ҮАНОО!

Scalable Machine Learning

2. Statistics

Alex Smola
 Yahoo! Research and ANU

http://alex.smola.org/teaching/berkeley2012
Stat 260 SP 12

2. Statistics

Essential tools for data analysis

Statistics

- Probabilities
- Bayes rule, Dependence, independence, conditional probabilities
- Priors, Naive Bayes classifier
- Tail bounds
- Chernoff, Hoeffding, Chebyshev, Gaussian
- A/B testing
- Kernel density estimation
- Parzen windows, Nearest neighbors, Watson-Nadaraya estimator
- Exponential families
- Gaussian, multinomial, Poisson
- Conjugate distributions and smoothing, integrating out

Peninsula Grill

Come check out our new menu specials at your favorite citv diner!

Peninsula Grill

2.1 Probabilities

Bayes

Kolmogorov

Statistics 101

Statistical Inference
Seond Edivin
George Casella
Roget I. Berger

Probability

- Space of events X
- server working; slow response; server broken
- income of the user (e.g. \$95,000)
- query text for search (e.g. "statistics tutorial")
- Probability axioms (Kolmogorov)

$$
\begin{aligned}
& \operatorname{Pr}(X) \in[0,1], \operatorname{Pr}(\mathcal{X})=1 \\
& \operatorname{Pr}\left(\cup_{i} X_{i}\right)=\sum_{i} \operatorname{Pr}\left(X_{i}\right) \text { if } X_{i} \cap X_{j}=\emptyset
\end{aligned}
$$

- Example queries
- $P($ server working $)=0.999$
- $\mathrm{P}(90,000<$ income $<100,000)=0.1$

Venn Diagram

Venn Diagram

X

$$
X \cap X^{\prime}
$$

Venn Diagram

(In)dependence

- Independence $\operatorname{Pr}(x, y)=\operatorname{Pr}(x) \cdot \operatorname{Pr}(y)$
- Login behavior of two users (approximately)
- Disk crash in different colos (approximately)

(In)dependence

- Independence $\operatorname{Pr}(x, y)=\operatorname{Pr}(x) \cdot \operatorname{Pr}(y)$
- Login behavior of two users (approximately)
- Disk crash in different colos (approximately)
- Dependent events
- Emails

$$
\operatorname{Pr}(x, y) \neq \operatorname{Pr}(x) \cdot \operatorname{Pr}(y)
$$

- Queries
- News stream / Buzz / Tweets
- IM communication
- Russian Roulette

(In)dependence

- Independence $\operatorname{Pr}(x, y)=\operatorname{Pr}(x) \cdot \operatorname{Pr}(y)$
- Login behavior of two users (approximately)
- Disk crash in different colos (approximately)
- Dependent events
- Emails
- Queries
- News stream / Buzz / Tweets
- IM communication
- Russian Roulette

A Graphical Model

p(spam, mail) $=$ p(spam) $p($ mail \mid spam $)$

Bayes Rule

- Joint Probability

$$
\operatorname{Pr}(X, Y)=\operatorname{Pr}(X \mid Y) \operatorname{Pr}(Y)=\operatorname{Pr}(Y \mid X) \operatorname{Pr}(X)
$$

- Bayes Rule

$$
\operatorname{Pr}(X \mid Y)=\frac{\operatorname{Pr}(Y \mid X) \cdot \operatorname{Pr}(X)}{\operatorname{Pr}(Y)}
$$

- Hypothesis testing
- Reverse conditioning

AIDS test (Bayes rule)

- Data
- Approximately 0.1% are infected
- Test detects all infections
- Test reports positive for 1% healthy people
- Probability of having AIDS if test is positive

AIDS test (Bayes rule)

- Data
- Approximately 0.1% are infected
- Test detects all infections
- Test reports positive for 1% healthy people
- Probability of having AIDS if test is positive

$$
\begin{aligned}
\operatorname{Pr}(a=1 \mid t) & =\frac{\operatorname{Pr}(t \mid a=1) \cdot \operatorname{Pr}(a=1)}{\operatorname{Pr}(t)} \\
& =\frac{\operatorname{Pr}(t \mid a=1) \cdot \operatorname{Pr}(a=1)}{\operatorname{Pr}(t \mid a=1) \cdot \operatorname{Pr}(a=1)+\operatorname{Pr}(t \mid a=0) \cdot \operatorname{Pr}(a=0)} \\
& =\frac{1 \cdot 0.001}{1 \cdot 0.001+0.01 \cdot 0.999}=0.091
\end{aligned}
$$

Improving the diagnosis

Improving the diagnosis

- Use a follow-up test
- Test 2 reports positive for 90% infections
- Test 2 reports positive for 5% healthy people

$$
\frac{0.01 \cdot 0.05 \cdot 0.999}{1 \cdot 0.9 \cdot 0.001+0.01 \cdot 0.05 \cdot 0.999}=0.357
$$

Improving the diagnosis

- Use a follow-up test
- Test 2 reports positive for 90% infections
- Test 2 reports positive for 5% healthy people

$$
\frac{0.01 \cdot 0.05 \cdot 0.999}{1 \cdot 0.9 \cdot 0.001+0.01 \cdot 0.05 \cdot 0.999}=0.357
$$

- Why can't we use Test 1 twice?

Outcomes are not independent but tests 1 and 2 are conditionally independent

Improving the diagnosis

- Use a follow-up test
- Test 2 reports positive for 90% infections
- Test 2 reports positive for 5% healthy people

$$
\frac{0.01 \cdot 0.05 \cdot 0.999}{1 \cdot 0.9 \cdot 0.001+0.01 \cdot 0.05 \cdot 0.999}=0.357
$$

- Why can't we use Test 1 twice?

Outcomes are not independent but tests 1 and 2 are conditionally independent

$$
p\left(t_{1}, t_{2} \mid a\right)=p\left(t_{1} \mid a\right) \cdot p\left(t_{2} \mid a\right)
$$

Logarithms are good

- Floating point numbers

- Probabilities can be very small. In particular products of many probabilities. Underflow!
- Store data in mantissa, not exponent

$$
\sum_{i} p_{i} \rightarrow \max \pi+\log \sum_{i} \exp \left[\pi_{i}-\max \pi\right]
$$

- Known bug e.g. in Mahout Dirichlet clustering

Application: Naive Bayes

Naive Bayes Spam Filter

Naive Bayes Spam Filter

- Key assumption

Words occur independently of each other given the label of the document

$$
p\left(w_{1}, \ldots, w_{n} \mid \text { spam }\right)=\prod_{i=1}^{n} p\left(w_{i} \mid \text { spam }\right)
$$

Naive Bayes Spam Filter

- Key assumption

Words occur independently of each other given the label of the document

$$
p\left(w_{1}, \ldots, w_{n} \mid \text { spam }\right)=\prod^{n} p\left(w_{i} \mid \mathrm{spam}\right)
$$

- Spam classification via Bayes Rule

$$
p\left(\operatorname{spam} \mid w_{1}, \ldots, w_{n}\right) \propto p(\operatorname{spam}) \prod_{i=1} p\left(w_{i} \mid \text { spam }\right)
$$

Naive Bayes Spam Filter

- Key assumption

Words occur independently of each other given the label of the document

$$
p\left(w_{1}, \ldots, w_{n} \mid \text { spam }\right)=\prod^{n} p\left(w_{i} \mid \text { spam }\right)
$$

- Spam classification via Bayes Rule

$$
p\left(\operatorname{spam} \mid w_{1}, \ldots, w_{n}\right) \propto p(\operatorname{spam}) \prod_{i=1} p\left(w_{i} \mid \text { spam }\right)
$$

- Parameter estimation

Compute spam probability and word distributions for spam and ham

Naive Bayes Spam Filter

Equally likely phrases

- Get rich quick. Buy UCB stock.
- Buy Viagra. Make your UCB experience last longer.
- You deserve a PhD from UCB. We recognize your expertise.

Naive Bayes Spam Filter

Equally likely phrases

- Get rich quick. Buy UCB stock.
- Buy Viagra. Make your UCB experience last longer.
- You deserve a PhD from UCB.

We recognize your expertise.

- Make your rich UCB PhD experience last longer.

A Graphical Model

A Graphical Model

$$
p\left(w_{1}, \ldots, w_{n} \mid \text { spam }\right)=\prod_{i=1}^{n} p\left(w_{i} \mid \text { spam }\right)
$$

A Graphical Model

A Graphical Model

Naive Bayes Spam Filter

- Data
- Emails (headers, body, metadata)
- Labels (spam/ham)
assume that users actually label all mails
- Processing capability
- Billions of e-mails
- 1000s of servers
- Need to estimate $p(y), p\left(x_{i} \mid y\right)$
- Compute distribution of x_{i} for every y
- Compute distribution of y

Delivered-To: alex.smola@gmail.com
Received: by 10.216 .47 .73 with SMTP id s51cs361171web;
Tue, 3 Jan 2012 14:17:53-0800 (PST)
Received: by 10.213.17.145 with SMTP id s17mr2519891eba.147.1325629071725; Tue, 03 Jan 2012 14:17:51-0800 (PST)
Return-Path: alex+caf_=alex.smola=gmail.com@smola.org
Received: from mail-ey0-f175.google.com (mail-ey0-f175.google.com [209.85.215.175]) by mx.google.com with ESMTPS id n4si29264232eef.57.2012.01.03.14.17.51
(version=TLSv1/SSLv3 cipher=OTHER);
Tue, 03 Jan 2012 14:17:51-0800 (PST)
Received-SPF: neutral (google.com: 209.85.215.175 is neither permitted nor denied by best guess record for domain of alex+caf_=alex.smola=gmail.com@smola.org) clientip=209.85.215.175;
Authentication-Results: mx.google.com; spf=neutral (google.com: 209.85.215.175 is neither permitted nor denied by best guess record for domain of alex
+caf_=alex.smola=gmail.com@smola.org) smtp.mail=alex+caf_=alex.smola=gmail.com@smola.org;
dkim=pass (test mode) header.i=@googlemail.com
Received: by eaal1 with SMTP id 11so15092746eaa. 6
for alex.smola@gmail.com; Tue, 03 Jan 2012 14:17:51 -0800 (PST)
Received: by 10.205.135.18 with SMTP id ie18mr5325064bkc.72.1325629071362;
Tue, 03 Jan 2012 14:17:51-0800 (PST)
X-Forwarded-To: alex.smola@gmail.com
X-Forwarded-For: alex@smola.org alex.smola@gmail.com
Delivered-To: alex@smola.org
Received: by 10.204.65.198 with SMTP id k6cs206093bki;
Tue, 3 Jan 2012 14:17:50-0800 (PST)
Received: by 10.52.88.179 with SMTP id bh19mr10729402vdb.38.1325629068795;
Tue, 03 Jan 2012 14:17:48-0800 (PST)
Return-Path: althoff.tim@googlemail.com
Received: from mail-vx0-f179.google.com (mail-vx0-f179.google.com [209.85.220.179])
by $m x . g o o g l e . c o m$ with ESMTPS id dt4si11767074vdb.93.2012.01.03.14.17.48
(version=TLSv1/SSLv3 cipher=OTHER);
Tue, 03 Jan 2012 14:17:48-0800 (PST)
Received-SPF: pass (google.com: domain of althoff.tim@googlemail.com designates 209.85.220.179 as permitted sender) client-ip=209.85.220.179;

Received: by vcbf13 with SMTP id f13so11295098vcb. 10
for alex@smola.org; Tue, 03 Jan 2012 14:17:48-0800 (PST)
DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed;
d=googlemail.com; s=gamma;
h=mime-version:sender:date:x-google-sender-auth:message-id:subject
:from:to:content-type;
bh=WCbdZ5sXac25dpH02XcRyD0dts993hKwsAVXpGrFh0w=;
$b=W K 2 B 2+E x W n f / g v T k w 6 u U v K u P 4 X e o K n l J q 3 U S Y T m 0 R A R K 8 d S F j y 0 Q s I H e A P 9 Y s s x p 60$
7ngGoTzYqd+ZsyJfvQcLAWp1PCJhG8AMcnqWkx0NMeoFvIp2HQooZwxS0Cx5ZRgY+7qX
uIbbdna4lUDXj6UFe16SpLDCkptd80Z3gr7+o=
MIME-Version: 1.0
Received: by 10.220 .108 .81 with SMTP id e17mr24104004vcp.67.1325629067787; Tue, 03 Jan 2012 14:17:47-0800 (PST)
Sender: althoff.tim@googlemail.com
Received: by 10.220.17.129 with HTTP; Tue, 3 Jan 2012 14:17:47 -0800 (PST) Date: Tue, 3 Jan 2012 14:17:47-0800
X-Google-Sender-Auth: 6bwi6D17HjZIkxOEol38NZzyeHs
Message-ID: CAFJJHDGPBW+SdZg0MdAABiAKydDk9tpeMoDijYGjoG0-WC7osg@mail.gmail.com
Subject: CS 281B. Advanced Topics in Learning and Decision Making
From. Tim al thoff <ol thoff@eprs herkelev edu>

Recall - Map Reduce

- 1000s of (faulty) machines
- Lots of jobs are mostly embarrassingly parallel (except for a sorting/transpose phase)
- Functional programming origins
- Map(key,value) processes each (key,value) pair and outputs a new (key,value) pair
- Reduce(key,value) reduces all instances with same key to aggregate

Recall - Map Reduce

- 1000s of (faulty) machines
- Lots of jobs are mostly embarrassingly parallel (except for a sorting/transpose phase)
- Functional programming origins
- Map(key,value) processes each (key,value) pair and outputs a new (key,value) pair
- Reduce(key,value) reduces all instances with same key to aggregate
- Example - extremely naive wordcount
- Map(docID, document) for each document emit many (wordID, count) pairs
- Reduce(wordID, count)
sum over all counts for given wordID and emit (wordID, aggregate)

Naive NaiveBayes Classifier

- Two classes (spam/ham)
- Binary features (e.g. presence of \$\$\$, viagra)
- Simplistic Algorithm
- Count occurrences of feature for spam/ham
- Count number of spam/ham mails

feature probability

spam probability

$$
\begin{gathered}
p\left(x_{i}=\text { TRUE } \mid y\right)=\frac{n(i, y)}{n(y)} \text { and } p(y)=\frac{n(y)}{n} \\
p(y \mid x) \propto \frac{n(y)}{n} \prod_{i: x_{i}=\text { TRUE }} \frac{n(i, y)}{n(y)} \prod_{i: x_{i}=\text { FALSE }} \frac{n(y)-n(i, y)}{n(y)}
\end{gathered}
$$

Naive NaiveBayes Classifier

what if $n(i, y)=n(y)$?

what if $n(i, y)=0$?

$$
p(y \mid x) \propto \frac{n(y)}{n} \prod_{i: x_{i}=\text { TRUE }} \frac{n(i, y)}{n(y)} \prod_{i: x_{i}=\text { FALSE }} \frac{n(y)-n(i, y)}{n(y)}
$$

Naive NaiveBayes Classifier

what if $n(i, y)=0$?

what if $n(i, y)=n(y)$?

$p(y \mid x) \propto \frac{n(y)}{n} \prod_{i: x_{i}=\text { TRUE }} \frac{n(i, y)}{n(y)} \prod_{i: x_{i}=\text { FALSE }} \frac{n(y)-n(i, y)}{n(y)}$

Simple Algorithm

- For each document (x, y) do
- Aggregate label counts given y
- For each feature x_{i} in x do
- Aggregate statistic for (x_{i}, y) for each y
- For y estimate distribution $p(y)$
- For each (x_{i}, y) pair do

Estimate distribution p($\left.x_{i} \mid y\right)$, e.g. Parzen Windows, Exponential family (Gauss, Laplace, Poisson, ...), Mixture

- Given new instance compute

$$
p(y \mid x) \propto p(y) \prod_{j} p\left(x_{j} \mid y\right)
$$

Simple Algorithm

- For each document (x, y) do
- Aggregate label counts given y pass over all data
- For each feature x_{i} in x do
- Aggregate statistic for $\left(x_{i}, y\right)$ for each y
- For y estimate distribution $p(y)$
- For each (x_{i}, y) pair do trivially parallel
Estimate distribution $p\left(x_{i} \mid y\right)$, e.g. Parzen Windows, Exponential family (Gauss, Laplace, Poisson, ...), Mixture
- Given new instance compute

$$
p(y \mid x) \propto p(y) \prod_{j} p\left(x_{j} \mid y\right)
$$

MapReduce Algorithm

- Map(document (x, y))
- For each mapper for each feature x_{i} in x do
- Aggregate statistic for (x_{i}, y) for each y
- Send statistics (key $=\left(x_{i}, y\right)$, value $=$ counts $)$ to reducer
- Reduce $\left(x_{i}, y\right)$
- Aggregate over all messages from mappers
- Estimate distribution $p\left(x_{i} \mid y\right)$, e.g. Parzen Windows, Exponential family (Gauss, Laplace, Poisson, ...), Mixture
- Send coordinate-wise model to global storage
- Given new instance compute

$$
p(y \mid x) \propto p(y) \prod_{j} p\left(x_{j} \mid y\right)
$$

MapReduce Algorithm

- Map(document $(x, y))$
- For each mapper for each feature x_{i} in x do local per
- Aggregate statistic for (x_{i}, y) for each y chunkserver
- Send statistics (key $=\left(x_{i}, y\right)$, value $=$ counts $)$ to reducer
- Reduce $\left(x_{i}, y\right)$

only aggregates

- Aggregate over all messages from mappers needed
- Estimate distribution $p\left(x_{i} \mid y\right)$, e.g. Parzen Windows, Exponential family (Gauss, Laplace, Poisson, ...), Mixture
- Send coordinate-wise model to global storage
- Given new instance compute

$$
p(y \mid x) \propto p(y) \prod_{j} p\left(x_{j} \mid y\right)
$$

Estimating Probabilities

Binomial Distribution

- Two outcomes (head, tail); $(0,1)$
- Data likelihood

$$
p(X ; \pi)=\pi^{n_{1}}(1-\pi)^{n_{0}}
$$

- Maximum Likelihood Estimation
- Constrained optimization problem $\pi \in[0,1]$
- Incorporate constraint via $p(x ; \theta)=\frac{e^{x \theta}}{1+e^{\theta}}$
- Taking derivatives yields

$$
\theta=\log \frac{n_{1}}{n_{0}+n_{1}} \Longleftrightarrow p(x=1)=\frac{n_{1}}{n_{0}+n_{1}}
$$

... in detail ...

$$
\begin{aligned}
p(X ; \theta) & =\prod_{i=1}^{n} p\left(x_{i} ; \theta\right)=\prod_{i=1}^{n} \frac{e^{\theta x_{i}}}{1+e^{\theta}} \\
\Longrightarrow \log p(X ; \theta) & =\theta \sum_{i=1}^{n} x_{i}-n \log \left[1+e^{\theta}\right] \\
\Longrightarrow \partial_{\theta} \log p(X ; \theta) & =\sum_{i=1}^{n} x_{i}-n \frac{e^{\theta}}{1+e^{\theta}} \\
\Longleftrightarrow \frac{1}{n} \sum_{i=1}^{n} x_{i} & =\frac{e^{\theta}}{1+e^{\theta}}=p(x=1)
\end{aligned}
$$

... in detail ...

$$
\begin{aligned}
p(X ; \theta) & =\prod_{i=1}^{n} p\left(x_{i} ; \theta\right)=\prod_{i=1}^{n} \frac{e^{\theta x_{i}}}{1+e^{\theta}} \\
\Longrightarrow \log p(X ; \theta) & =\theta \sum_{i=1}^{n} x_{i}-n \log \left[1+e^{\theta}\right] \\
\Longrightarrow \partial_{\theta} \log p(X ; \theta) & =\sum_{i=1}^{n} x_{i}-n \frac{e^{\theta}}{1+e^{\theta}} \\
\Longleftrightarrow \frac{1}{n} \sum_{i=1}^{n} x_{i} & =\frac{e^{\theta}}{1+e^{\theta}}=p(x=1)
\end{aligned}
$$

empirical probability of $x=1$

Discrete Distribution

- n outcomes (e.g. USA, Canada, India, UK, NZ)
- Data likelihood

$$
p(X ; \pi)=\prod \pi_{i}^{n_{i}}
$$

- Maximum Likelihood Estimation
- Constrained optimization problem ... or ...
- Incorporate constraint via $p(x ; \theta)=\frac{\exp \theta_{x}}{\sum_{x^{\prime}} \exp \theta_{x^{\prime}}}$
- Taking derivatives yields

$$
\theta_{i}=\log \frac{n_{i}}{\sum_{j} n_{j}} \Longleftrightarrow p(x=i)=\frac{n_{i}}{\sum_{j} n_{j}}
$$

Tossing a Dice

Tossing a Dice

Key Questions

- Do empirical averages converge?
- Probabilities
- Means / moments
- Rate of convergence and limit distribution
- Worst case guarantees
- Using prior knowledge
drug testing, semiconductor fabs computational advertising user interface design ...

2.2 Tail Bounds

Chebyshev

Chernoff

Hoeffding

Expectations

- Random variable x with probability measure
- Expected value of $f(x)$

$$
\mathbf{E}[f(x)]=\int f(x) d p(x)
$$

- Special case - discrete probability mass

$$
\operatorname{Pr}\{x=c\}=\mathbf{E}[\{x=c\}]=\int\{x=c\} d p(x)
$$

(same trick works for intervals)

- Draw x_{i} identically and independently from p
- Empirical average

$$
\mathbf{E}_{\text {emp }}[f(x)]=\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right) \text { and } \underset{\text { emp }}{\operatorname{Pr}}\{x=c\}=\frac{1}{n} \sum_{i=1}^{n}\left\{x_{i}=c\right\}
$$

Deviations

- Gambler rolls dice 100 times

$$
\hat{P}(X=6)=\frac{1}{n} \sum_{i=1}^{n}\left\{x_{i}=6\right\}
$$

- ' 6 ' only occurs 11 times. Fair number is 16.7

IS THE DICE TAINTED?

- Probability of seeing ' 6 ' at most 11 times

$$
\operatorname{Pr}(X \leq 11)=\sum_{i=0}^{11} p(i)=\sum_{i=0}^{11}\binom{100}{i}\left[\frac{1}{6}\right]^{i}\left[\frac{5}{6}\right]^{100-i} \approx 7.0 \%
$$

It's probably OK ... can we develop general theory?

Deviations

- Gambler rolls dice 100 times

$$
\hat{P}(X=6)=\frac{1}{n} \sum_{i=1}^{n}\left\{x_{i}=6\right\}
$$

- '6' only occurs 11 times. Fair number is 16.7

IS THE DICE TAINTED?
ad campaign working new page layout better drug working

- Probability of seeing ' 6 ' at most 11 times

$$
\operatorname{Pr}(X \leq 11)=\sum_{i=0}^{11} p(i)=\sum_{i=0}^{11}\binom{100}{i}\left[\frac{1}{6}\right]^{i}\left[\frac{5}{6}\right]^{100-i} \approx 7.0 \%
$$

It's probably OK ... can we develop general theory?

Empirical average for a dice

how quickly does it converge?

Law of Large Numbers

- Random variables $\mathbf{x}_{\mathbf{i}}$ with mean $\mu=\mathbf{E}\left[x_{i}\right]$
- Empirical average $\hat{\mu}_{n}:=\frac{1}{n} \sum_{i=1}^{n} x_{i}$
- Weak Law of Large Numbers

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(\left|\hat{\mu}_{n}-\mu\right| \leq \epsilon\right)=1 \text { for any } \epsilon>0
$$

- Strong Law of Large Numbers

$$
\operatorname{Pr}\left(\lim _{n \rightarrow \infty} \hat{\mu}_{n}=\mu\right)=1
$$

this means convergence in probability

Empirical average for a dice

- Upper and lower bounds are $\mu \pm \sqrt{\operatorname{Var}(x) / n}$
- This is an example of the central limit theorem

Central Limit Theorem

- Independent random variables x_{i} with mean μ_{i} and standard deviation σ_{i}
- The random variable

$$
z_{n}:=\left[\sum_{i=1}^{n} \sigma_{i}^{2}\right]^{-\frac{1}{2}}\left[\sum_{i=1}^{n} x_{i}-\mu_{i}\right]
$$

converges to a Normal Distribution $\mathcal{N}(0,1)$

Central Limit Theorem

- Independent random variables x_{i} with mean μ_{i} and standard deviation σ_{i}
- The random variable

$$
z_{n}:=\left[\sum_{i=1}^{n} \sigma_{i}^{2}\right]^{-\frac{1}{2}}\left[\sum_{i=1}^{n} x_{i}-\mu_{i}\right]
$$

converges to a Normal Distribution $\mathcal{N}(0,1)$

- Special case - IID random variables \& average

$$
\begin{aligned}
\frac{\sqrt{n}}{\sigma}\left[\frac{1}{n} \sum_{i=1}^{n} x_{i}-\mu\right] & \rightarrow \mathcal{N}(0,1) \\
& O\left(n^{-\frac{1}{2}}\right) \text { convergence }
\end{aligned}
$$

Slutsky's Theorem

- Continuous mapping theorem
- X_{i} and Y_{i} sequences of random variables
- X_{i} has as its limit the random variable X
- Y_{i} has as its limit the constant c
- $g(x, y)$ is continuous function for all $g(x, c)$
- $g\left(X_{i}, Y_{i}\right)$ converges in distribution to $g(X, c)$

Delta Method

- Random variable X_{i} convergent to b

$$
a_{n}^{-2}\left(X_{n}-b\right) \rightarrow \mathcal{N}(0, \Sigma) \text { with } a_{n}^{2} \rightarrow 0 \text { for } n \rightarrow \infty
$$

- g is a continuously differentiable function for b
- Then $g\left(X_{i}\right)$ inherits convergence properties

$$
a_{n}^{-2}\left(g\left(X_{n}\right)-g(b)\right) \rightarrow \mathcal{N}\left(0,\left[\nabla_{x} g(b)\right] \Sigma\left[\nabla_{x} g(b)\right]^{\top}\right)
$$

- Proof: use Taylor expansion for $\mathbf{g}\left(X_{\mathrm{n}}\right)-\mathrm{g}(\mathrm{b})$

$$
a_{n}^{-2}\left[g\left(X_{n}\right)-g(b)\right]=\left[\nabla_{x} g\left(\xi_{n}\right)\right]^{\top} a_{n}^{-2}\left(X_{n}-b\right)
$$

- $g\left(\xi_{n}\right)$ is on line segment $\left[X_{n}, b\right]$
- By Slutsky's theorem it converges to $g(b)$
- Hence $g\left(X_{i}\right)$ is asymptotically normal

Fourier Transform

- Fourier transform relations

$$
\begin{aligned}
F[f](\omega) & :=(2 \pi)^{-\frac{d}{2}} \int_{\mathbb{R}^{n}} f(x) \exp (-i\langle\omega, x\rangle) d x \\
F^{-1}[g](x) & :=(2 \pi)^{-\frac{d}{2}} \int_{\mathbb{R}^{n}} g(\omega) \exp (i\langle\omega, x\rangle) d \omega .
\end{aligned}
$$

- Useful identities
- Identity

$$
F^{-1} \circ F=F \circ F^{-1}=\mathrm{Id}
$$

- Derivative

$$
F\left[\partial_{x} f\right]=-i \omega F[f]
$$

- Convolution (also holds for inverse transform)

$$
F[f \circ g]=(2 \pi)^{\frac{d}{2}} F[f] \cdot F[g]
$$

The Characteristic Function Method

- Characteristic function

$$
\phi_{X}(\omega):=F^{-1}[p(x)]=\int \exp (i\langle\omega, x\rangle) d p(x)
$$

- For X and Y independent we have
- Joint distribution is convolution

$$
p_{X+Y}(z)=\int p_{X}(z-y) p_{Y}(y) d y=p_{X} \circ p_{Y}
$$

- Characteristic function is product

$$
\phi_{X+Y}(\omega)=\phi_{X}(\omega) \cdot \phi_{Y}(\omega)
$$

- Proof - plug in definition of Fourier transform
- Characteristic function is unique

Proof - Weak law of large numbers

- Require that expectation exists
- Taylor expansion of exponential

$$
\begin{aligned}
\exp (i w x) & =1+i\langle w, x\rangle+o(|w|) \\
\text { and hence } \phi_{X}(\omega) & =1+i w \mathbf{E}_{X}[x]+o(|w|) .
\end{aligned}
$$

(need to assume that we can bound the tail)

- Average of random variables

$$
\phi_{\hat{\mu}_{m}}(\omega)=\left(1+\frac{i}{m} w \mu+o\left(m^{-1}|w|\right)\right)^{m}
$$

convolution

- Limit is constant distribution

$$
\phi_{\hat{\mu}_{m}}(\omega) \rightarrow \exp i \omega \mu=1+i \omega \mu+\ldots
$$

Warning

- Moments may not always exist
- Cauchy distribution

$$
p(x)=\frac{1}{\pi} \frac{1}{1+x^{2}}
$$

- For the mean to exist the following integral would have to converge

$$
\int|x| d p(x) \geq \frac{2}{\pi} \int_{1}^{\infty} \frac{x}{1+x^{2}} d x \geq \frac{1}{\pi} \int_{1}^{\infty} \frac{1}{x} d x=\infty
$$

Proof - Central limit theorem

- Require that second order moment exists (we assume they're all identical WLOG)
- Characteristic function

$$
\exp (i w x)=1+i w x-\frac{1}{2} w^{2} x^{2}+o\left(|w|^{2}\right)
$$

and hence $\phi_{X}(\omega)=1+i w \mathbf{E}_{X}[x]-\frac{1}{2} w^{2} \operatorname{var}_{X}[x]+o\left(|w|^{2}\right)$

- Subtract out mean (centering) $z_{n}:=\left[\sum_{i=1}^{n} 0_{i}^{z_{i}}\right]^{-\frac{1}{2}}\left[\sum_{i=1}^{n} x_{i}-\mu_{i}\right]$

$$
\phi_{Z_{m}}(\omega)=\left(1-\frac{1}{2 m} w^{2}+o\left(m^{-1}|w|^{2}\right)\right)^{m} \rightarrow \exp \left(-\frac{1}{2} w^{2}\right) \text { for } m \rightarrow \infty
$$

This is the FT of a Normal Distribution

Central Limit Theorem in Practice

scaled

Finite sample tail bounds

Simple tail bounds

- Gauss Markov inequality Random variable X with mean μ

$$
\operatorname{Pr}(X \geq \epsilon) \leq \mu / \epsilon
$$

Proof - decompose expectation
$\operatorname{Pr}(X \geq \epsilon)=\int_{\epsilon}^{\infty} d p(x) \leq \int_{\epsilon}^{\infty} \frac{x}{\epsilon} d p(x) \leq \epsilon^{-1} \int_{0}^{\infty} x d p(x)=\frac{\mu}{\epsilon}$.

- Chebyshev inequality

Random variable X with mean μ and variance σ^{2}
$\operatorname{Pr}\left(\mid \hat{\mu}_{m}-\mu \|>\epsilon\right) \leq \sigma^{2} m^{-1} \epsilon^{-2}$ or equivalently $\epsilon \leq \sigma / \sqrt{m \delta}$
Proof - applying Gauss-Markov to $\mathrm{Y}=(\mathrm{X}-\mu)^{2}$ with confidence ε^{2} yields the result.

Scaling behavior

- Gauss-Markov

$$
\epsilon \leq \frac{\mu}{\delta}
$$

Scales properly in μ but expensive in δ

- Chebyshev

$$
\epsilon \leq \frac{\sigma}{\sqrt{m \delta}}
$$

Proper scaling in σ but still bad in δ

Can we get logarithmic scaling in δ ?

Chernoff bound

- KL-divergence variant of Chernoff bound

$$
K(p, q)=p \log \frac{p}{q}+(1-p) \log \frac{1-p}{1-q}
$$

- n independent tosses from biased coin with p

$$
\operatorname{Pr}\left\{\sum_{i} x_{i} \geq n q\right\} \leq \exp (-n K(q, p)) \leq \exp \left(-2 n(p-q)^{2}\right)
$$

Pinsker's inequality

- Proof w.l.o.g. $q>p$ and set $k \geq q n$

$$
\begin{aligned}
& \frac{\operatorname{Pr}\left\{\sum_{i} x_{i}=k \mid q\right\}}{\operatorname{Pr}\left\{\sum_{i} x_{i}=k \mid p\right\}}=\frac{q^{k}(1-q)^{n-k}}{p^{k}(1-p)^{n-k}} \geq \frac{q^{q n}(1-q)^{n-q n}}{p^{q n}(1-p)^{n-q n}}=\exp (n K(q, p)) \\
& \sum_{k \geq n q} \operatorname{Pr}\left\{\sum_{i} x_{i}=k \mid p\right\} \leq \sum_{k \geq n q} \operatorname{Pr}\left\{\sum_{i} x_{i}=k \mid q\right\} \exp (-n K(q, p)) \leq \exp (-n K(q, p))
\end{aligned}
$$

McDiarmid Inequality

- Independent random variables X_{i}
- Function $f: \mathcal{X}^{m} \rightarrow \mathbb{R}$
- Deviation from expected value
$\operatorname{Pr}\left(\left|f\left(x_{1}, \ldots, x_{m}\right)-\mathbf{E}_{X_{1}, \ldots, X_{m}}\left[f\left(x_{1}, \ldots, x_{m}\right)\right]\right|>\epsilon\right) \leq 2 \exp \left(-2 \epsilon^{2} C^{-2}\right)$
Here \mathbf{C} is given by $C^{2}=\sum_{i=1}^{m} c_{i}^{2}$ where

$$
\left|f\left(x_{1}, \ldots, x_{i}, \ldots, x_{m}\right)-f\left(x_{1}, \ldots, x_{i}^{\prime}, \ldots, x_{m}\right)\right| \leq c_{i}
$$

- Hoeffding's theorem
f is average and X_{i} have bounded range c

$$
\operatorname{Pr}\left(\left|\hat{\mu}_{m}-\mu\right|>\epsilon\right) \leq 2 \exp \left(-\frac{2 m \epsilon^{2}}{c^{2}}\right) .
$$

Scaling behavior

- Hoeffding

$$
\begin{array}{r}
\delta:=\operatorname{Pr}\left(\left|\hat{\mu}_{m}-\mu\right|>\epsilon\right) \leq 2 \exp \left(-\frac{2 m \epsilon^{2}}{c^{2}}\right) \\
\Longrightarrow \log \delta / 2 \leq-\frac{2 m \epsilon^{2}}{c^{2}} \\
\Longrightarrow \epsilon \leq c \sqrt{\frac{\log 2-\log \delta}{2 m}}
\end{array}
$$

This helps when we need to combine several tail bounds since we only pay logarithmically in terms of their combination.

More tail bounds

- Higher order moments
- Bernstein inequality (needs variance bound)

$$
\operatorname{Pr}\left(\mu_{m}-\mu \geq \epsilon\right) \leq \exp \left(-\frac{t^{2} / 2}{\sum_{i} \mathbf{E}\left[X_{i}^{2}\right]+M t / 3}\right)
$$

here M upper-bounds the random variables X_{i}

- Proof via Gauss-Markov inequality applied to exponential sums (hence exp. inequality)
- See also Azuma, Bennett, Chernoff, ...
- Absolute / relative error bounds
- Bounds for (weakly) dependent random variables

Tail bounds in practice

A/B testing

- Two possible webpage layouts
- Which layout is better?
- Experiment
- Half of the users see A
- The other half sees design B

- How many trials do we need to decide which page attracts more clicks?
Assume that the probabilities are $p(A)=0.1$ and $p(B)=0.11$ respectively and that $p(A)$ is known

Chebyshev Inequality

- Need to bound for a deviation of 0.01
- Mean is $p(B)=0.11$ (we don't know this yet)
- Want failure probability of 5%
- If we have no prior knowledge, we can only bound the variance by $\sigma^{2}=0.25$

$$
m \leq \frac{\sigma^{2}}{\epsilon^{2} \delta}=\frac{0.25}{0.01^{2} \cdot 0.05}=50,000
$$

- If we know that the click probability is at most 0.15 we can bound the variance at 0.15 * $0.85=0.1275$. This requires at most 25,500 users.

Hoeffding's bound

- Random variable has bounded range [0, 1] (click or no click), hence $c=1$
- Solve Hoeffding's inequality for m

$$
m \leq-\frac{c^{2} \log \delta / 2}{2 \epsilon^{2}}=-\frac{1 \cdot \log 0.025}{2 \cdot 0.01^{2}}<18,445
$$

This is slightly better than Chebyshev.

Normal Approximation (Central Limit Theorem)

- Use asymptotic normality
- Gaussian interval containing 0.95 probability

$$
\frac{1}{2 \pi \sigma^{2}} \int_{\mu-\epsilon}^{\mu+\epsilon} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) d x=0.95
$$

is given by $\varepsilon=2.96 \sigma$.

- Use variance bound of 0.1275 (see Chebyshev)

$$
m \leq \frac{2.96^{2} \sigma^{2}}{\epsilon^{2}}=\frac{2.96^{2} \cdot 0.1275}{0.01^{2}} \leq 11,172
$$

Same rate as Hoeffding bound! Better bounds by bounding the variance.

Beyond

- Many different layouts?
- Combinatorial strategy to generate them (aka the Thai Restaurant process)
- What if it depends on the user / time of day
- Stateful user (e.g. query keywords in search)
- What if we have a good prior of the response (rather than variance bound)?
- Explore/exploit/reinforcement learning/control (more details at the end of this class)

2.3 Kernel Density Estimation

Density Estimation

- For discrete bins (e.g. male/female; English/French/German/Spanish/Chinese) we get good uniform convergence:
- Applying the union bound and Hoeffding

$$
\begin{aligned}
\operatorname{Pr}\left(\sup _{a \in A}|\hat{p}(a)-p(a)| \geq \epsilon\right) & \leq \sum_{a \in A} \operatorname{Pr}(|\hat{p}(a)-p(a)| \geq \epsilon) \\
& \leq 2|A| \exp \left(-2 m \epsilon^{2}\right)
\end{aligned}
$$

- Solving for error probability good news

$$
\frac{\delta}{2|A|} \leq \exp \left(-m \epsilon^{2}\right) \Longrightarrow \epsilon \leq \sqrt{\frac{\log 2|A|-\log \delta}{2 m}}
$$

Density Estimation

- Continuous domain $=$ infinite number of bins
- Curse of dimensionality
- 10 bins on $[0,1]$ is probably good
- 10^{10} bins on $[0,1]^{10}$ requires high accuracy in estimate: probability mass per cell also decreases by 10^{10}.

Bin Counting

Bin Counting

Bin Counting

Parzen Windows

- Naive approach

Use empirical density (delta distributions)

$$
p_{\mathrm{emp}}(x)=\frac{1}{m} \sum_{i=1}^{m} \delta_{x_{i}}(x)
$$

- This breaks if we see slightly different instances
- Kernel density estimate

Smear out empirical density with a nonnegative smoothing kernel $k_{x}\left(x^{\prime}\right)$ satisfying

$$
\int_{\mathcal{X}} k_{x}\left(x^{\prime}\right) d x^{\prime}=1 \text { for all } x
$$

Parzen Windows

- Density estimate

$$
\begin{aligned}
p_{\mathrm{emp}}(x) & =\frac{1}{m} \sum_{i=1}^{m} \delta_{x_{i}}(x) \\
\hat{p}(x) & =\frac{1}{m} \sum_{i=1}^{m} k_{x_{i}}(x)
\end{aligned}
$$

- Smoothing kernels

$$
(2 \pi)^{-\frac{1}{2}} e^{-\frac{1}{2} x^{2}} \quad \frac{1}{2} e^{-|x|}
$$

$$
\frac{3}{4} \max \left(0,1-x^{2}\right) \quad \frac{1}{2} \chi_{[-1,1]}(x)
$$

Size matters

Size matters

- Kernel width $\quad k_{x_{i}}(x)=r^{-d} h\left(\frac{x-x_{i}}{r}\right)$
- Too narrow overfits
- Too wide smoothes with constant distribution
- How to choose?

Smoothing

Gaussian Kernel with width $\sigma=1$

Smoothing

Laplacian Kernel with width $\lambda=1$

Smoothing

Laplacian Kernel with width $\lambda=10$

Capacity Control

Capacity control

- Need automatic mechanism to select scale
- Overfitting
- Maximum likelihood will lead to $r=0$ (smoothing kernels peak at instances)
- This is (typically) a set of measure 0 .
- Validation set

Set aside data just for calibrating r

- Leave-one-out estimation

Estimate likelihood using all but one instance

- Alternatives: use a prior on r; convergence analysis

Capacity Control

- Validation set

$$
\begin{aligned}
\log \hat{p}\left(X^{\prime}\right) & =\sum_{x^{\prime} \in X^{\prime}} \log \hat{p}\left(x^{\prime}\right) \\
& =\sum_{x^{\prime} \in X^{\prime}} \log \sum_{x \in X} k\left(\frac{x-x^{\prime}}{r}\right)-\left|X^{\prime}\right|[d \log r+\log |X|]
\end{aligned}
$$

- Leave-one-out crossvalidation

$$
\begin{aligned}
\hat{p}_{X \backslash\{x\}}(x) & =\frac{1}{m-1} \sum_{x^{\prime} \in X \backslash\{x\}} r^{-d} k\left(\frac{x^{\prime}-x}{r}\right) \\
& =\frac{m}{m-1}\left[\hat{p}(x)-m^{-1} r^{-d} k(0)\right] \\
\Longrightarrow \mathcal{L}[X] & =m \log m /(m-1)+\sum_{x \in X} \log \left[\hat{p}(x)-m^{-1} r^{-d} k(0)\right]
\end{aligned}
$$

Leave-one out estimate

Optimal estimate

Laplacian Kernel with width optimal λ

Silverman's rule

Silverman's rule

- Chicken and egg problem
- Want wide kernel for low density region
- Want narrow kernel where we have much data
- Need density estimate to estimate density
- Simple hack

Use average distance from k nearest neighbors

$$
r_{i}=\frac{r}{k} \sum_{x \in \mathrm{NN}\left(x_{i}, k\right)}\left\|x_{i}-x\right\|
$$

Watson-Nadaraya estimator

Weighted smoother

- Problem

Given pairs (x_{i}, y_{i}) estimate $y \mid x$ for new x

- Idea

Use distance weighted average of y_{i}

$$
\begin{aligned}
& \hat{y}(x)=\sum_{i} y_{i} \frac{k_{x_{i}}(x)}{\sum_{j} k_{x_{j}}(x)}=\frac{\sum_{i} y_{i} k_{x_{i}}(x)}{\sum_{j} k_{x_{j}}(x)} \\
& \text { labels } \begin{array}{c}
\text { local } \\
\text { weights }
\end{array}
\end{aligned}
$$

Watson-Nadaraya Classifier

k-Nearest Neighbors

- Further simplification
- Same weight for all nearest neighbors
- Same number of neighbors everywhere
- Classification

Use majority rule to estimate label

- Regression

Use average for label

2.4 Exponential Families

Exponential Families

Exponential Families

- Density function

$$
\begin{aligned}
p(x ; \theta) & =\exp (\langle\phi(x), \theta\rangle-g(\theta)) \\
\text { where } g(\theta) & =\log \sum_{x^{\prime}} \exp \left(\left\langle\phi\left(x^{\prime}\right), \theta\right\rangle\right)
\end{aligned}
$$

Exponential Families

- Density function

$$
\begin{aligned}
p(x ; \theta) & =\exp (\langle\phi(x), \theta\rangle-g(\theta)) \\
\text { where } g(\theta) & =\log \sum_{x^{\prime}} \exp \left(\left\langle\phi\left(x^{\prime}\right), \theta\right\rangle\right)
\end{aligned}
$$

- Log partition function generates cumulants

$$
\begin{aligned}
\partial_{\theta} g(\theta) & =\mathbf{E}[\phi(x)] \\
\partial_{\theta}^{2} g(\theta) & =\operatorname{Var}[\phi(x)]
\end{aligned}
$$

Exponential Families

- Density function

$$
\begin{aligned}
p(x ; \theta) & =\exp (\langle\phi(x), \theta\rangle-g(\theta)) \\
\text { where } g(\theta) & =\log \sum_{x^{\prime}} \exp \left(\left\langle\phi\left(x^{\prime}\right), \theta\right\rangle\right)
\end{aligned}
$$

- Log partition function generates cumulants

$$
\begin{aligned}
\partial_{\theta} g(\theta) & =\mathbf{E}[\phi(x)] \\
\partial_{\theta}^{2} g(\theta) & =\operatorname{Var}[\phi(x)]
\end{aligned}
$$

- g is convex (second derivative is p.s.d.)

Examples

- Binomial Distribution
- Discrete Distribution (e_{x} is unit vector for x)
- Gaussian

$$
\phi(x)=x
$$

$$
\phi(x)=e_{x}
$$

$$
\phi(x)=\left(x, \frac{1}{2} x x^{\top}\right)
$$

- Poisson (counting measure $\mathbf{1} / \mathbf{x}!$) $\phi(x)=x$
- Dirichlet, Beta, Gamma, Wishart, ...

Normal Distribution

Poisson Distribution

Beta Distribution

Dirichlet Distribution

... this is a distribution over distributions ...

Maximum Likelihood

Maximum Likelihood

- Negative log-likelihood

$$
-\log p(X ; \theta)=\sum_{i=1}^{n} g(\theta)-\left\langle\phi\left(x_{i}\right), \theta\right\rangle
$$

Maximum Likelihood

- Negative log-likelihood

$$
-\log p(X ; \theta)=\sum_{i=1}^{n} g(\theta)-\left\langle\phi\left(x_{i}\right), \theta\right\rangle
$$

- Taking derivatives
empirical average

$$
-\partial_{\theta} \log p(X ; \theta)=m\left[\mathbf{E}[\phi(x)]-\frac{1}{m} \sum_{i=1}^{n} \phi\left(x_{i}\right)\right]
$$

We pick the parameter such that the distribution matches the empirical average.

Conjugate Priors

- Unless we have lots of data estimates are weak
- Usually we have an idea of what to expect

$$
p(\theta \mid X) \propto p(X \mid \theta) \cdot p(\theta)
$$

we might even have 'seen' such data before

- Solution: add 'fake' observations
$p(\theta) \propto p\left(X_{\text {fake }} \mid \theta\right)$ hence $p(\theta \mid X) \propto p(X \mid \theta) p\left(X_{\text {fake }} \mid \theta\right)=p\left(X \cup X_{\text {fake }} \mid \theta\right)$
- Inference (generalized Laplace smoothing)

$$
\frac{1}{n} \sum_{i=1}^{n} \phi\left(x_{i}\right) \longrightarrow \frac{1}{n+m} \sum_{i=1}^{n} \phi\left(x_{i}\right)+\frac{m-m}{n+m} \mu_{\text {foke mean }}^{\mu_{0}} \text { foke count }
$$

Example: Gaussian Estimation

- Sufficient statistics: x, x^{2}
- Mean and variance given by

$$
\mu=\mathbf{E}_{x}[x] \text { and } \sigma^{2}=\mathbf{E}_{x}\left[x^{2}\right]-\mathbf{E}_{x}^{2}[x]
$$

- Maximum Likelihood Estimate

$$
\hat{\mu}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \text { and } \sigma^{2}=\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}-\hat{\mu}^{2}
$$

- Maximum a Posteriori Estimate

smoother

$$
\hat{\mu}=\frac{1}{n+n_{0}} \sum_{i=1}^{n} x_{i} \text { and } \sigma^{2}=\frac{1}{n+n_{0}} \sum_{i=1}^{n} x_{i}^{2}+\frac{n_{0}}{n+n_{0}} \mathbf{1}-\hat{\mu}^{2}
$$

Collapsing

- Conjugate priors

$$
p(\theta) \propto p\left(X_{\text {fake }} \mid \theta\right)
$$

Hence we know how to compute normalization

- Prediction $p(x \mid X)=\int p(x \mid \theta) p(\theta \mid X) d \theta$
(Beta, binomial)

$$
\propto \int p(x \mid \theta) p(X \mid \theta) p\left(X_{\text {fake }} \mid \theta\right) d \theta
$$

(Dirichlet, multinomial)
(Gamma, Poisson)
(Wishart, Gauss)
$=\int p\left(\{x\} \cup X \cup X_{\text {fake }} \mid \theta\right) d \theta$
look up closed form expansions
http://en.wikipedia.org/wiki/Exponential family

Conjugate Prior in action

$$
m_{i}=m \cdot\left[\mu_{0}\right]_{i}
$$

$$
p(x=i)=\frac{n_{i}}{n} \longrightarrow p(x=i)=\frac{n_{i}+m_{i}}{n+m}
$$

Outcome	1	2	3	4	5	6
Counts	3	6	2	1	4	4
MLE	0.15	0.30	0.10	0.05	0.20	0.20
MAP $\left(m_{0}=6\right)$	0.15	0.27	0.12	0.08	0.19	0.19
MAP $\left(m_{0}=100\right)$	0.16	0.19	0.16	0.15	0.17	0.17

Conjugate Prior in action

- Discrete Distribution

$$
m_{i}=m \cdot\left[\mu_{0}\right]_{i}
$$

$$
p(x=i)=\frac{n_{i}}{n} \longrightarrow p(x=i)=\frac{n_{i}+m_{i}}{n+m}
$$

- Tossing a dice

Outcome	1	2	3	4	5	6
Counts	3	6	2	1	4	4
MLE	0.15	0.30	0.10	0.05	0.20	0.20
MAP $\left(m_{0}=6\right)$	0.15	0.27	0.12	0.08	0.19	0.19
MAP $\left(m_{0}=100\right)$	0.16	0.19	0.16	0.15	0.17	0.17

Conjugate Prior in action

- Discrete Distribution

$$
m_{i}=m \cdot\left[\mu_{0}\right]_{i}
$$

$$
p(x=i)=\frac{n_{i}}{n} \longrightarrow p(x=i)=\frac{n_{i}+m_{i}}{n+m}
$$

- Tossing a dice

Outcome	1	2	3	4	5	6
Counts	3	6	2	1	4	4
MLE	0.15	0.30	0.10	0.05	0.20	0.20
MAP $\left(m_{0}=6\right)$	0.15	0.27	0.12	0.08	0.19	0.19
MAP $\left(m_{0}=100\right)$	0.16	0.19	0.16	0.15	0.17	0.17

- Rule of thumb
need 10 data points (or prior) per parameter

Honest dice

Tainted dice

Priors (part deux)

- Parameter smoothing

$$
p(\theta) \propto \exp \left(-\lambda\|\theta\|_{1}\right) \text { or } p(\theta) \propto \exp \left(-\lambda\|\theta\|_{2}^{2}\right)
$$

- Posterior

$$
\begin{aligned}
p(\theta \mid x) & \propto \prod_{i=1}^{m} p\left(x_{i} \mid \theta\right) p(\theta) \\
& \propto \exp \left(\sum_{i=1}^{m}\left\langle\phi\left(x_{i}\right), \theta\right\rangle-m g(\theta)-\frac{1}{2 \sigma^{2}}\|\theta\|_{2}^{2}\right)
\end{aligned}
$$

- Convex optimization problem (MAP estimation)

$$
\underset{\theta}{\operatorname{minimize}} g(\theta)-\left\langle\frac{1}{m} \sum_{i=1}^{m} \phi\left(x_{i}\right), \theta\right\rangle+\frac{1}{2 m \sigma^{2}}\|\theta\|_{2}^{2}
$$

Statistics

- Probabilities
- Bayes rule, Dependence, independence, conditional probabilities
- Priors, Naive Bayes classifier
- Tail bounds
- Chernoff, Hoeffding, Chebyshev, Gaussian
- A/B testing
- Kernel density estimation
- Parzen windows, Nearest neighbors, Watson-Nadaraya estimator
- Exponential families
- Gaussian, multinomial, Poisson
- Conjugate distributions and smoothing, integrating out

Peninsula Grill

Come check out our new menu specials at your favorite citv diner!

Peninsula Grill

Further reading

- Manuscript (book chapters 1 and 2) http://alex.smola.org/teaching/berkeley2012/ slides/chapter 1 2.pdf

