
Scalable Machine Learning
1. Systems

Alex Smola
Yahoo! Research and ANU
http://alex.smola.org/teaching/berkeley2012

Stat 260 SP 12

http://alex.smola.org/teaching/berkeley2012
http://alex.smola.org/teaching/berkeley2012

Basics

Important Stuff
• Time

• Class - Tuesday 4-7pm
• Q&A - Tuesday 1-3pm (Evans Hall 418)
• Tutor - Dapo Omidiran

• Grading policy
• Assignments (20), project (45), midterm (15),

final exam (20), scribe (3)
• Exams will be without technology.

You can bring a paper notebook (8”x10”)

You can get 103%

Important Stuff
• Homework

• 5 sets of assignments
• Do it yourself. I will not check plagiarism.
• Discussing with others is encouraged but you hurt

yourself if you don’t solve the problems.

•Drop off your homework in class.
No late drops accepted.
No exceptions.

•Only the best 4 assignments count.

Can you look at yourself in the mirror?

Important Stuff

• Project
• Do it well (you get 45% of the score)
• Start early (you stress puppies, too)
• Each team member gets the same score
• Ask me if you’re looking for ideas

GSI

• Dapo Omidiran + one more
• Piazza discussion board

http://tinyurl.com/cs281b-discussion
• Office hours poll

http://tinyurl.com/cs281b-poll
• Signup list for scribing on Piazza

TBD

http://tinyurl.com/cs281b-discussion
http://tinyurl.com/cs281b-discussion
http://tinyurl.com/cs281b-poll
http://tinyurl.com/cs281b-poll

Scalable Machine Learning
• Systems
• Basic Statistics
• Data streams and sketches
• Optimization
• Generalized Linear Models
• Kernels and Regularization
• Recommender Systems
• Graphical Models
• Large Scale Inference
• Applications
• Active Learning / Bandits and Exploration

Scalable Machine Learning
• Systems
• Basic Statistics
• Data streams and sketches
• Optimization
• Generalized Linear Models
• Kernels and Regularization
• Recommender Systems
• Graphical Models
• Large Scale Inference
• Applications
• Active Learning / Bandits and Exploration

for the internet

Scalable Machine Learning
• Systems
• Basic Statistics
• Data streams and sketches
• Optimization
• Generalized Linear Models
• Kernels and Regularization
• Recommender Systems
• Graphical Models
• Large Scale Inference
• Applications
• Active Learning / Bandits and Exploration

for the internet

all you need
for a startup

1. Systems

Algorithms run on MANY REAL and FAULTY boxes
not Turing machines. So we need to deal with it.

Systems
• Hardware

CPU, RAM, GPU, disks, switches, server centers
• Data

text, video, images, clicks, networks, location
• Parallelization strategies

consistent (proportional) hashing, trees, P2P
• Storage

RAID, GFS, Hadoop, Ceph
• Processing

MapReduce, Pregel, Dryad, S4
• Databases / (key,value)

BigTable, Pnuts, Cassandra

server

server

server

server

server

server

server

1.1 Hardware

• High Performance Computing
Very reliable, custom built, expensive

• Consumer hardware
Cheap, efficient, easy to replicate,
not very reliable, deal with it!

Commodity Hardware

• Performance goal
• 1 failure per year
• 1000 machines

• Poisson approximation

• Assume failure rate per machine
• Poisson rates of independent random variables are additive, so we

can combine
• Fault intolerant engineering

We need a rate of 1 failure per 1000 years per machine
• Fault tolerance

Assume we can tolerate k faults among m machines in t time

Fault tolerance

µ
Pr(n) =

1

n!
e�µµn

Pr(f > k) = 1�
kX

n=0

1

n!
e��t(�t)n

not IBM Deskstar!

Fault tolerance

machine faults

QoS machine reliability

fault free

Slide from talk of Jeff Dean
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en//people/jeff/stanford-295-talk.pdf

http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en//people/jeff/stanford-295-talk.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en//people/jeff/stanford-295-talk.pdf

CPU
• Multiple cores (4-8)
• Multiple sockets (1-4) per board
• 2-4 GHz clock
• 10-100W power
• Several cache levels (hierarchical,

8-16MB total)
• Vector processing units (SSE4, AVX)

http://software.intel.com/en-us/avx/
• Perform several operations at once
• Use this for fast linear algebra (4-8

multiply adds in one operation)
• Memory interface 20-40GB/s
• Internal bandwidth >100GB/s
• 100+ GFlops for matrix matrix multiply
• Integrated low end GPU

http://software.intel.com/en-us/avx/
http://software.intel.com/en-us/avx/

RAM
• 2-4 channels (32 bit wide)
• 1GHz speed
• High latency (10ns for DDR3)
• High burst data rate (>10 GB/s)

• Avoid random access in code if possible.
• Memory align variables
• Know your platform (FBDIMM vs. DDR)

(code may run faster on old MacBookPro than a Xeon)

http://www.anandtech.com/show/3851/everything-you-always-wanted-to-know-about-sdram-memory-but-were-afraid-to-ask

http://www.anandtech.com/show/3851/everything-you-always-wanted-to-know-about-sdram-memory-but-were-afraid-to-ask
http://www.anandtech.com/show/3851/everything-you-always-wanted-to-know-about-sdram-memory-but-were-afraid-to-ask

GPU

• Up to 512 cores / 200W
• Cores have hierarchical structure

tricky to synchronize threads
(interrupts, semaphores, etc.)

• 1-3GB memory (Tesla 6GB)
• 1 TFlop (single precision)
• Memory bandwidth > 100GB/s
• 4GB/s PCI bus bottleneck

Storage
• Harddisks

• 3TB of storage (30GB/$)
• 100 MB/s bandwidth (sequential)
• 5 ms seek (200 IOPS)
• cheap

• SSD
• 100-500 MB storage (1GB/$)
• 300 MB/s bandwidth (sequential)
• 50,000 IOPS / 1 ms seek (queueing)
• Random writes often faster than reads
• reliable (but limited lifetime - NAND)

Switches & Colos
• In theory perfect point to point bandwidth

(e.g. 1Gb Ethernet)
• Big switches are expensive

(crossbar bandwidth linear in #ports, price
superlinear)

• Real switches have finite buffers
• many connections to a single machine bad
• buffer overflow / dropped packets /

collision avoidance
• Hierarchical structure

• more bandwidth within rack
• lower latency within rack
• lots of latency between colos

• Hadoop gives you machines where the data is
(not necessarily on same rack!)

...

Slide from talk of Jeff Dean
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en//people/jeff/stanford-295-talk.pdf

http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en//people/jeff/stanford-295-talk.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en//people/jeff/stanford-295-talk.pdf

1.2 Data

Big Data

we need Big Learning

Data
• Webpages (content, graph)
• Clicks (ad, page, social)
• Users (OpenID, FB Connect)
• e-mails (Hotmail, Y!Mail, Gmail)
• Photos, Movies (Flickr, YouTube, Vimeo ...)
• Cookies / tracking info (see Ghostery)
• Installed apps (Android market etc.)
• Location (Latitude, Loopt, Foursquared)
• User generated content (Wikipedia & co)
• Ads (display, text, DoubleClick, Yahoo)
• Comments (Disqus, Facebook)
• Reviews (Yelp, Y!Local)
• Third party features (e.g. Experian)
• Social connections (LinkedIn, Facebook)
• Purchase decisions (Netflix, Amazon)
• Instant Messages (YIM, Skype, Gtalk)
• Search terms (Google, Bing)
• Timestamp (everything)
• News articles (BBC, NYTimes, Y!News)
• Blog posts (Tumblr, Wordpress)
• Microblogs (Twitter, Jaiku, Meme) >10B useful webpages

The Web for $100k/month
• Webpages (content, graph)
• Clicks (ad, page, social)
• Users (OpenID, FB Connect)
• e-mails (Hotmail, Y!Mail, Gmail)
• Photos, Movies (Flickr, YouTube, Vimeo ...)
• Cookies / tracking info (see Ghostery)
• Installed apps (Android market etc.)
• Location (Latitude, Loopt, Foursquared)
• User generated content (Wikipedia & co)
• Ads (display, text, DoubleClick, Yahoo)
• Comments (Disqus, Facebook)
• Reviews (Yelp, Y!Local)
• Third party features (e.g. Experian)
• Social connections (LinkedIn, Facebook)
• Purchase decisions (Netflix, Amazon)
• Instant Messages (YIM, Skype, Gtalk)
• Search terms (Google, Bing)
• Timestamp (everything)
• News articles (BBC, NYTimes, Y!News)
• Blog posts (Tumblr, Wordpress)
• Microblogs (Twitter, Jaiku, Meme)

• 10 billion pages
(this is a small subset, maybe 10%)
10k/page = 100TB
($10k for disks or EBS 1 month)

• 1000 machines
10ms/page = 1 day
afford 1-10 MIP/page
($20k on EC2 for 0.68$/h)

• 10 Gbit link
($10k/month via ISP or EC2)

• 1 day for raw data
• 300ms/page roundtrip
• 1000 servers for 1 month

($70k on EC2 for 0.085$/h)

Data - Identity & Graph

100M-1B vertices

• Webpages (content, graph)
• Clicks (ad, page, social)
• Users (OpenID, FB Connect)
• e-mails (Hotmail, Y!Mail, Gmail)
• Photos, Movies (Flickr, YouTube, Vimeo ...)
• Cookies / tracking info (see Ghostery)
• Installed apps (Android market etc.)
• Location (Latitude, Loopt, Foursquared)
• User generated content (Wikipedia & co)
• Ads (display, text, DoubleClick, Yahoo)
• Comments (Disqus, Facebook)
• Reviews (Yelp, Y!Local)
• Third party features (e.g. Experian)
• Social connections (LinkedIn, Facebook)
• Purchase decisions (Netflix, Amazon)
• Instant Messages (YIM, Skype, Gtalk)
• Search terms (Google, Bing)
• Timestamp (everything)
• News articles (BBC, NYTimes, Y!News)
• Blog posts (Tumblr, Wordpress)
• Microblogs (Twitter, Jaiku, Meme)

Crawling Twitter for $10k
• Webpages (content, graph)
• Clicks (ad, page, social)
• Users (OpenID, FB Connect)
• e-mails (Hotmail, Y!Mail, Gmail)
• Photos, Movies (Flickr, YouTube, Vimeo ...)
• Cookies / tracking info (see Ghostery)
• Installed apps (Android market etc.)
• Location (Latitude, Loopt, Foursquared)
• User generated content (Wikipedia & co)
• Ads (display, text, DoubleClick, Yahoo)
• Comments (Disqus, Facebook)
• Reviews (Yelp, Y!Local)
• Third party features (e.g. Experian)
• Social connections (LinkedIn, Facebook)
• Purchase decisions (Netflix, Amazon)
• Instant Messages (YIM, Skype, Gtalk)
• Search terms (Google, Bing)
• Timestamp (everything)
• News articles (BBC, NYTimes, Y!News)
• Blog posts (Tumblr, Wordpress)
• Microblogs (Twitter, Jaiku, Meme)

• 300M users
• Per user 300 queries/h
• 100 edges/query
• 100 edges/account
• Need 100 machines for 2 weeks

(crawl it at 10 queries/s)
• Tweets
• Inlinks
• Outlinks

• Cost
• $3k for computers on EC2
• Similar for network & storage
• Need 10k user keys

Data - User generated content

>1B images, 40h video/minute

• Webpages (content, graph)
• Clicks (ad, page, social)
• Users (OpenID, FB Connect)
• e-mails (Hotmail, Y!Mail, Gmail)
• Photos, Movies (Flickr, YouTube, Vimeo ...)
• Cookies / tracking info (see Ghostery)
• Installed apps (Android market etc.)
• Location (Latitude, Loopt, Foursquared)
• User generated content (Wikipedia & co)
• Ads (display, text, DoubleClick, Yahoo)
• Comments (Disqus, Facebook)
• Reviews (Yelp, Y!Local)
• Third party features (e.g. Experian)
• Social connections (LinkedIn, Facebook)
• Purchase decisions (Netflix, Amazon)
• Instant Messages (YIM, Skype, Gtalk)
• Search terms (Google, Bing)
• Timestamp (everything)
• News articles (BBC, NYTimes, Y!News)
• Blog posts (Tumblr, Wordpress)
• Microblogs (Twitter, Jaiku, Meme)

Data - User generated content

>1B images, 40h video/minute

• Webpages (content, graph)
• Clicks (ad, page, social)
• Users (OpenID, FB Connect)
• e-mails (Hotmail, Y!Mail, Gmail)
• Photos, Movies (Flickr, YouTube, Vimeo ...)
• Cookies / tracking info (see Ghostery)
• Installed apps (Android market etc.)
• Location (Latitude, Loopt, Foursquared)
• User generated content (Wikipedia & co)
• Ads (display, text, DoubleClick, Yahoo)
• Comments (Disqus, Facebook)
• Reviews (Yelp, Y!Local)
• Third party features (e.g. Experian)
• Social connections (LinkedIn, Facebook)
• Purchase decisions (Netflix, Amazon)
• Instant Messages (YIM, Skype, Gtalk)
• Search terms (Google, Bing)
• Timestamp (everything)
• News articles (BBC, NYTimes, Y!News)
• Blog posts (Tumblr, Wordpress)
• Microblogs (Twitter, Jaiku, Meme)

crawl it

>1B texts

• Webpages (content, graph)
• Clicks (ad, page, social)
• Users (OpenID, FB Connect)
• e-mails (Hotmail, Y!Mail, Gmail)
• Photos, Movies (Flickr, YouTube, Vimeo ...)
• Cookies / tracking info (see Ghostery)
• Installed apps (Android market etc.)
• Location (Latitude, Loopt, Foursquared)
• User generated content (Wikipedia & co)
• Ads (display, text, DoubleClick, Yahoo)
• Comments (Disqus, Facebook)
• Reviews (Yelp, Y!Local)
• Third party features (e.g. Experian)
• Social connections (LinkedIn, Facebook)
• Purchase decisions (Netflix, Amazon)
• Instant Messages (YIM, Skype, Gtalk)
• Search terms (Google, Bing)
• Timestamp (everything)
• News articles (BBC, NYTimes, Y!News)
• Blog posts (Tumblr, Wordpress)
• Microblogs (Twitter, Jaiku, Meme)

Data - Messages

>1B texts

• Webpages (content, graph)
• Clicks (ad, page, social)
• Users (OpenID, FB Connect)
• e-mails (Hotmail, Y!Mail, Gmail)
• Photos, Movies (Flickr, YouTube, Vimeo ...)
• Cookies / tracking info (see Ghostery)
• Installed apps (Android market etc.)
• Location (Latitude, Loopt, Foursquared)
• User generated content (Wikipedia & co)
• Ads (display, text, DoubleClick, Yahoo)
• Comments (Disqus, Facebook)
• Reviews (Yelp, Y!Local)
• Third party features (e.g. Experian)
• Social connections (LinkedIn, Facebook)
• Purchase decisions (Netflix, Amazon)
• Instant Messages (YIM, Skype, Gtalk)
• Search terms (Google, Bing)
• Timestamp (everything)
• News articles (BBC, NYTimes, Y!News)
• Blog posts (Tumblr, Wordpress)
• Microblogs (Twitter, Jaiku, Meme) impossible without NDA

Data - Messages

Data - User Tracking

alex.smola.org

>1B ‘identities’

• Webpages (content, graph)
• Clicks (ad, page, social)
• Users (OpenID, FB Connect)
• e-mails (Hotmail, Y!Mail, Gmail)
• Photos, Movies (Flickr, YouTube, Vimeo ...)
• Cookies / tracking info (see Ghostery)
• Installed apps (Android market etc.)
• Location (Latitude, Loopt, Foursquared)
• User generated content (Wikipedia & co)
• Ads (display, text, DoubleClick, Yahoo)
• Comments (Disqus, Facebook)
• Reviews (Yelp, Y!Local)
• Third party features (e.g. Experian)
• Social connections (LinkedIn, Facebook)
• Purchase decisions (Netflix, Amazon)
• Instant Messages (YIM, Skype, Gtalk)
• Search terms (Google, Bing)
• Timestamp (everything)
• News articles (BBC, NYTimes, Y!News)
• Blog posts (Tumblr, Wordpress)
• Microblogs (Twitter, Jaiku, Meme)

Data - User Tracking
• Webpages (content, graph)
• Clicks (ad, page, social)
• Users (OpenID, FB Connect)
• e-mails (Hotmail, Y!Mail, Gmail)
• Photos, Movies (Flickr, YouTube, Vimeo ...)
• Cookies / tracking info (see Ghostery)
• Installed apps (Android market etc.)
• Location (Latitude, Loopt, Foursquared)
• User generated content (Wikipedia & co)
• Ads (display, text, DoubleClick, Yahoo)
• Comments (Disqus, Facebook)
• Reviews (Yelp, Y!Local)
• Third party features (e.g. Experian)
• Social connections (LinkedIn, Facebook)
• Purchase decisions (Netflix, Amazon)
• Instant Messages (YIM, Skype, Gtalk)
• Search terms (Google, Bing)
• Timestamp (everything)
• News articles (BBC, NYTimes, Y!News)
• Blog posts (Tumblr, Wordpress)
• Microblogs (Twitter, Jaiku, Meme)

Personalization
• 100-1000M users

• Spam filtering
• Personalized targeting

& collaborative filtering
• News recommendation
• Advertising

• Large parameter space
(25 parameters = 100GB)

• Distributed storage
(need it on every server)

• Distributed optimization
• Model synchronization
• Time dependence
• Graph structure

• Ads

• Click feedback

• Emails

• Tags

• Editorial data is very
expensive! Do not use!

• Graphs

• Document collections

• Email/IM/Discussions

• Query stream

(implicit) Labels no Labels

Many more sources

http://keithwiley.com/mindRamblings/digitalCameras.shtml

computer
vision

bioinformatics

personalized sensors ubiquitous control

http://keithwiley.com/mindRamblings/digitalCameras.shtml
http://keithwiley.com/mindRamblings/digitalCameras.shtml

Many more sources

http://keithwiley.com/mindRamblings/digitalCameras.shtml

computer
vision

bioinformatics

personalized sensors ubiquitous control

in the
cloud

http://keithwiley.com/mindRamblings/digitalCameras.shtml
http://keithwiley.com/mindRamblings/digitalCameras.shtml

1.3 Distribution Strategies

Concepts
• Variable and load distribution

• Large number of objects (a priori unknown)
• Large pool of machines (often faulty)
• Assign objects to machines such that

• Object goes to the same machine (if possible)
• Machines can be added/fail dynamically

• Consistent hashing (elements, sets, proportional)
• Overlay networks (peer to peer routing)

• Location of object is unknown, find route
• Store object redundantly / anonymously

symmetric (no master), dynamically scalable, fault tolerant

Hash functions
• Mapping h from domain X to integer range
• Goal

• We want a uniform distribution (e.g. to distribute objects)
• Naive Idea

• For each new x, compute random h(x)
• Store it in big lookup table
• Perfectly random
• Uses lots of memory (value, index structure)
• Gets slower the more we use it
• Cannot be merged between computers

• Better Idea
• Use random number generator with seed x
• As random as the random number generator might be ...
• No memory required
• Can be merged between computers
• Speed independent of number of hash calls

[1, . . . N]

X

Hash function
• n-ways independent hash function

• Set of hash functions H
• Draw h from H at random
• For n instances in X their hash [h(x1), ... h(xn)] is essentially

indistinguishable from n random draws from [1 ... N]
• For a formal treatment see Maurer 1992 (incl. permutations)

ftp://ftp.inf.ethz.ch/pub/crypto/publications/Maurer92d.pdf

• For many cases we only need 2-ways independence (harder proof)

• In practice use MD5 or Murmur Hash for high quality
https://code.google.com/p/smhasher/

• Fast linear congruential generator
for constants a, b, c see http://en.wikipedia.org/wiki/Linear_congruential_generator

for all x, y Pr

y2H
{h(x) = h(y)} =

1

N

ax+ bmod c

https://sites.google.com/site/murmurhash/
https://sites.google.com/site/murmurhash/
http://en.wikipedia.org/wiki/Linear_congruential_generator
http://en.wikipedia.org/wiki/Linear_congruential_generator

1.3.1 Load Distribution

D1 - Argmin Hash
• Consistent hashing

• Uniform distribution over machine pool M
• Fully determined by hash function h. No need to ask master
• If we add/remove machine m’ all but O(1/m) keys remain

• Consistent hashing with k replications

• If we add/remove a machine only O(k/m) need reassigning
• Cost to assign is O(m). This can be expensive for 1000 servers

m(key) = argmin
m2M

h(key,m)

Pr {m(key) = m0} =
1

m

m(key, k) = k smallest
m2M

h(key,m)

D2 - Distributed Hash Table
• Fixing the O(m) lookup

• Assign machines to ring via hash h(m)
• Assign keys to ring
• Pick machine nearest to key to the left

• O(log m) lookup
• Insert/removal only affects neighbor

(however, big problem for neighbor)
• Uneven load distribution

(load depends on segment size)
• Insert machine more than once to fix this
• For k term replication, simply pick the k

leftmost machines (skip duplicates)

ring of N keys

D2 - Distributed Hash Table
• Fixing the O(m) lookup

• Assign machines to ring via hash h(m)
• Assign keys to ring
• Pick machine nearest to key to the left

• O(log m) lookup
• Insert/removal only affects neighbor

(however, big problem for neighbor)
• Uneven load distribution

(load depends on segment size)
• Insert machine more than once to fix this
• For k term replication, simply pick the k

leftmost machines (skip duplicates)

ring of N keys

D2 - Distributed Hash Table
• Fixing the O(m) lookup

• Assign machines to ring via hash h(m)
• Assign keys to ring
• Pick machine nearest to key to the left

• O(log m) lookup
• Insert/removal only affects neighbor

(however, big problem for neighbor)
• Uneven load distribution

(load depends on segment size)
• Insert machine more than once to fix this
• For k term replication, simply pick the k

leftmost machines (skip duplicates)

ring of N keys

D2 - Distributed Hash Table
• Fixing the O(m) lookup

• Assign machines to ring via hash h(m)
• Assign keys to ring
• Pick machine nearest to key to the left

• O(log m) lookup
• Insert/removal only affects neighbor

(however, big problem for neighbor)
• Uneven load distribution

(load depends on segment size)
• Insert machine more than once to fix this
• For k term replication, simply pick the k

leftmost machines (skip duplicates)

ring of N keys

D2 - Distributed Hash Table
• Fixing the O(m) lookup

• Assign machines to ring via hash h(m)
• Assign keys to ring
• Pick machine nearest to key to the left

• O(log m) lookup
• Insert/removal only affects neighbor

(however, big problem for neighbor)
• Uneven load distribution

(load depends on segment size)
• Insert machine more than once to fix this
• For k term replication, simply pick the k

leftmost machines (skip duplicates)

ring of N keys

D2 - Distributed Hash Table
• For arbitrary node segment size is

minimum over (m-1) independent
uniformly distributed random variables

• Density is given by derivative

• Expected segment length is
(follows from symmetry)

• Probability of exceeding expected
segment length (for large m)

ring of N keys

Pr {x � c} =
mY

i=2

Pr {si � c} = (1� c)m�1

p(c) = (m� 1)(1� c)m�2

c =
1

m

Pr

⇢
x � k

m

�
=

✓
1� k

m

◆m�1

�! e

�k

D3 - Proportional Allocation Table
• Assign items according to machine capacity

• Create allocation table with segments proportional
to capacity

• Leave space for additional machines
• Hash key h(x) and pick machine covering it
• If failure, re-hash the hash until it hits a bin
• For replication hit k bins in a row

• Proportional load distribution
• Limited scalability
• Need to distribute and update table
• Limit peak load by further delegation

(SPOCA - Chawla et al., USENIX 2011)

1

2

3

4

D3 - Proportional Allocation Table
• Assign items according to machine capacity

• Create allocation table with segments proportional
to capacity

• Leave space for additional machines
• Hash key h(x) and pick machine covering it
• If failure, re-hash the hash until it hits a bin
• For replication hit k bins in a row

• Proportional load distribution
• Limited scalability
• Need to distribute and update table
• Limit peak load by further delegation

(SPOCA - Chawla et al., USENIX 2011)

1

2

3

4

D3 - Proportional Allocation Table
• Assign items according to machine capacity

• Create allocation table with segments proportional
to capacity

• Leave space for additional machines
• Hash key h(x) and pick machine covering it
• If failure, re-hash the hash until it hits a bin
• For replication hit k bins in a row

• Proportional load distribution
• Limited scalability
• Need to distribute and update table
• Limit peak load by further delegation

(SPOCA - Chawla et al., USENIX 2011)

1

2

3

4

D3 - Proportional Allocation Table
• Assign items according to machine capacity

• Create allocation table with segments proportional
to capacity

• Leave space for additional machines
• Hash key h(x) and pick machine covering it
• If failure, re-hash the hash until it hits a bin
• For replication hit k bins in a row

• Proportional load distribution
• Limited scalability
• Need to distribute and update table
• Limit peak load by further delegation

(SPOCA - Chawla et al., USENIX 2011)

1

2

3

4

D3 - Proportional Allocation Table
• Assign items according to machine capacity

• Create allocation table with segments proportional
to capacity

• Leave space for additional machines
• Hash key h(x) and pick machine covering it
• If failure, re-hash the hash until it hits a bin
• For replication hit k bins in a row

• Proportional load distribution
• Limited scalability
• Need to distribute and update table
• Limit peak load by further delegation

(SPOCA - Chawla et al., USENIX 2011)

1

2

3

4

D3 - Proportional Allocation Table
• Assign items according to machine capacity

• Create allocation table with segments proportional
to capacity

• Leave space for additional machines
• Hash key h(x) and pick machine covering it
• If failure, re-hash the hash until it hits a bin
• For replication hit k bins in a row

• Proportional load distribution
• Limited scalability
• Need to distribute and update table
• Limit peak load by further delegation

(SPOCA - Chawla et al., USENIX 2011)

1

2

3

4

Random Caching Trees
(Karger et al. 1999, Akamai paper)

• Cache / synchronize an object
• Uneven load distribution
• Must not generate hotspot

• For given key, pick random order of machines
• Map order onto tree / star via BFS ordering

Random Caching Trees
• Cache / synchronize an object
• Uneven load distribution
• Must not generate hotspot

• For given key, pick random order of machines
• Map order onto tree / star via BFS ordering

1.3.2. Overlay Networks & P2P

Peer to peer
• Large number of (unreliable) nodes
• Find objects in logarithmic time
• Overlay network (no TCP/IP replacement)

• Logical communications network on top of physical network
• Pick host to store object by finding machine with nearest hash
• No need to know who has it to find it

(route until nobody else is closer)
• Usage

• Distributed object storage (file sharing)
Store file on machine(s) k-nearest to key.

• Load distribution / caching
Route requests to nearest machines (only log N overhead).

• Publish / subscribe service

Pastry (Rowstrom & Druschel)
• Node gets random ID (128 bit ensures

that we’re safe up to 264 nodes)
• State table

• L/2 left and right nearest nodes
• Nodes within network

neighborhood
• For each prefix the 2b neighbors

with different digit (if they exist)
• Routing in log N steps for a key

• Use nearest element in routing table
• Send routing request there
• If not available, use nearest

element from leaf set

Pastry (Rowstrom & Druschel)
• nodeId = pastryInit

generates node ID, connect to net
• route(key,value)

route message
• delivered(key,value)

confirms message delivery
• forward(key,value,nextID)

forwards to nextID, optionally
modify value

• newLeaves(leafSet)
notify application of new leaves,
update routing table as needed

Pastry
• Add node

• Generate key
• Find route to nearest node
• All nodes on route send routing table to new node
• Compile routing table from messages
• Send routing table back to nodes on path

• Nodes fail silently
• Update table

• Prefer near nodes (hence the neighborhood set)
• Repair when nodes fail (route to neighbors)

• Analysis
• O(logb N) nonempty rows in routing table

(uniform key distribution, average distance is concentrated)
• Tolerates up to L/2 local failures (very unlikely to happen) to recover network
• Finding k nearest neighbors is nontrivial

More stuff (take a systems class!)

• Gossip protocols
Information distribution via random walks
(see e.g. Kempe, Kleinberg, Gehrke, etc.)

• Time synchronization / quorums
Byzantine fault tolerance (Lamport / Paxos)
Google Chubby, Yahoo Zookeeper

• Serialization
Thrift, JSON, Protocol buffers, Avro

• Interprocess communication
MPI (do not use), OpenMP, ICE

1.4 Storage

RAID
• Redundant array of inexpensive disks

• Aggregate storage of many disks
• Aggregate bandwidth of many disks
• Fault tolerance (optional)

• RAID 0 - stripe data over disks (good bandwidth, faulty)
• RAID 1 - mirror disks (mediocre bandwidth, fault tolerance)
• RAID 5 - stripe data with 1 disk for parity (good bandwidth, fault tolerance)
• Even better - use error correcting code for fault tolerance,

e.g. (4,2) code, i.e. two disks out of 6 may fail

RAID
• Redundant array of inexpensive disks

• Aggregate storage of many disks
• Aggregate bandwidth of many disks
• Fault tolerance (optional)

• RAID 0 - stripe data over disks (good bandwidth, faulty)
• RAID 1 - mirror disks (mediocre bandwidth, fault tolerance)
• RAID 5 - stripe data with 1 disk for parity (good bandwidth, fault tolerance)
• Even better - use error correcting code for fault tolerance,

e.g. (4,2) code, i.e. two disks out of 6 may fail

what if a machine dies?

Distributed replicated file systems

• Internet workload
• Bulk sequential writes
• Bulk sequential reads
• No random writes (possibly random reads)
• High bandwidth requirements per file
• High availability / replication

• Non starters
• Lustre (high bandwidth, but no replication outside racks)
• Gluster (POSIX, more classical mirroring, see Lustre)
• NFS/AFS/whatever - doesn’t actually parallelize

Google File System / HDFS

• Chunk servers hold blocks of the file (64MB per chunk)
• Replicate chunks (chunk servers do this autonomously). More bandwidth and fault tolerance
• Master distributes, checks faults, rebalances (Achilles heel)
• Client can do bulk read / write / random reads

Ghemawat, Gobioff, Leung, 2003

Google File System / HDFS
1. Client requests chunk from master

2. Master responds with replica location

3. Client writes to replica A

4. Client notifies primary replica

5. Primary replica requests data from
replica A

6. Replica A sends data to Primary
replica (same process for replica B)

7. Primary replica confirms write to client

Google File System / HDFS
1. Client requests chunk from master

2. Master responds with replica location

3. Client writes to replica A

4. Client notifies primary replica

5. Primary replica requests data from
replica A

6. Replica A sends data to Primary
replica (same process for replica B)

7. Primary replica confirms write to client

• Master ensures nodes are live

• Chunks are checksummed

• Can control replication factor for
hotspots / load balancing

• Deserialize master state by loading data
structure as flat file from disk (fast)

Google File System / HDFS
1. Client requests chunk from master

2. Master responds with replica location

3. Client writes to replica A

4. Client notifies primary replica

5. Primary replica requests data from
replica A

6. Replica A sends data to Primary
replica (same process for replica B)

7. Primary replica confirms write to client

• Master ensures nodes are live

• Chunks are checksummed

• Can control replication factor for
hotspots / load balancing

• Deserialize master state by loading data
structure as flat file from disk (fast)

single master

Google File System / HDFS
1. Client requests chunk from master

2. Master responds with replica location

3. Client writes to replica A

4. Client notifies primary replica

5. Primary replica requests data from
replica A

6. Replica A sends data to Primary
replica (same process for replica B)

7. Primary replica confirms write to client

only one
write needed

• Master ensures nodes are live

• Chunks are checksummed

• Can control replication factor for
hotspots / load balancing

• Deserialize master state by loading data
structure as flat file from disk (fast)

single master

CEPH/CRUSH
• No single master
• Chunk servers deal with replication / balancing on their own
• Chunk distribution using proportional consistent hashing
• Layout plan for data - effectively a sampler with given marginals

Research question - can we adjust the probabilities based on statistics?

http://ceph.newdream.org (Weil et al., 2006)

http://ceph.newdream.org
http://ceph.newdream.org

CEPH/CRUSH

• Various sampling schemes (ensure that no unneccessary data is moved)
• In the simplest case proportional consistent hashing from pool of objects

(pick k disks out of n for block with given ID)
• Can incorporate replication/bandwidth scaling like RAID

(stripe block over several disks, error correction)

CEPH/CRUSH

• Various sampling schemes (ensure that no unneccessary data is moved)
• In the simplest case proportional consistent hashing from pool of objects

(pick k disks out of n for block with given ID)
• Can incorporate replication/bandwidth scaling like RAID

(stripe block over several disks, error correction)

adding a disk

CEPH/CRUSH fault recovery

plain replication striped data

• Hadoop patch available - use instead of HDFS

1.5 Processing

Map Reduce
• 1000s of (faulty) machines
• Lots of jobs are mostly embarrassingly parallel

(except for a sorting/transpose phase)
• Functional programming origins

• Map(key,value)
processes each (key,value) pair and outputs a new (key,value) pair

• Reduce(key,value)
reduces all instances with same key to aggregate

• Example - extremely naive wordcount
• Map(docID, document)

for each document emit many (wordID, count) pairs
• Reduce(wordID, count)

sum over all counts for given wordID and emit (wordID, aggregate)
from Ramakrishnan, Sakrejda, Canon, DoE 2011

Map Reduce
• 1000s of (faulty) machines
• Lots of jobs are mostly embarrassingly parallel

(except for a sorting/transpose phase)
• Functional programming origins

• Map(key,value)
processes each (key,value) pair and outputs a new (key,value) pair

• Reduce(key,value)
reduces all instances with same key to aggregate

• Example - extremely naive wordcount
• Map(docID, document)

for each document emit many (wordID, count) pairs
• Reduce(wordID, count)

sum over all counts for given wordID and emit (wordID, aggregate)

Map Reduce

Ghemawat & Dean, 2003

map(key,value) reduce(key,value)

easy fault tolerance
(simply restart workers)

moves computation to data

disk based inter process
communication

Map Combine Reduce
• Combine aggregates keys before sending to the reducer (saves bandwidth)
• Map must be stateless in blocks
• Reduce must be commutative in data
• Fault tolerance

• Start jobs where the data is
(move code note data - nodes run the file system, too)

• Restart machines if maps fail (have replicas)
• Restart reducers based on intermediate data

• Good fit for many algorithms
• Good if only a small number of MapReduce iterations needed
• Need to request machines at each iteration (time consuming)
• State lost in between maps
• Communication only via file I/O

Dryad

• Directed acyclic graph
• System optimizes parallelism
• Different types of IPC

(memory FIFO/network/file)
• Tight integration with .NET

(allows easy prototyping)

Map

Reduce

DAG

Isard et al., 2007

DRYAD

graph description language

DRYAD

automatic graph refinement

S4
• Directed acyclic graph (want Dryad-like features)
• Real-time processing of data (as stream)
• Scalability (decentralized & symmetric)
• Fault tolerance
• Consistency for keys

• Processing elements
• Ingest (key, value) pair
• Capabilities tied to ID
• Clonable (for scaling)

• Simple implementation e.g. via consistent hashing

http://s4.io Neumeyer et al, 2010

http://s4.io
http://s4.io

S4
processing element

click through rate estimation

Alternative

build your own
e.g. based on IPC framework

only do this if you REALLY know what you’re doing

1.6 Data(bases/storage)

Distributed Data Stores
• SQL

• rich query syntax (it’s a programming language)
• expensive to scale (consistency, fault tolerance)

• (key, value) storage
• simple protocol: put(key, value), get(key)
• lightweight scaling

• Row database (BigTable, HBase)
• create/change/delete rows, create/delete column families
• timestamped data (can keep several versions)
• scalable on GoogleFS

• Intermediate variants
• replication between COLOs
• variable consistency guarantees

(key,value) storage

• Protocol
• put(key, value, version)
• (value, version) = get(key)

• Attributes
• persistence (recover data if machine fails)
• replication (distribute copies / parts over many machines)
• high availability (network partition tolerant, always writable)
• transactions (confirmed operations)
• rack locality (exploit communications topology/replication)

Comparison of NoSQL Systems

courtesy Hans Vatne Hansen

• Protocol (no versioning)
• put(key, value)
• value = get(key) (returns error if key non-existent)

• Load distribution by consistent hashing

• cache dynamic content
• disposable distributed storage (e.g. for gradient aggregation)

memcached

servers

clients

m(key) = argmin
m2M

h(m, key)

• Protocol (no versioning)
• put(key, value)
• value = get(key) (returns error if key not existent)

• Example: distributed subgradients (much faster than MapReduce)
• Clients writes put([clientID,blockID], gradient) for all blockIDs
• Client reads get([clientID,blockID]) for all clientID & aggregates
• Update parameters based on aggregate gradient & broadcast

memcached

servers

clients

Amazon Dynamo

DeCandia et al., 2007

• (key, value) storage
• scalable
• high availability (we can always

add to the shopping basket)
• reconcile inconsistent records
• persistent (do not lose orders)

Cassandra is more or less open
source version with columns added

(and ugly load balancing)

Amazon Dynamo

vector clocks to
handle versions

Amazon Dynamo

vector clocks to
handle versions opportunity for

machine learning
opportunity for

machine learning

Google Bigtable / HBase
• Row oriented database

• Partition by row key into tablets
• Servers hold (preferably) contiguous range of tablets
• Master assigns tablets to servers
• Persistence by writing to GoogleFS

• Column families
• Access control
• Arbitrary number of columns per family

• Timestamp
• For each record
• Can store several copies

anchor familyanchor familycontents
family

Internals
• Chubby / Zookeeper (global consensus server using Paxos)
• Hierarchy

• Root tablet
Contains all metadata tablet ranges & machines

• Metadata tablets
Contains all tablet ranges and machines

• User tablets
Contains the actual data

• Operations
• Look up row key
• Row range read
• Read over columns in column family
• Time ranged queries
• Operations are atomic per row
• Single server per tablet

• Disk/memory trade off
• Bloom filter to determine which block to read
• Write diffs only - for lookup traverse from present to past (we will use this for particle filter later)
• Compaction operator aggregates

NoSQL vs. RDBMS
• RDBMS provides too much

• ACID transactions
• Complex query language
• Lots and lots of knobs to turn

• RDBMS provides too little
• Lack of (cost-effective) scalability, availability
• Not enough schema/data type flexibility

• NoSQL
• Lots of optimization and tuning possible for analytics (Column stores, bitmap indices)
• Flexible programming model (Group By vs. Map-Reduce; multi-dimensional OLAP)

• But many good ideas to borrow
• Declarative language
• parallelization and optimization techniques
• value of data consistency ...

courtesy of Raghu Ramakrishnan

NoSQL vs. RDBMS
• RDBMS provides too much

• ACID transactions
• Complex query language
• Lots and lots of knobs to turn

• RDBMS provides too little
• Lack of (cost-effective) scalability, availability
• Not enough schema/data type flexibility

• NoSQL
• Lots of optimization and tuning possible for analytics (Column stores, bitmap indices)
• Flexible programming model (Group By vs. Map-Reduce; multi-dimensional OLAP)

• But many good ideas to borrow
• Declarative language
• parallelization and optimization techniques
• value of data consistency ...

courtesy of Raghu Ramakrishnan

fix by cluster of
RDBMS servers

Yahoo high availability storage

courtesy of Raghu Ramakrishnan

Systems
• Hardware

CPU, RAM, GPU, disks, switches, server centers
• Data

text, video, images, clicks, networks, location
• Parallelization strategies

consistent (proportional) hashing, trees, P2P
• Storage

RAID, GFS, Hadoop, Ceph
• Processing

MapReduce, Pregel, Dryad, S4
• Databases / (key,value)

BigTable, Pnuts, Cassandra

server

server

server

server

server

server

server

Further reading
• Consistent hashing (Karger et al.)

http://www.akamai.com/dl/technical_publications/
ConsistenHashingandRandomTreesDistributedCachingprotocolsforrelievingHotSpotsontheworldwideweb.pdf

• Stateless Proportional Caching (Chawla et al.)
http://www.usenix.org/event/atc11/tech/final_files/Chawla.pdf
http://www.usenix.org/event/atc11/tech/slides/chawla.pdf

• Pastry P2P routing (Rowstron and Druschel)
http://research.microsoft.com/en-us/um/people/antr/PAST/pastry.pdf
http://research.microsoft.com/en-us/um/people/antr/pastry/

• MapReduce (Dean and Ghemawat)
http://labs.google.com/papers/mapreduce.html

• Google File System (Ghemawat, Gobioff, Leung)
http://labs.google.com/papers/gfs.html

• Amazon Dynamo (deCandia et al.)
http://cs.nyu.edu/srg/talks/Dynamo.ppt
http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf

• BigTable (Chang et al.)
http://labs.google.com/papers/bigtable.html

• CEPH filesystem (proportional hashing, file system)
http://ceph.newdream.net/
http://ceph.newdream.net/papers/weil-crush-sc06.pdf

http://www.akamai.com/dl/technical_publications/ConsistenHashingandRandomTreesDistributedCachingprotocolsforrelievingHotSpotsontheworldwideweb.pdf
http://www.akamai.com/dl/technical_publications/ConsistenHashingandRandomTreesDistributedCachingprotocolsforrelievingHotSpotsontheworldwideweb.pdf
http://www.akamai.com/dl/technical_publications/ConsistenHashingandRandomTreesDistributedCachingprotocolsforrelievingHotSpotsontheworldwideweb.pdf
http://www.akamai.com/dl/technical_publications/ConsistenHashingandRandomTreesDistributedCachingprotocolsforrelievingHotSpotsontheworldwideweb.pdf
http://www.usenix.org/event/atc11/tech/final_files/Chawla.pdf
http://www.usenix.org/event/atc11/tech/final_files/Chawla.pdf
http://www.usenix.org/event/atc11/tech/slides/chawla.pdf
http://www.usenix.org/event/atc11/tech/slides/chawla.pdf
http://research.microsoft.com/en-us/um/people/antr/PAST/pastry.pdf
http://research.microsoft.com/en-us/um/people/antr/PAST/pastry.pdf
http://research.microsoft.com/en-us/um/people/antr/pastry/
http://research.microsoft.com/en-us/um/people/antr/pastry/
http://labs.google.com/papers/mapreduce.html
http://labs.google.com/papers/mapreduce.html
http://labs.google.com/papers/gfs.html
http://labs.google.com/papers/gfs.html
http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf
http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf
http://labs.google.com/papers/bigtable.html
http://labs.google.com/papers/bigtable.html
http://ceph.newdream.net/
http://ceph.newdream.net/
http://ceph.newdream.net/papers/weil-crush-sc06.pdf
http://ceph.newdream.net/papers/weil-crush-sc06.pdf

Further reading
• CPUS

http://www.anandtech.com/show/3922/intels-sandy-bridge-architecture-exposed
http://www.anandtech.com/show/4991/arms-cortex-a7-bringing-cheaper-dualcore-more-power-efficient-highend-
devices

• NVIDIA CUDA
http://www.nvidia.com/object/cuda_home_new.html

• ATI Stream Computing
http://www.amd.com/US/PRODUCTS/TECHNOLOGIES/STREAM-TECHNOLOGY/Pages/stream-technology.aspx

• Microsoft Dryad (Isard et al.)
http://connect.microsoft.com/Dryad

• Yahoo S4 (Neumayer et al.)
http://s4.io/
http://slidesha.re/uSdSjL (slides)
http://4lunas.org/pub/2010-s4.pdf (paper)

• Memcached
http://memcached.org/

• Linked.In Voldemort (key,value) storage
http://project-voldemort.com/design.php

• PNUTS distributed storage (Cooper et al.)
http://www.brianfrankcooper.net/pubs/pnuts.pdf

• SSDs (solid state drives)
http://www.anandtech.com/bench/SSD/65

http://www.anandtech.com/show/3922/intels-sandy-bridge-architecture-exposed
http://www.anandtech.com/show/3922/intels-sandy-bridge-architecture-exposed
http://www.anandtech.com/show/4991/arms-cortex-a7-bringing-cheaper-dualcore-more-power-efficient-highend-devices
http://www.anandtech.com/show/4991/arms-cortex-a7-bringing-cheaper-dualcore-more-power-efficient-highend-devices
http://www.anandtech.com/show/4991/arms-cortex-a7-bringing-cheaper-dualcore-more-power-efficient-highend-devices
http://www.anandtech.com/show/4991/arms-cortex-a7-bringing-cheaper-dualcore-more-power-efficient-highend-devices
http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html
http://www.amd.com/US/PRODUCTS/TECHNOLOGIES/STREAM-TECHNOLOGY/Pages/stream-technology.aspx
http://www.amd.com/US/PRODUCTS/TECHNOLOGIES/STREAM-TECHNOLOGY/Pages/stream-technology.aspx
http://connect.microsoft.com/Dryad
http://connect.microsoft.com/Dryad
http://s4.io/
http://s4.io/
http://slidesha.re/uSdSjL
http://slidesha.re/uSdSjL
http://4lunas.org/pub/2010-s4.pdf
http://4lunas.org/pub/2010-s4.pdf
http://memcached.org/
http://memcached.org/
http://project-voldemort.com/design.php
http://project-voldemort.com/design.php
http://www.brianfrankcooper.net/pubs/pnuts.pdf
http://www.brianfrankcooper.net/pubs/pnuts.pdf
http://www.anandtech.com/bench/SSD/65
http://www.anandtech.com/bench/SSD/65

