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Important Stutf

* Time
e Class - Tuesday 4-7pm
e Q&A - Tuesday 1-3pm (Evans Hall 418)
* Tutor - Dapo Omidiran

You can get 103%

e Grading policy
e Assignments (20), project (45), midterm (15),
final exam (20), scribe (3)

e Exams will be without technology.
You can bring a paper notebook (8”x10”)



Important Stutf

e Homework

* 5 sets of assignments

Can you look at yourself in the mirror?

* Do it yourself. | will not cl®

* Discussing with others is encouraged but you hurt
yourself if you don’t solve the problems.

* Drop off your homework in class.
No late drops accepted.
No exceptions.

e Only the best 4 assignments count.



Important Stutf

* Project

* Do it well (you get 45% of the score)
o Start early (you stress puppies, too)
e Each team member gets the same score

* Ask me if you're looking for ideas



Gl

* Dapo Omidiran + one more

 Piazza discussion board

hitp://tinyurl.com/cs281b-discussion

e Office hours poll
hitp://tinyurl.com/cs281b-poll

* Signup list for scribing on Piazza
TBD



http://tinyurl.com/cs281b-discussion
http://tinyurl.com/cs281b-discussion
http://tinyurl.com/cs281b-poll
http://tinyurl.com/cs281b-poll

Scalable Machine Learning

e Systems

* Basic Statistics

* Data streams and sketches

* Optimization

* Generalized Linear Models
* Kernels and Regularization
* Recommender Systems

* Graphical Models

* Large Scale Inference

* Applications

* Active Learning / Bandits and Exploration
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Scalable Machine Learning

e Systems

e Basic Statistics .
e Data streams and sketches for the internet

* Optimization

* Generalized Linear Models
* Kernels and Regularization
* Recommender Systems all you need

* Graphical Models for a startup
* Large Scale Inference

* Applications

* Active Learning / Bandits and Exploration



Algorithms run on MANY REAL and FAULTY boxes
not Turing machines. So we need to deal with it.



Systems

Hardware
CPU, RAM, GPU, disks, switches, server centers

Data
text, video, images, clicks, networks, location

Parallelization strategies
consistent (proportional) hashing, trees, P2P

Storage H%' fickr

RAID, GFS, Hadoop, Ceph G

Processing

MapReduce, Pregel, Dryad, S4 g8

Databases / (key,value) S groven
g orver_

BigTable, Pnuts, Cassandra



1.1 Hardware



Commodity Hardware

* High Performance Computing oS
Very reliable, custom built, expensive .. @iy
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e Consumer hardware o
Cheap, efficient, easy to replicate, ( S
not very reliable, deal with it! TN




Fault tolerance

* Performance goal
e 1 failure per year

e 1000 machines 04F
* Poisson approximation 1 T . I
Pr(n) = —e™"pu" .
* Assume failure rate t.per machine " R

* Poisson rates of independent random variables are additive, so we
can combine

* Fault intolerant engineering
We need a rate of 1 failure per 1000 years per machine

* Fault tolerance
Assume we can tolerate k faults among m machines in t time

Pr(f > k) =1- 3 —e M)

n!
n=0



Fault tolerance
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The Joys of Real Hardware

Typical first year for a new cluster:

~0.5 overheating (power down most machines in <5 mins, ~1-2 days to recover)
~1 PDU failure (~500-1000 machines suddenly disappear, ~6 hours to come back)
~1 rack-move (plenty of warning, ~500-1000 machines powered down, ~6 hours)
~1 network rewiring (rolling ~5% of machines down over 2-day span)

~20 rack failures (40-80 machines instantly disappear, 1-6 hours to get back)

~5 racks go wonky (40-80 machines see 50% packetloss)

~8 network maintenances (4 might cause ~30-minute random connectivity losses)
~12 router reloads (takes out DNS and external vips for a couple minutes)

~3 router failures (have to immediately pull traffic for an hour)

~dozens of minor 30-second blips for dns

~1000 individual machine failures

~thousands of hard drive failures

slow disks, bad memory, misconfigured machines, flaky machines, etc.

Slide from talk of Jeff Dean Google

http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en//people/jeft/stanford-295-talk.pdf



http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en//people/jeff/stanford-295-talk.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en//people/jeff/stanford-295-talk.pdf

CPU

Multiple cores (4-8)

Multiple sockets (1-4) per board
2-4 GHz clock

10-100W power

Several cache levels (hierarchical,

8-16 MB total)

Vector processing units (SSE4, AVX)
http://software.intel.com/en-us/avx/

Perform several operations at once

Use this for fast linear algebra (4-8
multiply adds in one operation)

Memory interface 20-40GB/s

Internal bandwidth >100GB/s

100+ GFlops for matrix matrix multiply
Integrated low end GPU

Sandy Bridge Microarchitecture
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Y

o 2-4 channels (32 bit wide)

* 1GHz speed

* High latency (10ns for DDR3)

* High burst data rate (>10 GB/s)

* Avoid random access in code if possible.
* Memory align variables

* Know your platform (FBDIMM vs. DDR)
(code may run faster on old MacBookPro than a Xeon)

>

http://www.anandtech.com/show/3851/everything-you-always-wanted-to-know-about-sdram-memory-but-were-afraid-to-ask
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GPU

 Up to 512 cores / 200W

e Cores have hierarchical structure
tricky to synchronize threads
(interrupts, semaphores, etc.)

e 1-3GB memory (Tesla 6GB)

* 1 TFlop (single precision)

* Memory bandwidth > 100GB/s
e 4GB/s PCl bus bottleneck




Storage

e Harddisks

3TB of storage (30GB/$)
100 MB/s bandwidth (sequential)
5 ms seek (200 IOPS)

cheap

e SSD

100-500 MB storage (1GB/S$)
300 MB/s bandwidth (sequential)
50,000 IOPS / 1 ms seek (queueing)

Random writes often faster than reads

reliable (but limited lifetime - NAND)




Switches & Colos

* In theory perfect point to point bandwidth
(e.g. 1Gb Ethernet)

* Big switches are expensive
(crossbar bandwidth linear in #ports, price
superlinear)

* Real switches have finite buffers
* many connections to a single machine bad

e buffer overflow / dropped packets /
collision avoidance

* Hierarchical structure
* more bandwidth within rack
* lower latency within rack
* |ots of latency between colos

* Hadoop gives you machines where the data is
(not necessarily on same rack!)



Numbers Everyone Should Know

L1 cache reference 0.5 ns
Branch mispredict 5 ns
L2 cache reference 7 ns
Mutex lock/unlock 100 ns
Main memory reference 100 ns
Compress 1K bytes with Zippy 10,000 ns
Send 2K bytes over 1 Gbps network 20,000 ns
Read 1 MB sequentially from memory 250,000 ns
Round trip within same datacenter 500,000 ns
Disk seek 10,000,000 ns
Read 1 MB sequentially from network 10,000,000 ns
Read 1 MB sequentially from disk 30,000,000 ns
Send packet CA->Netherlands->CA 150,000,000 ns

~ Slide from talk of Jeff Dean Google

http://static.qooqleusercontent.com/external content/untrusted dlcp/research.qoogle.com/en//people/ijeff/stanford-295-talk.pdf
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SECTOR

Discrete manufacturing
Government
Communications/Media
Process manufacturing
Banking

Health-care providers
Securities/Investment services
Professional services

Retail

“For firms with more than 1,000 employees

DATA STORED IN THE U.S., IN PETABYTES (2009)
0 200 400 600

PETABYTES
PER FIRM"

094
128
175
0.81
189
0.36
3.78
0.27
0.68

Source: McKinsey Global Institute analysis of data from 1DC (data stored) and U.S. Dept. of Labor

we need Big Learning



Webpages (content, graph)

Clicks (ad, page, social)

Users (OpenlID, FB Connect)

e-mails (Hotmail, YIMail, Gmail)

Photos, Movies (Flickr, YouTube, Vimeo ...)
Cookies / tracking info (see Ghostery)
Installed apps (Android market etc.)
Location (Latitude, Loopt, Foursquared)
User generated content (Wikipedia & co)
Ads (display, text, DoubleClick, Yahoo)
Comments (Disqus, Facebook)

Reviews (Yelp, YlLocal)

Third party features (e.g. Experian)
Social connections (LinkedIn, Facebook)
Purchase decisions (Netflix, Amazon)
Instant Messages (YIM, Skype, Gtalk)
Search terms (Google, Bing)

Timestamp (everything)

News articles (BBC, NYTimes, YINews)
Blog posts (Tumblr, Wordpress)
Microblogs (Twitter, Jaiku, Meme)

>10B useful webpages



The Web for S100k/month

Wabpages {coniert, graph] * 10 billion pages

icks (ad, page, socia ..

Users (OpeniD, FB Connec] (this is a small subset, maybe 10%)
e-mails (Hotmail, Y!Mail, Gmail) ]Ok/pqge = 100TB

Photos, Movies (Flickr, YouTube, Vimeo ...) .

Cookies / tracking info (see Ghostery) (S ] Ok FOI' dISkS or EBS 1 month )
Installed apps (Android market etc.) P :

Location (Latitude, Loopt, Foursquared) 1 OOO quhInes

User generated content (Wikipedia & co) 10ms/page =] CICI)’

Ads (display, text, DoubleClick, Yahoo) afford 1-10 MIP/page

Comments (Disqus, Facebook)

Reviews (Yelp, YlLocal) (SZOk on EC2 FOI' 068$/h)

Third party features (e.g. Experian) ° o |°

Social connections (LinkedIn, Facebook) 1 O Gblt Ilnk

Purchase decisions (Netflix, Amazon) (S ] Ok/moni-h via ISP or EC2)
Instant Messages (YIM, Skype, Gtalk) ’

Search terms (Google, Bing) ° | day or raw data

Timestamp (everything) ° 300ms/page roundfrip

News articles (BBC, NYTimes, YINews)

Blog posts (Tumblr, Wordpress) e 1000 servers for 1 month

Microblogs (Twitter, Jaiku, Meme) (S70k on EC2 for 0.085S/h)



Data - Identity & Graph

*  Webpages (content, graph)

. Clicks (ad, page, social)

. Users (OpenlID, FB Connect)

J e-mails (Hotmail, YIMail, Gmail)

. Photos, Movies (Flickr, YouTube, Vimeo ...)
. Cookies / tracking info (see Ghostery)

. Installed apps (Android market etc.)

. Location (Latitude, Loopt, Foursquared)

J User generated content (Wikipedia & co)
Ads (display, text, DoubleClick, Yahoo)

J Comments (Disqus, Facebook)

o Reviews (Yelp, YlLocal)
e  Third party features (e.g. Experian)

. Social connections (LinkedIn, Facebook)

. Purchase decisions (Netflix, Amazon)

. Instant Messages (YIM, Skype, Gtalk)

e  Search terms (Google, Bing) IH Hl

Timestamp (everything)
J News articles (BBC, NYTimes, YINews)

. Blog posts (Tumblr, Wordpress) ta k

. Microblogs (Twitter, Jaiku, Meme) .
o 100M-1B vertices




Crawling Twitter for S10k

. Webpages (content, graph) ° 3OOM users

. Clicks (ad, page, social) .

. Users (OpenlD, FB Connect) e Per user 300 querleS/h

J e-mails (Hotmail, YIMail, Gmail)

o Photos, Movies (Flickr, YouTube, Vimeo ...) ° ] OO edges/query

° Cookies / tracking info (see Ghostery) ° ] OO edges/qccount

. Installed apps (Android market etc.) )

. Location (Latitude, Loopt, Foursquared) ¢ Need 100 mGChlneS fOI' 2 Weeks

. User generated content (Wikipedia & co)

. Ads (display, text, DoubleClick, Yahoo) (CI'GWI It af 10 querles/s)

e  Comments (Disqus, Facebook) o Tweets

. Reviews (Yelp, YlLocal) .

e  Third party features (e.g. Experian) ° |n||nks

. Social connections (LinkedIn, Facebook) o .

J Purchase decisions (Netflix, Amazon) OUHInkS

. Instant Messages (YIM, Skype, Gtalk) e (Cost

e  Search terms (Google, Bing)

+  Timestamp (everything) o $3k for computers on EC2

. News articles (BBC, NYTimes, Y!News) o « .
. Blog posts (Tumblr, Wordpress Similar for network & storage

. Microblogs (Twitter, Jaiku, Meme) o Need ]Ok user ke)’S



Data - User generated content

flickr

*  Webpages (content, graph)

. Clicks (ad, page, social)

. Users (OpenlID, FB Connect)

J e-mails (Hotmail, YIMail, Gmail)

. Photos, Movies (Flickr, YouTube, Vimeo ...)
. Cookies / tracking info (see Ghostery)

. Installed apps (Android market etc.)

. Location (Latitude, Loopt, Foursquared)

. User generated content (Wikipedia & co)
e  Ads (display, text, DoubleClick, Yahoo)

. Comments (Disqus, Facebook)

. Reviews (Yelp, YlLocal)

e Third party features (e.g. Experian)

. Social connections (LinkedIn, Facebook)
. Purchase decisions (Netflix, Amazon)

. Instant Messages (YIM, Skype, Gtalk) D I S Q U S

e  Search terms (Google, Bing)

Timestamp (everything)

. News articles (BBC, NYTimes, YINews)

. Blog posts (Tumblr, Wordpress)
. Microblogs (Twitter, Jaiku, Meme)

>1B images, 40h video/minute



Data - User generated content

flickr

*  Webpages (content, graph)

. Clicks (ad, page, social)

. Users (OpenlID, FB Connégt}

J e-mails (Hotmail, YIMail, Gt

o Photos, Movies (Flickr, YouTube, Vimeo )
. Cookies / tracking info (see Ghostery)

. Installed apps (Android market etc.)

. Location (Latitude, Loopt, Foursquared)

. User generated content (Wikipedia & co)
Ads (display, text, DoubleClick, Yahoo)

. Comments (Disqus, Facebook)

o Reviews (Yelp, YlLocal)

e  Third party features (e.g. Experian)

. Social connections (LinkedIn, Facebook)
. Purchase decisions (Netflix, Amazon)

. Instant Messages (YIM, Skype, Gtalk) D l S Q U S

e  Search terms (Google, Bing)

Timestamp (everything)

. News articles (BBC, NYTimes, YINews)
. Blog posts (Tumblr, Wordpress)

. Microblogs (Twitter, Jaiku, Meme)

>1B images, 40h video/minute



Data - Messages

*  Webpages (content, graph) N J Windows Live -
. Clicks (ad, page, social) e S, N HOtma ||
. Users (OpenlID, FB Connect)

J e-mails (Hotmail, YIMail, Gmail)

. Photos, Movies (Flickr, YouTube, Vimeo ...)
. Cookies / tracking info (see Ghostery)

. Installed apps (Android market etc.)

. Location (Latitude, Loopt, Foursquared)

J User generated content (Wikipedia & co)
Ads (display, text, DoubleClick, Yahoo)

J Comments (Disqus, Facebook)

o Reviews (Yelp, YlLocal)

e  Third party features (e.g. Experian)

. Social connections (LinkedIn, Facebook)
. Purchase decisions (Netflix, Amazon)

. Instant Messages (YIM, Skype, Gtalk)

e  Search terms (Google, Bing)

° Timestamp (everything)

o News articles (BBC, NYTimes, YINews) > ] B teth

. Blog posts (Tumblr, Wordpress)
. Microblogs (Twitter, Jaiku, Meme)



Data - Messages

. Webpages (content, graph) N\ J Windows Live .
Clicks (ad, page, social) i HOtma Il
. Users (OpenlID, FB Connect)

J e-mails (Hotmail, YIMail, Gmail)

o Photos, Movies (Flickr, YouTube, Vimeo ...)
. Cookies / tracking info (see Ghostery)

. Installed apps (Android market etc.)

. Location (Latitude, Loopt, Foursquared)

. User generated content (Wikipedia & co)
Ads (display, text, DoubleClick, Yahoo)

. Comments (Disqus, Facebook)

o Reviews (Yelp, YlLocal)

e  Third party features (e.g. Experian)

. Social connections (LinkedIn, Facebook)
. Purchase decisions (Netflix, Amazon)

. Instant Messages (YIM, Skype, Gtalk)
e  Search terms (Google, Bing)

A RAYA"L Y,

° Timestamp (everything)

° News articles (BBC, NYTimes, Y!News) > ] B teth

. Blog posts (Tumblr, Wordpress)
. Microblogs (Twitter, Jaiku, Meme)

impossible without NDA



Data - User Tracking

" Ghostery found
e  Webpages (content, graph) s the following:
° Clicks (ad, pqge, social) Affluents eyeReturn Marketing moreinfo
http:/ivoken.eyereturn.com/pix 7283605
. Users (OpenlD, FB Connect) R
. . . . Boomer Women Facebook Connect more info
° e-mails (Hotma||, Y!MCIII, Gma||) Son 18-34 http://connect.facebook.netien_US/a..
en -
° Photos, Movies (Flickr, YouTube, Vimeo ...) Men 184 Google +1 more Info
. . . hitps ://apis.google.comvjs/plusone. s
e  Cookies / tracking info (see Ghostery) Milernnials Soogle Analyt
1 oogle Analylics more info
. Installed apps (Android market etc.) Online Dads o oo o anesios comisa
. Location (Latitude, Loopt, Foursquared) Online Moms NetRatings SiteC...  moreinfo
) User generated content (Wikipedia & CO) Women 18-34 http:/isecure-au.imrworldwide.comiv...
http://secure-us.imrworldwide.com/c
o Ads (display, text, DoubleClick, Yahoo) et
. Quantcast more info
e  Comments (Disqus, Facebook) http:/iedge.quantserve comiquant
° Reviews (Yelpl Y!LOCGI) US Demographics Updated Sep 10, 2011 » Next: Sep 21, 2011 by 9AM PDT
e  Third party features (e.g. Experian) INDEX INDEX
. . . 63% Male 129 75% No Kids 0-17 B 126
. Social connections (LinkedIn, Facebook) 37%  Female s 25%  Has Kids 0-17 5
. Purchase decisions (Netflix, Amazon) 1% 3-12 g 14%  $0-30k
1% 13-17 g 21%  $30-60k
. Instant Messages (YIM, Skype, Gtalk) 30% 18-34 - 3 19%  $60-100k ;
. 30%  35-49 | 107 45%  $100k+ — G2
e  Search terms (Google, Bing) 18% 50+ z
. : 33% No College
e  Timestamp (everything) 46% Cauc. g 38% College |
) . 7% Afr. Am. ; 30% Grad. Sch. 06
. News articles (BBC, NYTimes, YINews) 40%  Asian — et Averace
5% Hisp. ; e
. Blog posts (Tumblr, Wordpress) 1% Other alex.smola.org

J Microblogs (Twitter, Jaiku, Meme)

>1B ‘identities’



Data - User Tracking

Webpages (content, graph)

Clicks (ad, page, social)

Users (OpenlD, FB Connect)

e-mails (Hotmail, YIMail, Gmail)

Photos, Movies (Flickr, YouTube, Vimeo ...)
Cookies / tracking info (see Ghostery)
Installed apps (Android market etc.)
Location (Latitude, Loopt, Foursquared)
User generated content (Wikipedia & co)
Ads (display, text, DoubleClick, Yahoo)
Comments (Disqus, Facebook)

Reviews (Yelp, YllLocal)

Third party features (e.g. Experian)
Social connections (LinkedIn, Facebook)
Purchase decisions (Netflix, Amazon)
Instant Messages (YIM, Skype, Gtalk)
Search terms (Google, Bing)

Timestamp (everything)

News articles (BBC, NYTimes, YINews)
Blog posts (Tumblr, Wordpress)
Microblogs (Twitter, Jaiku, Meme)

Privacy Information =
Privacy Policy:

http://www.facebook.com/policy.php

Data Collected:

Anonymous (browser type, location, page views), Pseudonymous (IP address.
"actions taken")

Data Sharing:

Data is shared with third parties. «

Data Retention:

Data is deleted from backup storage after 90 days. «

Privacy Information =

Privacy Policy:

http://www.google.com/intl/en/priv...

Data Collected:

Anonymous (ad serving domains, browser type, demographics, language
settings, page views, time/date), Pseudonymous (IP address)

Data Sharing:

Anonymous data is shared with third parties. «

Data Retention:

Undisclosed «



Personalization

Recently Watched Top 10 for Alexander

 100-1000M users
* Spam filtering

* Personalized targeting
& collaborative filtering

e News recommendation
* Advertising

INSIDE!
o

* Large parameter space
(25 parameters = 100GB) \

Convex Optimization by Point Processes Probabilistic Graphical

. . Stephen Boyd Chapman & Hsz CRC Models: Principles and
e DISi‘I’IbUfed Si'Ol'Clge Yororodody (11) Monographs on S... by T... by Daphne Koller
. $65.78 D-R. Cox SRRk (5)
(need it on every server) $125.47 $71.52
* Distributed optimization Forward __ Not Spam &3 ~ | & -
. . £ Inbox 3 ¢ @ FROM SUBJECT DATE
¢ MOdeI S)’I’IC h I'OI'I IZCIi'IOI’I L.l Conversations @ Sabrina Charissa We provide cheap high-quality Rep... Tuesday, 1...
Drafts ® Michel Terina Male Penis Enhancement - Male E... Monday, 5:...

 Time dependence —

@soen 20
e Graph structure = Trash




(implicit) Labels

no Labels

a0 * Not just a new look.
Q;hc N v ﬂﬂ 1‘k @l A new outlook.
Friday, September 16, 2011 12 PMET

Search Flights
Continue to continental.com

e Click feedback
_____ $ ‘ \r/‘\;emf;a:ﬁavr\‘lggld Peace: Ron Artest» A

R/

:I The former Ron Artest's ballvhooed switch to Metta World Peace is

[ ]
e Emails
D IS SIS 0 €8

@ FROM SUBJECT

! Yahoo! FINAL NOTICE: Delicious has a new owner. What thi...

e T
CI q S
3D wallpapers download

Create A Unique Blogging Website

Celebrities Wallpaper

* Editorial data is very
expensive! Do not use!

Graphs

Document collections

Series of quakes hit off Japan disaster zone Ari

# A strong 6.6-magnitude undersea quake and a seri¢
. Japan's Honshu i ]H.:lf turday, not far frc ' '
B- k and t e

sunami, geol sald. More »

Emall/IM/Dlscussmns

Caroline 7
I'm ugly. :/ Like if you dissagree.

& 15 people like this.

& Ale)andro Umm what if you agree?
m - Like - ¢) 8 people

Query stream

machine learning 1.00 data mining




Many more sources

oSt per Megabase of DNA Sequence
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personalized sensors


http://keithwiley.com/mindRamblings/digitalCameras.shtml
http://keithwiley.com/mindRamblings/digitalCameras.shtml

$1500
$1400
$1300
$1200
$1100
$1000
$900
$200
$700
$600
$500
$400
$300
$200
$100
$0

Many more sources

_ oSt per Megabase of DNA Sequence

Moore's Law

T “""““ " National Human
I Genome Research
Institute

genome.gov/sequencingcosts
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personalized sensors
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1.3 Distribution Strategies



Concepts

 Variable and load distribution

* Large number of objects (a priori unknown)

* Large pool of machines (often faulty)

* Assign objects to machines such that
* Object goes to the same machine (if possible)
* Machines can be added/fail dynamically

* Consistent hashing (elements, sets, proportional)

* Overlay networks (peer to peer routing)
* Location of object is unknown, find route
* Store object redundantly / anonymously

symmetric (no master), dynamically scalable, fault tolerant



Hash functions

Mapping h from domain X to integer range [1,... V]
Godl

We want a uniform distribution (e.g. to distribute objects)

Naive ldea

For each new x, compute random h(x)
Store it in big lookup table

Perfectly random

Uses lots of memory (value, index structure)
Gets slower the more we use it

Cannot be merged between computers

Better Idea

Use random number generator with seed x

As random as the random number generator might be ...
No memory required

Can be merged between computers

Speed independent of number of hash calls



Hash function

* n-ways independent hash function
e Set of hash functions H

e Draw h from H at random

* For n instances in X their hash [h(x1), ... h(xa)] is essentially
indistinguishable from n random draws from [1 ... N]

* For aformal treatment see Maurer 1992 (incl. permutations)
ftp://ftp.inf.ethz.ch/pub/crypto/publications/Maurer92d.pdf

* For many cases we only need 2-ways independence (harder proof)
1

for all Pr {h(x) = h S
or all 2,y Pr {h(z) = h(y)} = ~

* In practice use MD5 or Murmur Hash for high quality

https://code.qoogle.com/p/smhasher

* Fast linear congruential generator ax + bmod c
'For constants a, b, C S€€ htip://en.wikipedia.org/wiki/Linear congruential generator



https://sites.google.com/site/murmurhash/
https://sites.google.com/site/murmurhash/
http://en.wikipedia.org/wiki/Linear_congruential_generator
http://en.wikipedia.org/wiki/Linear_congruential_generator

1.3.1 Load Distribution




D1 - Argmin Hash

e Consistent hashing

m(key) = argmin h(key, m)
meM

e Uniform distribution over machine pool M
* Fully determined by hash function h. No need to ask master

* If we add/remove machine m’ all but O(1/m) keys remain

Pr{m(key) = m'} = %

e Consistent hashing with k replications
key, k) =k llest h(k
m(key, k) = k smallest h(key, m)

* If we add/remove a machine only O(k/m) need reassigning

e Cost to assign is O(m). This can be expensive for 1000 servers



D2 - Distributed Hash Table

* Fixing the O(m) lookup
e Assign machines to ring via hash h(m) ring of N keys
e Assign keys to ring

* Pick machine nearest to key to the left
* Oflog m) lookup
* Insert/removal only affects neighbor
(however, big problem for neighbor)

* Uneven load distribution
(load depends on segment size)

 |Insert machine more than once to fix this

* For k term replication, simply pick the k
leftmost machines (skip duplicates)
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D2 - Distributed Hash Table

* Fixing the O(m) lookup
e Assign machines to ring via hash h(m) ring of N keys
e Assign keys to ring

* Pick machine nearest to key to the left | Ve 1-3 |
* Oflog m) lookup > >

* Insert/removal only affects neighbor n

(however, big problem for neighbor)

* Uneven load distribution
(load depends on segment size)

 |Insert machine more than once to fix this

* For k term replication, simply pick the k e
leftmost machines (skip duplicates)



D2 - Distributed Hash Table

* For arbitrary node segment size is
minimum over (m-1) independent ring of N keys
uniformly distributed random variables

Pr{z > c} :HPI{Si > c} = (1c)mf | l

* Density is given by derivative
pc) = (m—1)(1 -

1
* Expected segment length is c = —
m
(follows from symmetry)
* Probability of exceeding expected —

segment length (for large m)

m—1
Pr{xzﬁ}:<1—£> — s e ¥
m m



D3 - Proportional Allocation Table

e Assign items according to machine capacity

e Create allocation table with segments proportional
to capacity 2
* Leave space for additional machines

e Hash key h(x) and pick machine covering it

o |f failure, re-hash the hash until it hits a bin

* For replication hit k bins in a row 3

* Proportional load distribution

e Limited scalability
* Need to distribute and update table

* Limit peak load by further delegation
(SPOCA - Chawla et al., USENIX 2011)
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Random Caching Trees

(Karger et al. 1999, Akamai paper)

* Cache / synchronize an object
* Uneven load distribution
* Must not generate hotspot

* For given key, pick random order of machines
* Map order onto tree / star via BFS ordering

®




Random Caching Trees

* Cache / synchronize an object
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* Must not generate hotspot

* For given key, pick random order of machines
* Map order onto tree / star via BFS ordering




1.3.2. Overlay Networks & P2P




Peer to peer

Large number of (unreliable) nodes

Find objects in logarithmic time

Overlay network (no TCP/IP replacement)

Logical communications network on top of physical network
Pick host to store object by finding machine with nearest hash

No need to know who has it to find it
(route until nobody else is closer)

Usage

Distributed object storage (file sharing)
Store file on machine(s) k-nearest to key.

Load distribution / caching
Route requests to nearest machines (only log N overhead).

Publish / subscribe service



Pastry (Rowstrom & Druschel)

Nodeld 10233102

Node gets random ID (128 bit ensures
that we’re safe up to 244 nodes)

State table

L/2 left and right nearest nodes

Nodes within network
neighborhood

For each prefix the 2P neighbors
with different digit (if they exist)

Routing in log N steps for a key

Use nearest element in routing table
Send routing request there

If not available, use nearest
element from leaf set

Leaf set | SVMALLER || LARGER |

| 10233033 | 10233021 | 10233120 | 10233122 |
10233001 | 10233000 10233230 || 10233232
Routing table

| -0-2212102 | 1 | -2-2301203 || -3-1203203 |

0 1-1-301233 || 1-2-230203 || 1-3-021022 |
| 10-0-31203 | 10-1-32102 |2 | 10-3-23302 |
102-0-0230 | 102-1-1302 | 102-2-2302 |8 |
1023-0-322 | 1023-1-000 | 1023-2-121 lﬁ
| 10233-0-01 [T 10233-2-32 |
0

102331-2-0 |

|| 2
Neighborhood set
| 13021022 | 10200230 | 11301233 | 31301233 |
02212102 22301203 31203203 33213321




Pastry (Rowstrom & Druschel)

Nodeld 10233102

¢ nodeld = PCISh')’InH' Leaf set | SVMALLER || LARGER |

| 10233033 | 10233021 | 10233120 | 10233122 |
generates nOde |D, connect to net 10233001 | 10233000 10233230 | 10233232

* route(key,value) Routing table

[ -0-2212102 | 1 | -2-2301203 || -3-1203203 |
route message 0 1-1-301233 || 1-2-230203 | 1-3-021022 |
d | d k | | 10-0-31203 | 10-1-32102 |2 | 10-3-23302 |
° elivere ev.value 102-0-0230 | 102-1-1302 || 102-2-2302 |8
f\{ ( Yy d) . 1023-0-322 | 1023-1-000 || 1023-2-121 lﬁ

1 10233-0-01 [ 4| 10233-2-32 ||

conrirms message aeilivery — o 109351 2.0 ]

|| 2

* forward(key,value,nextiD)
Neighborhood set

fOI’WCII'CIs to neXHD' ophonqlly | 13021022 | 10200230 | 11301233 | 31301233 |
modiFy vcl|ue 02212102 22301203 31203203 33213321

* newleaves(leafSet)
notify application of new leaves,
update routing table as needed



Add node

Generate key

Find route to nearest node

All nodes on route send routing table to new node
Compile routing table from messages

Send routing table back to nodes on path

Nodes fail silently
Update table

Prefer near nodes (hence the neighborhood set)
Repair when nodes fail (route to neighbors)

Analysis

O(log, N) nonempty rows in routing table
(uniform key distribution, average distance is concentrated)

Tolerates up to L/2 local failures (very unlikely to happen) to recover network
Finding k nearest neighbors is nontrivial



More stutf (take a systems class!)

e Gossip protocols
Information distribution via random walks

(see e.g. Kempe, Kleinberg, Gehrke, etc.)

* Time synchronization / quorums
Byzantine fault tolerance (Lamport / Paxos)

Google Chubby, Yahoo Zookeeper

e Serialization
Thrift, JSON, Protocol buffers, Avro

* Interprocess communication

MPI (do not use), OpenMP, ICE



1.4 Storage



RAID

* Redundant array of inexpensive disks

e Aggregate storage of many disks
e Aggregate bandwidth of many disks
e Fault tolerance (optional)
* RAID O - stripe data over disks (good bandwidth, faulty)
e RAID 1 - mirror disks (mediocre bandwidth, fault tolerance)
 RAID 5 - stripe data with 1 disk for parity (good bandwidth, fault tolerance)

* Even better - use error correcting code for fault tolerance,
e.g. (4,2) code, i.e. two disks out of 6 may fail
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Distributed replicated file systems

* [nternet workload
* Bulk sequential writes
* Bulk sequential reads
* No random writes (possibly random read:s)
* High bandwidth requirements per file
* High availability / replication
* Non starters
* Lustre (high bandwidth, but no replication outside racks)
* Gluster (POSIX, more classical mirroring, see Lustre)
 NFS/AFS/whatever - doesn’t actually parallelize



Google File System / HDFS

Application (file name, chunk index) _ GFS master »~ /foofbar
GFS client . File namespace , chunk 2ef0
(chunk handle, \ "
chunk locations)
P Legend:
N\ mmms)  Data messages
-
Instructions to chunkserver = Control messages
(chunk handle, byte range) LAUOKSCIVES State '
GFS chunkserver GFS chunkserver

chunk data ~ Linux file system ~ Linux file system

- I T - | AL ...

Ghema\.vat.,—GobioFf, Leung, 2003

e  Chunk servers hold blocks of the file (64MB per chunk)

e Replicate chunks (chunk servers do this autonomously). More bandwidth and fault tolerance
*  Master distributes, checks faults, rebalances (Achilles heel)
e Client can do bulk read / write / random reads



Google File System / HDFS

Client requests chunk from master

O WD~

Master responds with replica location
Client writes to replica A
Client notifies primary replica

Primary replica requests data from
replica A

Replica A sends data to Primary
replica (same process for replica B)

Primary replica confirms write to client

step 1
Client | Master

13
Secondary =——
ReplicaA ——

l 6
Primary [~
Replica -

l Legend

6

Secondary ' —)
ReplicaB =——

Control
Data



Google File System / HDFS

Client requests chunk from master

O WD~

Master responds with replica location
Client writes to replica A
Client notifies primary replica

Primary replica requests data from
replica A

Replica A sends data to Primary
replica (same process for replica B)

Primary replica confirms write to client

Master ensures nodes are live
Chunks are checksummed

Can control replication factor for
hotspots / load balancing

Deserialize master state by loading data
structure as flat file from disk (fast)

step 1
Client | Master

13
Secondary =——
ReplicaA ——

l 6
Primary =
Replica -

l Legend

6

Secondary ' —)
ReplicaB =——

Control
Data



Google File System / HDFS

1. Client requests chunk from master
2. Master responds with replica location single master
3. Client writes to replica A
4. Client notifies primary replica
. . o Client | Master
5. Primary replica requests data from )
replica A 13
6. Replica A sends data to Primary
I f . Secondary ~—
replica (same process for replica B) Replica A
7. Primary replica confirms write to client l 0
®* Master ensures nodes are live 7 Primary -
¢ Chunks are checksummed ~ Replica I >
e Can control replication factor for Legend
hotspots / load balancing ] — + Control
 Deserialize master state by loading data | Secondary | m—) Data
structure as flat file from disk (fast) Replica B
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2. Master responds with replica location single master
3. Client writes to replica A
4. Client notifies primary replica
. . | Client | Master
5. Primary replica requests data from )
replica A 13
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I f : Secondary =——
replica (same process for replica B) Replica A
7. Primary replica confirms write to client l 0
* Master ensures nodes are live 7 Primary ™
¢ Chunks are checksummed ~ Replica I >
e Can control replication factor for Legend
hotspots / load balancing ] — + Control
 Deserialize master state by loading data | Secondary | m—) Data
structure as flat file from disk (fast) Replica B




CEPH/CRUSH

No single master

Chunk servers deal with replication / balancing on their own

Chunk distribution using proportional consistent hashing

Layout plan for data - effectively a sampler with given marginals
Research question - can we adjust the probabilities based on statistics?

Clients Metadata Cluster
Metadata operations

SRS o
OO
R [ S < Metadata
bash | [[client | sz storage

]
]
1
Is libfuse i
1
]

Object Storage Cluster

B -
Linux kernel | 1 | myproc E

hitp://ceph.newdream.org (Weil et al., 2006)



http://ceph.newdream.org
http://ceph.newdream.org

CEPH/CRUSH

choose(1,row)

- —

choose(1,disk)

(L |

" r : LN |. . ‘ [| LR =
- @S 6. - 88 68 -6

* Various sampling schemes (ensure that no unneccessary data is moved)

* In the simplest case proportional consistent hashing from pool of objects
(pick k disks out of n for block with given ID)

e Can incorporate replication/bandwidth scaling like RAID
(stripe block over several disks, error correction)



CEPH/CRUSH

| 7
Added item /

* Various sampling schemes (ensure that no unneccessary data is moved)

* In the simplest case proportional consistent hashing from pool of objects
(pick k disks out of n for block with given ID)

e Can incorporate replication/bandwidth scaling like RAID
(stripe block over several disks, error correction)



CEPH/CRUSH fault recovery

r=r+f r=r+1fn
1 2, 3 4 5 6 1 2, 3 4 5 6
FREEE0DE® - G EEEE
JEDDBE
1 2 3 4 5 6 1 2 3 4 5 6
FUTUE0E« @ 3| WEE8EE
L VA VA VA V/ 9 'R

* Hadoop patch available - use instead of HDFS



1.5 Processing



Map Reduce

* 1000s of (faulty) machines

* Lots of jobs are mostly embarrassingly parallel
(except for a sorting/transpose phase)

* Functional programming origins
* Map(key,value)
processes each (key,value) pair and outputs a new (key,value) pair

* Reduce(key,value)
reduces all instances with same key to aggregate

Input list

Input list

Mapping function Reducing function V

Ve RN S RS S S B Bt B2
Output list Output value

from Ramakrishnan, Sakrejda, Canon, DoE 2011



Map Reduce

1000s of (faulty) machines

Lots of jobs are mostly embarrassingly parallel
(except for a sorting/transpose phase)

Functional programming origins

Map/(key,value)
processes each (key,value) pair and outputs a new (key,value) pair

Reduce(key,value)
reduces all instances with same key to aggregate

Example - extremely naive wordcount

Map(docID, document)
for each document emit many (wordID, count) pairs

Reduce(wordID, count)
sum over all counts for given wordID and emit (wordID, aggregate)



Map Reduce

easy fault tolerance User
. Program . .
(simply restart workers) _ disk based inter process
Dotk gk @) fork communication
moves computation to data .- :
; Q) assign
- .as'sign reduce .

map

worker

split 0

(6) write output

worker ) file 0

split 2 [—(3) read y (4) local write |
WOI'KCr
split 3 ovput

split 1

(5) remote read

file 1
split 4

worker Ghemawat & Dean, 2003




Map Combine Reduce

 Combine aggregates keys before sending to the reducer (saves bandwidth)
* Map must be stateless in blocks

 Reduce must be commutative in data

* Fault tolerance

e Start jobs where the data is
(move code note data - nodes run the file system, too)

e Restart machines if maps fail (have replicas)

* Restart reducers based on intermediate data
* Good fit for many algorithms
 Good if only a small number of MapReduce iterations needed
* Need to request machines at each iteration (time consuming)
e State lost in between maps
e Communication only via file I/O
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e Directed acyclic graph
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System optimizes parallelism
* Different types of IPC
(memory FIFO/network/file)
e Tight integration with .NET
(allows easy prototyping)
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Isard et al., 2007




E = (AS >= C >= BS) E || (AS >= BS) (A>=C>=D>

graph description language



DRYAD

automatic graph refinement



S4

* Directed acyclic graph (want Dryad-like features)

* Realtime processing of data (as stream)

&

e Scalability (decentralized & symmetric)

vt
/&\'/

(2 NS

S

SN2
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e Fault tolerance

e Consistency for keys

* Processing elements

* Ingest (key, value) pair
* Capabilities tied to ID

N\

A‘
23

74

<
v

)

&
N\
B)\}

* Clonable (for scaling)

e Simple implementation e.g. via consistent hashing

\/
/N

hitp://s4.io Neumeyer et al, 2010



http://s4.io
http://s4.io

EV RawClick

EV RawServe KEY null

KEY _ null VAL Click Data
VAL Serve Data
RouterPE: Routes
keyless input events
EV Serve EV Click
KEY serve=123 serve=123

VAL Serve Data AL Click Data

------- JoinPE: Joins clicks/
serveJom using the key

processing element

90—

"serve"
[Processing Node EV JoinedServe EV JoinedClick
Processing Element Container KEY  user=Peter user=Peter
VAL Joined Data VAL Joined Data
PE: PE2 soe PEn ---.BotFilterPE: Uses
stateless and stateful
3 ' rules to filter events
Event . .
17| Listener Dispatcher [+ Emiter " EV FilteredServe EV FilteredClick
KEY qg-ad=ipod-78 KEY qg-ad=ipod-78
: L VAL Joined Data VAL Joined Data
Communication Layer
Routing Load Balancing @ Emit "clean" events using
Failover Management , @ composite key. (eg.
query="ipod", adID =
Transport Protocols EV Q-Ad-CTR ".\"78")
KEY g-ad=ipod-78 eTRPE s ol
: counts clean serves
Zookeeper VAL Joined Data -7l and clicks using a sliding
window. Computes CTR

Output events are directed and other click metrics
tofa data server or any

............

Other listener. 'PEID PEName  Key Tuple
‘PE1  RouterPE  null
:PE2  JoinPE serve=123

------------

'PE3 ' BotFilterPE user="Peter"

............

‘PE4 | CTRPE q-ad=ipod-78



Alternative

build your own
e.g. based on IPC framework

only do this if you REALLY know what you’re doing



1.6 Data(bases/storage)



Distributed Data Stores

¢ SQL
* rich query syntax (it's a programming language)
* expensive to scale (consistency, fault tolerance)
* (key, value) storage
* simple protocol: put(key, value), get(key)
* lightweight scaling
* Row database (BigTable, HBase)
e create/change/delete rows, create/delete column families
* timestamped data (can keep several versions)
e scalable on GoogleF$S
* Intermediate variants
* replication between COLOs
* variable consistency guarantees



(key,value) storage

Protocol

put(key, value, version)

(value, version) = get(key)

Attributes

persistence (recover data if machine fails)

replication (distribute copies / parts over many machines)
high availability (network partition tolerant, always writable)
transactions (confirmed operations)

rack locality (exploit communications topology/replication)



Comparison of NoSQL Systems

Project Name Type Persistence Replication High Awailability Transactions Rack-locality Awareness Impleme
AllegroGraph Graph database Yes Mo - v, 2010 Yes Yes Mo Commaon Lisp
Apache Jackrabbit Key-valus & Hieranchical & Docwment Yes Yes Yes Yes sy Java
Apsirats & Document & Key-Value Yes Yes Yes Yes Mo Jawva
Berkeley DB/DbmMdbm {bdb) 1 x Hey-valus Yes Mo Mo Mo Mo C
Berksley DB SleepycatiTvade Berkeley DB 2 x Hey-valus Yes Yes Uindanscvem Yes Mo C, G, or Jan
Cassandra Key-valus Yes Yes Cistribasted Eventually consisient Yes Jawva
Chordless Ky alue with RPC Yes Yes Yes Yes Mo Jawva
Citrusleaf & Document & Key-value Yes Yes Cistribasted Yes Mo C
CowchDB Diozement Yes Yes rephicaton + load balancing Adoamcity is per document, per CouchDB nstance Mo Erlang
GTM Key-valus Yes Yes Yes Yes Depends on wser configuration| C (small bits

Project Mame Type Persistence Replication High Awvailability Transactions Rack-locality Awareness Impleme
HBase Hey-valus Yes. Mapor version upgrades require re-import. Ses HOFS, 53 or EBS. maybe with Zookesper in 0217 |Linknown See HOFS, 53 or EBS. Java
HyperGraphDB & Graph Database Yes Yes Uindonsoiam Yes Uinderonm JavaiC++
Hyperiable Hey-valus Yes Yes, with KosmosFS and Caph coming in 2.0 COMing Yes, with KosmosFS G+
IndoeGirid &2 Graph database with web froniend Yes (pluggable: nafee, S0L) Yes Uindanscvem Yes Lindoronn Jawva
Informafbon Management Sysiem IBM IM5 aka DB 1 |Key-value. Muli-ews] Yes Yes Yes, with HALDB Yes, with IM5 TM Lindoronn Assembler
Keyspace & (Scalien) Hey-valus Yes Yes (Paxos) fail-over Uinkrsovam Yes CIC+H-
MarkLogic & XML Yes Yes (auiomatc) Yes Yes Configurable G+
MDB = Document & Key-valus Yes Yes (via GTM) Yes (via GTM) Yes (via GTM) ] M
Membase & Key-valus Yes Yes Yes Yes Mo C++, C, Pytho
Memcache Key-valus 1] Mo 1] Yes Mo C
MongoDB Diocement (JS0N) Yes Yes fad-over Sangle document atoamicity Mo G+

Project Mame Type Persistence Replication High Awvailability Transactions Rack-locality Awareness Impleme
Meoud) Graph database Yes Yes Yes, Read slaves Yes Mo Java
OrieniDB Document databass Yes in development In development Yes Mo Jawva
Project Violdemaort &2 Hey-valus Yes Yes Cistribasied Linknovwm Mo Jawva
Redis Hey-valus Yes. Butlast few guenes can be lost. Yes o Yes Mo Ans-C
Risk & {Basho &) Document & Key-value Yes Yes Yes (iInduding wiile-avalabdity)| Eveniueally Consisient Lindoronn Erlang, C
Sausalio & ZML Data Moded X0M) Yes (AWS 53) Yes (e 53) Uindanscvem Uinkrsovam e 53 HiCuery
Sherpa (aka PHUTS) (Yahoo!) Document & Key-value Yes Yes Yes Yes Yes CH+ 7
SimpleDB (Amazon.com) Document & Key-value Yes s (aulomatic) Yes Uinkrniovam sty Erlang
soines GraphDE & 00 & Graph datsbase Yes Yes Yes Yes Uindaruoim CE et
TigerLogic & XDuery Dats Model Yes Xiuery

ooy Cabinet & Key-valus Yes Mo Mo Yes Mo C

VerexDE & Graph database Yes MNa Yes C

Project Mame Type Persistence Replication High Awvailability Transactions Rack-locality Awareness Impleme

UNIVERSITY

OF OSLO



memcached

* Protocol (no versioning)
* put(key, value)

* value = get(key) (returns error if key non-existent)

servers

clients

* Load distribution by consistent hashing
m(key) = argmin h(m, key)

. cM
* cache dynamic content

* disposable distributed storage (e.g. for gradient aggregation)



memcached

* Protocol (no versioning)
* put(key, value)

* value = get(key) (returns error if key not existent)

servers

clients

* Example: distributed subgradients (much faster than MapReduce)
* Clients writes put([clientID,blockID], gradient) for all blockIDs
e Client reads get([clientID,blocklD]) for all clientiD & aggregates

 Update parameters based on aggregate gradient & broadcast



Amazon Dynamo

Client Requests

* (key, value) storage

e scalable \\/
* high availability (we can always &) E1E1 E1 . BT menserng.
add to the shopping basket) ~.

. . . Request Routing
* reconcile inconsistent records

o persistent (do not lose orders)  ° f)< >U‘U oy

Services

Cassandra is more or less open
source version with columns added
(and ugly load balancing)

Dynamo instances

Other datastores

DeCandia et al., 2007



Amazon Dynamo

write
handled by Sx

D1 ([Sx,1])

write
handled by Sx

D2 ([Sx,2])

write write
handled by Sy handled by Sz

D3 ([Sx,2],[Sy,1]) D4 ([Sx,2],[Sz,1])

reconciled
and wntten by

D5 ([Sx,3],[Sy,11[Sz,1])

vector clocks to
handle versions

Problem Technique Advantage
Partitioning Consistent Hashing Incremental
Scalability
High Availability Vector clocks with Version size is
for writes reconciliation during decoupled from
reads update rates.
Handling temporary | Sloppy Quorum and Provides high
failures hinted handoff availability and

durability guarantee
when some of the

replicas are not

available.
Recovering from Anti-entropy using Synchronizes
permanent failures Merkle trees divergent replicas in
the background.

Membership and
failure detection

Gossip-based
membership protocol
and failure detection.

Preserves symmetry
and avoids having a
centralized registry
for storing
membership and
node liveness
information.




Amazon Dynamo

write
handled by Sx

D1 ([Sx,1])
write
handled by Sx

D2 ([Sx,2])

write write
handled by Sy handled by Sz

D3 ([Sx,2],[Sy,1]) D4 ([Sx,2],[Sz,1])

reconciled
and wntten by

D5 ([Sx,3],[Sy,11[Sz,1])

vector clocks to
handle versions

Problem Technique Advantage
Partitioning Consistent Hashing Incremental
Scalability
High Availability Vector clocks with Version size is
for writes reconciliation during decoupled from
reads update rates.
Handling temporary | Sloppy Quorum and Provides high
failures hinted handoff availability and

durability guarantee
when some of the
replicas are not

available.
Recovering from Anti-entropy using Synchronizes
permanent failures Merkle trees divergent replicas in
the background.

Membership and
failure detection

machine learning

Gossip-based
membership protocol
and failure detection.

opportunity for

Preserves symmetry
and avoids having a
centralized registry
for storing
membership and
node liveness
information.




Google Bigtable / HBase

e Row oriented database

e Partition by row key into tablets
e Servers hold (preferably) contiguous range of tablets
* Master assigns tablets to servers
* Persistence by writing to GoogleFS
e Column families
e Access control
* Arbitrary number of columns per family

* Timestamp :
e For each record anhOr fdml|y

e Can store several copies

"contents:" "anchor:.cnnsi.com” "anchor:my.look.ca"
| | |
oo R v
____________ B . A U
<htn1]> :_4 t ) | . | " " |
"com.cnn.www" —* —=himi=3" 0 .7 | "CNN" |[= 1, CNN.com" |=- tg
" " | 5 J .
[ <htm|> "____l E6- S T Lo e
| | |
| | |




Internals

Chubby / Zookeeper (global consensus server using Paxos)

e  Hierarchy
Root tablet
Contains all metadata tablet ranges & machines UserTabIe1
+ Metadata tablets Other e
Contains all tablet ranges and machines ME,(;@‘IEQTA %: cooooooooos

. User tablets ... """ oo

Contains the actual data [----IZ-IZZIozcs
. Root tablet
i Operqhons Chubby f||e (1st METADATA tablet) CCC--I-ZI--IZZZI:Z:
 Look up row key ( PEEEUEEEEE 7 UserTableN

* Row range read

e Read over columns in column family \:::::::::::: .

. Time ranged queries ~ booooooooooos

e Operations are atomic perrow 1 o

e Single server per tablet

Disk/memory trade off
. Bloom filter to determine which block to read

e  Write diffs only - for lookup traverse from present to past (we will use this for particle filter later)

° Compaction operator aggregates



NoSQL vs. RDBMS

RDBMS provides too much

e ACID transactions

« Complex query language

e Lots and lots of knobs to turn
RDBMS provides too little

e Lack of (cost-effective) scalability, availability

* Not enough schema/data type flexibility
* NoSQlL
e Lots of optimization and tuning possible for analytics (Column stores, bitmap indices)
e Flexible programming model (Group By vs. Map-Reduce; multi-dimensional OLAP)
e But many good ideas to borrow
e Declarative language
e parallelization and optimization techniques

e value of data consistency ...

courtesy of Raghu Ramakrishnan



NoSQL vs. RDBMS

RDBMS provides too much

e ACID transactions

« Complex query language

e Lots and lots of knobs to turn
RDBMS provides too little

e Lack of (cost-effective) scalability, availability

* Not enough schema/data type flexibility
* NoSQlL
e Lots of optimization and tuning possible for analytics (Column stores, bitmap indices)
e Flexible programming model (Group By vs. Map-Reduce; multi-dimensional OLAP)
e But many good ideas to borrow
e Declarative language
e parallelization and optimization techniques

e value of data consistency ...

courtesy of Raghu Ramakrishnan



Yahoo high availability storage

'im.m‘m lﬂl‘m.m‘m '

£
A | 42342 £ W
B | 42521 W W
| C | 66354 W = i?
Wmml o | 12352 = ¢
C e TE 75656 C E
F | 15677 E - Indexes and views

— g P g P
| s B0 ) ‘ o aldidy - ’
i ' R HE CREATE TABLE Parts (

ID VARCHAR,

StockNumber INT, Eﬁf' : —
Parallel database Status VARCHAR |- Geographic replication

)

3 Structured, flexible schema
TR D 12352 |
© e TE 75656
F | 15677

myOfm

—
Hosted, managed infrastructure Zlmmggm '
k‘h‘“‘m_ Av 4. 4 DS

courtesy of Raghu Ramakrishnan



Systems

Hardware
CPU, RAM, GPU, disks, switches, server centers

Data
text, video, images, clicks, networks, location

Parallelization strategies
consistent (proportional) hashing, trees, P2P

Storage H%' fickr

RAID, GFS, Hadoop, Ceph G

Processing

MapReduce, Pregel, Dryad, S4 g8

Databases / (key,value) S groven
g orver_

BigTable, Pnuts, Cassandra



Further reading

e  Consistent hashing (Karger et al.)
http://www.akamai.com/dl/technical_publications/
ConsistenHashingandRandomTreesDistributedCachingprotocolsforrelievingHotSpotsontheworldwideweb. pdf

. Stateless Proportional Caching (Chawla et al.)
http://www.usenix.org/event/atc11 /tech/final_files/Chawla.pdf
http://www.usenix.org/event/atc11/tech/slides/chawla.pdf

*  Pastry P2P routing (Rowstron and Druschel)
http://research.microsoft.com/en-us/um/people/antr/PAST/pastry.pdf
http://research.microsoft.com/en-us/um/people/antr/pastry/

. MapReduce (Dean and Ghemawat)
http://labs.google.com/papers/mapreduce.html

e«  Google File System (Ghemawat, Gobioff, Leung)
hitp://labs.google.com/papers/gfs.html

. Amazon Dynamo (deCandia et al.)
hitp://cs.nyu.edu/srg/talks/Dynamo.ppt
http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf

BigTable (Chang et al.)
http://labs.google.com/papers/bigtable.html

CEPH filesystem (proportional hashing, file system)
hitp://ceph.newdream.net/
http://ceph.newdream.net/papers/weil-crush-sc06.pdf
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Further reading

. CPUS
hitp://www.anandtech.com/show/3922 /intels-sandy-bridge-architecture-exposed
http://www.anandtech.com/show/4991/arms-cortex-a7-bringing-cheaper-dualcore-more-power-efficient-highend-
devices

. NVIDIA CUDA
hitp://www.nvidia.com/object/cuda home new.html

. ATI Stream Computing
http://www.amd.com/US/PRODUCTS/TECHNOLOGIES/STREAM-TECHNOLOGY /Pages/stream-technology.aspx

. Microsoft Dryad (Isard et al.)
http://connect.microsoft.com/Dryad

*  Yahoo S4 (Neumayer et al.)

http://s4.io/
hitp://slidesha.re/uSdSilL (slides)
http://4lunas.org/pub/2010-s4.pdf (paper)

. Memcached
http://memcached.org/

. Linked.In Voldemort (key,value) storage
http://project-voldemort.com/design.php

. PNUTS distributed storage (Cooper et al.)
http://www.brianfrankcooper.net/pubs/pnuts.pdf

. SSDs (solid state drives)
http://www.anandtech.com/bench/SSD/65
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