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Problem Set 5 (backup set) — Distributed Inference

1 Distributed Synchronization

When synchronizing updates between computers one may use distributed caching. Your task is to prove
that the updates are consistent. That is, you need to show that local changes are accurately distributed and
aggregated globally. For simplicity we consider a single variable x which is being modified by n machines.

Denote by x the global variable. Moreover, let xi, x′i for i ∈ {1, . . . n} be the machine local copies. The
system starts off by setting x = xi = x′i for all i. Moreover, we set si = FALSE (message pending). For
some time the variables xi are being updated by δij . That is, we update

xi ← xi + δij (1)

for all j sequentially (note that there is no need that the same number of updates occurs at different ma-
chines). To keep matters synchronized we execute the following protocol:

LocalSend(i)
if si = FALSE then

Lock xi and x′i (prevent updates during message generation)
η ← xi − x′i
x′i ← xi
Unlock xi and x′i
GlobalReceive(η)
si ← TRUE

end if

LocalReceive(x)
Lock xi and x′i (prevent updates during message generation)
η ← x− x′i
xi ← xi + η
x′i ← x
si ← FALSE
Unlock xi and x′i

GlobalSend(i)
LocalReceive(x) to machine i

GlobalReceive(η)
x← x+ η

1.1 Prove that after all updates are completed the algorithm will converge to

x = xoriginal +
∑
i,j

δij (2)

and moreover xi = x′i = x for all i. That is, the algorithm is correct and convergent.
1.2 What could happen if we did not use si. Hint — consider the case where si = TRUE. What does this

mean in terms of messages queued up in GlobalReceive?
1.3 Why do we need to lock xi?
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2 Bayesian Nonparametric Clustering

The Dirichlet Process, and its generalization, the Pitman-Yor process define distributions over distributions
containing a countable number of atoms. These tools are useful, e.g. whenever we want to partition objects
into a countable number of groups but do not necessarily want to specify how many we have, yet at the
same time, we would like to specify the distribution from which these .

Denote by H some probability measure on a domain X and let α > 0. Then the Dirichlet Process
DP (H,α) is defined as follows: for any partitioning of X into k sets Xi with ∪ki=1Xi = X and Xi ∩ Xj = ∅
for i 6= j we have that draws from DP (H,α) satisfy

(X(X1), . . . , X(Xk)) ∼ Dirichlet(αH(X1), . . . ,H(Xk)). (3)

In other words, at a resolution given by the sets Xi the measure behaves like a Dirichlet distribution with
associated weights αH(Xi).

2.1 Expected Number of Items for a Dirichlet Process

There exists an equivalent representation in terms of the Chinese Restaurant Process which works as fol-
lows: for each xn ∼ DP (H,α) we draw xn+1 ∼ Unif(x1, . . . , xn) with probability n

n+α and with probability
α

n+α we draw it from H .
Compute a tight upper and lower bound of the number of distinct elements after n draws fromDP (H,α).

Hint — it is OK to approximate sums by integrals. Hint — the expected number is logarithmic in n.

2.2 Expected Number of Items for a Pitman Yor Process

The Pitman-Yor process allows for larger numbers of distinct items by boosting the probability of new
objects beyond α

n+α . The key difference to the Dirichlet process is that now, instead of assigning previously
drawn items the probability ni

n+α we assign them the probability ni−d
n+α and correspondingly the probability

of a draw from H has probability α+md
n+α . Here m is the number of items drawn from H so far and d ∈ (0, 1)

is the discount factor.
Argue that m = O(nd). Hint — it is sufficient if you can show that the rate cannot be lower or higher

than O(nd) by considering the expected case and by approximating m,n to be continuous variables. Note
that this procedure provides a power law behavior.

For a nice application to language modeling see http://jmlr.csail.mit.edu/papers/volume12/
goldwater11a/goldwater11a.pdf.
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3 Semi-Markov Model

Markov models are good when it comes to modeling processes where there is a fair amount of switching
between states or alternatively where the length of a segment is exponentially distributed. Different tran-
sition behavior can, in principle, be encoded by much longer dependencies, but the computational cost for
performing inference in this model is exponential in the length of the context.

Semi-Markov Models address this issue by modifying the transition probability between states. Instead
of having a transition probability p(i|j) for transitioning from state j at time t to state i at time t+ 1 we use
a model of distributions over states and segments. That is, assume that for a time interval [0, T ] we have
pairs (ti, xi) to denote the times a particular state is reached. Moreover assume that t0 = 0 and tn = T (for
some unknown n) and that ti < ti+1. Finally assume that xi 6= xi+1 for all i. In this case we may express
the sequence likelihood by

p((t0, x0), . . . (T, xn)) ∝ ψ(x0) ·
n∏
i=1

ψ(xi, (ti − ti−1)|xi−1) (4)

for some function ψ.

3.1 Under the assumption that each segment cannot be too long, i.e. that ti − ti−1 ≤ c for some c ∈ N
design an algorithm to normalize (4). What is the computational complexity.

Hint — note that each segment only depends on the position and state of the previous segment. Use
this to generate a recursion. Hint — to bound computational complexity you may assume that each
segment has a maximum length τ .

3.2 Derive an algorithm for finding the most likely sequence of annotations. Hint — you can replace a
semiring.
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4 Document Clustering

Assume that we are given a collection of documents, drawn from a mixture of multinomial distributions.
That is, we assume the following model:

• The distribution over clusters is multinomial and the latter is smoothed by a Dirichlet, that is

yi ∼ Multinomial(π) (5)
π ∼ Dirichlet(α) (6)

• For each cluster i ∈ {1..k} the word distribution is drawn from

ψ ∼ Dirichlet(β) (7)

• For each document xi we draw all associated words from a multinomial distribution, that is

xij ∼ Multinomial(ψyi) (8)

In other words, yi selects the multinomial distribution.

For computational convenience we do not attempt to model the document length explicitly.

4.1 Sampling algorithm

Derive a Gibbs sampling algorithm to draw from the model. For this purpose you need to derive the
following.

1. Integrate out π and ψ in the same fashion as the collapsed Gibbs sampler in LDA.

2. Document likelihood p(xi)

3. Conditional cluster likelihood p(yi|xi)

4.2 Implementation

Use the Reuters newswire dataset to group documents into k = 100 clusters.

• Documents are at http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html.

• Perform 1000 Gibbs sampling iterations for convergence.

• Compute the document average log-likelihood and plot it as a function of the number of iterations.
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