < T < JT

* If we dont know T pick n =o0(2)
This costs us an additional log term

E[1(0)] - I* = O (1(;5;)

Strong Convexity

1
1:(8') 2 1:(0) + (061i(6),0' —) + S A1l6 — ')

* Use this to bound the expected deviation
rin <1747 gl — 2m (0 — 67, g)
< 7°t2 T 777:2L2 = 2n [14(0e) — 1:(07)] — 2>\77t"“12c
< (1= M) E[r;] — 2m [E[1(0,)] - 7]

hence E[r},]

* Exponentially decaying averaging

_ 1 —
0 — O-ZO_Tltet

1 —ol

and plugging thls into the dlscrepancy ylelds

212 ART 2 ARTS
l(@)—l _)\—Tl()g 14 o7 forn—)\—Tlog 14 97T,

More variants

* Adversarial guarantees
Oiy1 < T |0 — 100 (Y, (P(24), 04)))
has low regret (average instantaneous cost) for
arbitrary orders (useful for game theory)

 Ratliff, Bagnell, Zinkevich
o(+—*) learning rate

* Shalev-Shwartz, Srebro, Singer (Pegasos)
o) learning rate (but need constants)

e Bartlett, Rakhlin, Hazan
(add strong convexity penalty)

Parallel distributed variants

Online Learning

e General Template
e (et instance
e Compute instantaneous gradient
e Update parameter vector
* Problems
e Seqguential execution (single core)
e CPU core speed is no longer increasing
e Disk/network bandwidth: 300GB/h
e Does not scale to TBs of data
e Batch subgradient has 50x penalty

Parallel Online Templates

e Data parallel

Delayed Updates

e Data parallel
® N processors compute gradients

e delay is n-1 between gradient computation
and application

e Parameter parallel

e delay between partial computation and
feedback from joint loss

e delay logarithmic in processors

Delayed Updates

e Optimization Problem
minimize Z fi(w)
e Algorithm

Input: scalar 0 > 0 and delay 7
fort=74+1to’l'+ 7 do

Obtain f; and incur loss f;(w;)
Compute g; := V fi(w;) and setG J(D

Update Wi41 — Wy —

end for

Theoretical Guarantees

e Worst case guarantee
SGD with delay T on T processors is no worse
than sequential SGD

e Lower bound is tight
Proof: send same instance T times

e Better bounds with iid data
e Penalty is covariance in features
e \anishing penalty for smooth f(w)

Theoretical Guarantees

e Linear function classes

E(f;(w)] < ARLVTT

Algorithm converges no worse than with serial
execution. Up to a factor of 4 as tight.
e Strong convexity I
RIX] < MR+ [%+7] ~ (147 +1logT)
Each loss function is strongly convex with modulus A.

Constant offset depends on the degree of parallelism.

Nonadversarial Guarantees

e Lipschitz continuous loss gradients

2 4 8
E[R[X]] < |28.3R*H + SRL+ §11‘122}110@;T T2 §RL\/T.

Asymptotic rate does no longer depend on amount of
parallelism

e Strong convexity and Lipschitz gradients
E[R[X]] < O(r° + log T)

This only works when the objective function is very
close to a parabola (upper and lower bound)

e Lock-free updates

(Hogwild - Recht, Wright, Re http://pages.cs.wisc.edu/~brecht/papers/hogwildTR.pdf)

http://pages.cs.wisc.edu/~brecht/papers/hogwildTR.pdf
http://pages.cs.wisc.edu/~brecht/papers/hogwildTR.pdf

Lazy updates & sparsity

e Sparse gradients (easy with |2 regularizer)
w 4— w — Meg(w, i) xy
e (General coordinate-based penalty

Eemp ZE’L?yzv _I_ AZ’YJ w]

e Key insight - we only need to know the accurate
value of w; whenever we use it

e Store wjwith timestamp of last update
e Before using wjupdate using past stepsizes

e Approximate sum over stepsizes by integral
(Quadrianto et al, 2010; Li and Langford, 2009)

Convergence on TREC

I I I I I I I I I

no delay

§ delay of 10 ------- -
. oL delay of 100 -------- _
O delay of 1000
-4 F -
™
o O]
O C T
R o N O _

_12 I I I I 'I Ii ‘I—r— _I -—_I—_——
0 10 20 30 40 50 60 70 80 90 100

Thousands of lterations

Convergence on Y!Data

2 ‘ I I I I I I

I I I
1 i no delay B
delay of 10 -

. Oh. delay of 100 -------- -
S 1 delay of 1000 -)
LL] AL
N -2 _
o
O
-

_6 I I I I I —I I I I

O 10 20 30 40 50 60 70 80 90 100
Thousands of lterations

Speedup on TREC

450 | | | | |
400
350
300
250
200
150
100

20

Percent Speedup

Threads

Multiple Machines

MapReduce variant

e |diot proof simple algorithm

e Perform stochastic gradient on each
computer for a random subset of the data
(drawn with replacement)

* Average parameters
e Benefits
e No communication during optimization
e Single pass MapReduce
e | atency is not a problem

Guarantees

e Requirements
e Strongly convex loss
e | ipschitz continuous gradient

e Theorem
. 8nG? - 8nG?||Ocll,
B, cprele(w)] ~ mine(w) < 2 Vel - S L+ (20G?)

e Not sample size dependent

e Regularization limits parallelization

. Ink—(Ilnn4+In A\
e Forruntime T =2t

4.4 Discrete Problems

Integer programming relaxations

e Optimization problem

minimize ¢'z subject to Az < b and z € Z"

* Relax to linear program if vertices are integral
since LP has vertex solution

Integer programming relaxations

 Totally unimodular constraint matrix A
* Inverse of each submatrix must be integral
* RHS of constraints must be integral
* Many useful sufficient conditions for TU.

Example - Hungarian Marriage

e Optimization Problem
* n Hungarian men

* n Hungarian women

e Compatibility cj between them
* Find optimal matching

maximize Zﬂ'@jcij
]
subject to m;; € {0,1} and Zm;j = 1 and Zwij =1

J
* All vertices of the constraint matrix are integral

* Maximum finding

* Very large set of instances

* Find approximate maximum

—He—-I—I)—I)— I
Pt

e Draw a random set of n terms

e Take maximum over subset

(59 for 95% with 95% confidence)

Pr {F[maxa?i] < e} =(1—€e)" =6

log 0 o — log o
log(l—€) = ¢

hence n =

Randomization

* Find good solution
e Show that expected value is well behaved
e Show that tails are bounded

o Sufficiently large random draw must contain at least one
good element (e.g. CM sketch)

* Find good majority
* Show that majority satisfies condition

* Bound probability of minority being overrepresented (e.g.
Mean-Median theorem)

e Much more in these books

* Raghavan & Motwani (Randomized Algorithms)
* Alon & Spencer (Probabilistic Method)

Submodular maximization

e Submodular function
e Defined on sets
* Diminishing returns property
f(AUuC)— f(A) > f(BUC)— f(B) for ACB
e Example
For web search results we mlght have individually

‘
v
-—//

But if we can show only 4 we should prob !y plck

Submodular maximization

e Optimization problem

' <
max f(X) subject to | X| < k

Often NP hard even to find tight approximation
e Greedy optimization procedure

o Start with empty set X

* Find x such that f(XU{z}) is maximized

e Add x to the set and repeat until | X|=k

YAaHoOO!

Applications

Feature selection

Active learning and experimental design
Disease spread detection in networks
Document summarization

Learning graphical models

Extensions to

* Weighted item sets

e Decision trees

YAaHoOO!

Optimization

Basic Techniques

e Gradient descent

e Newton's method

e Conjugate Gradient Descent

e Broden-Fletcher-Goldfarb-Shanno (BFGS)
e Constrained Convex Optimization

e Properties
e Lagrange function

e Wolfe dual
e Batch methods

e Distributed subgradient

e Bundle methods
e Online methods

e Unconstrained subgradient
e Gradient projections
e Parallel optimization

Further reading

* Nesterov and Vial (expected convergence)
hitp://dl.acm.org/citation.cfm2id=1377347

* Bartlett, Hazan, Rakhlin (strong convexity SGD)
hitp://books.nips.cc/papers/files/nips20/NIPS2007 0699.pdf

* TAO (toolkit for advanced optimization)
hitp://www.mcs.anl.gov/research/projects/tao/

* Ratliff, Bagnell, Zinkevich
http://martin.zinkevich.org/publications/ratliff nathan 2007 3.pdf

e Shalev-Shwartz, Srebro, Singer (Pegasos paper)
ttp://dl.acm.org/citation.cfm2id=1273598

* Langford, Smola, Zinkevich (slow learners are fast)
nttp://arxiv.org/abs/0911.0491

 Hogwild (Recht, Wright, Re)
nttp://pages.cs.wisc.edu/ " brecht/papers/hogwildTR.pdf

http://dl.acm.org/citation.cfm?id=1377347
http://dl.acm.org/citation.cfm?id=1377347
http://books.nips.cc/papers/files/nips20/NIPS2007_0699.pdf
http://books.nips.cc/papers/files/nips20/NIPS2007_0699.pdf
http://www.mcs.anl.gov/research/projects/tao/
http://www.mcs.anl.gov/research/projects/tao/
http://martin.zinkevich.org/publications/ratliff_nathan_2007_3.pdf
http://martin.zinkevich.org/publications/ratliff_nathan_2007_3.pdf
http://dl.acm.org/citation.cfm?id=1273598
http://dl.acm.org/citation.cfm?id=1273598
http://arxiv.org/abs/0911.0491
http://arxiv.org/abs/0911.0491
http://pages.cs.wisc.edu/~brecht/papers/hogwildTR.pdf
http://pages.cs.wisc.edu/~brecht/papers/hogwildTR.pdf

