Scalable Machine Learning

3. Data Streams

Alex Smola
Yahoo! Research and ANU

hitp://alex.smola.org/teaching/berkeley2012
Stat 260 SP 12

http://alex.smola.org/teaching/berkeley2012
http://alex.smola.org/teaching/berkeley2012

Data Streams

Data & Applications
* Moments
* Flajolet-Martin counter
e Alon-Matias-Szegedy sketch
* Heavy hitter detection
* Lossy counting
* Space saving
* Semiring statistics
* Bloom filter
e CountMin sketch
* Realtime analytics
* Fault tolerance and scalability
* Interpolating sketches

N
&
O
0,
-
-
9P
i
3

Data Streams

Cannot replay data
Limited memory / computation / realtime analytics

Time series

Observe instances (xi, 1)

stock symbols, acceleration data, video, server logs,
surveillance

Cash register
Observe instances x; (weighted), always positive increments
query stream, user activity, network traffic, revenue, clicks

Turnstile
Increments and decrements (possibly require nonnegativity)
caching, windowed statistics

Website Analytics

New Version |alex.smola@gmail.com | Settings | My Account|Help | Sign Out

Google Analytics
Analytics Settings | View Reports: [ETSRIIVEE] U R alex.smolaorg

uE nochboard
Export = Email Advanced Segments:| All Visits «

th.‘‘ lntel I igence Seta

A Visitors Dashboard Dec 9, 2011 - Jan 8, 2012
2, Traffic Sources
[] Content
N Visits =l = | (=
- Goals o/ o
o

[Custom Reporting \

(]

\.—-._./. .\./ .\

My Customizations [T pa—
[z Custom Reports

(@) Advanced Segments

. Intelligence 2eta Site Usage

O, | T
Dec 12 Dec 19 .—.\._._.u»:': , s Qw9 ..3‘ :.’ > .\.’.

Email

. 3,731 Vvisits i ” 67.49% Bounce Rate
Help Resources . . .
(3) About this Report M 6,812 Pageviews VA 00:02:02 Avg. Time on Site
(® Conversion University " 1,83 Pages/Visit v 58.11% % New Visits

(?) Common Questions

e Continuous stream of users (tracked with cookie)
* Many sites signed up for analytics service
* Find hot links / frequent users / click probability / right now

Query Stream

machine learning 1.00 data mining 3.20
Cities
Search Volump index aoges thence 1. Stanford, CA, USA
L. West Lafayette, IN, USA
y 2 Princeton, NJ, USA
. E c) DJ({F] Ithaca, NY, USA
2.50 Berkeley, CA, USA «

Pittsburgh, PA, USA
Sunnyvale, CA, USA
Cambridge, MA, USA
Madison, WI, USA

. Baltimore, MD, USA

© ©® N O 0 &~ 0N

$

* ltem stream

* Find heavy hitters

e Detect trends early (e.g. Obsama bin Laden killed)
* Frequent combinations (cf. frequent items)

* Source distribution

e In realtime

Network tratfic analysis

1113

sl
., .-
J.4n b
e -
. >
. >
.-
.
“e

i

lllnllg”l.l111}")‘1“1;"1,:11Illlul_}nlnil“

e

4 Running

—

= E T

13 13
21436 Running

TCP/IP packets

On switch with
limited memory
footprint

Realtime analytics
Busiest connections
Trends

Protocol-level data
Distributed

information

gathering

Financial Time Series

NASDAQ Composite (*IXIC) 4 Add to Portfolio

2,676.56 +2.34(0.09%) sens

I[r:cr name(s) or symbol(s) | GET CHART | COMPARE EVENTS ¥ TECHNICAL INDICATORS ¥ CHART SETTINGS ¥ RESET

4:00 PM EST: mm AIXIC 2675.97

M\

\ Mo f
\ﬁ| ’l |. 'u"\c V/\A‘| '\/*Nn / n’ f
v [W I / /A M \-ﬂ . 2,680
V1 '/\\ N | ' 'f"\"r\‘\ A ;"\/\ \
| /W / \ 1 M v WV ¥\
.l / H‘ " '\J\ /\/' Av\
W W\ A J
WV \ " & N L 2,675
t
| \, || "ﬁwﬂ. \ "
LM | \n
L \" f
¥ | | ‘ \f
Ll o 4 2,670
M /\A"J'
|‘ ."
Iv o~
A ,‘ 2,665
W
10:00 AM 11:00 AM 12:00 PM 1:00 PM 2:00 PM 3:00 PM 4:00 PM
EC) 50 v 1M 3M 6M 1v |2y 5 Max| FROM:Jan92012 | TO:[Jan92012 | +0.07%
|
1971 1976 1981 1986 1991 1996 2001 2006 2011 |

Basic Chart | FullScreen | Print | Share | Send Feedback

* time-stamped data stream
* multiple sources
o different time resolution

real time
prediction

missing data

metadata

(news, quarterly
reports, financial
background)

News

Suit to Recover

Add-ons turn tax Madoff’s Money
cut bill into Calls Austrian
'Christmas - an Accomplice
et e . By DIANA B. HENRIQUES and
woinemewe China says inflation up 5.1 perce =+)er
WASHINGTON - In the - Sonja Kohn, an Austrian
. e - Associated Press b/ Buzz up! 19 votes banker, is accused of ~ Print
/‘.p BEYOND FOSSIL FUELS masterminding a 23-year
Republicans is bec USlng WaSte, SwedISh (‘ . By CARA ANNA, Associated Press Con:pllr ac; th a;.playe.d : h
and lawmakers. Bu' ry TUL| Cancumer Sontiment cnse” BEWING - China's inflation su o "0 e OVvember,
Bill Clinton even ba .. officials said Saturday, despit: £ ' ase food

Post a Comment

Full Story »

supplies and end diesel shortz -

=% Wall Street Video: Bright
Future TheStreet.com The 5.1 percent inflation rate was driven by a 11.7 percent jump in

food prices year on year.

L3
| Slideshow: Preside "«

» Related: Tax fight | |

(4 Video: Gibbs: |Hay |§,° ® &

The news comes as China's leaders meet for the top economic

] RELATED QUOTES planning conference of the year and as financial markets watch for a
f ADJI 11,410.32 +40.26 widely anticipated interest rate hike to help bring rapid economic
AGSPC 1,240.40 +7.40 growth to a more sustainable level.
AIXIC 2,637.54 +20.87

"I think this means that an interest rate hike of 25 basis points is very
likely by the end of the year," said CLSA analyst Andy Rothman.

e
Mg
x . -

[)
* Realt t
ea I m e n ews s re qmart of its citywide system, Kristianstad burns wood waste like tree prunings and scraps from flooring factories to power

an underground district heating grid.

e Multiple sources (Reuters, AP, CNN, ...)
e Same story from multiple sources
e Stories are related

3.2 Moments

e Stream of m items X;

* Want to compute statistics of what we’ve seen

e Small cardinality n
* Trivial to compute aggregate counts (dictionary lookup)
* Memory is O(n)
* Computation is O(log n) for storage & lookup

Stream of m items Xx;

Want to compute statistics of what we’ve seen

Small cardinality n

* Trivial to compute aggregate counts (dictionary lookup)
* Memory is O(n)

 Computation is O(log n) for storage & lookup

Large cardinality n

* Exact storage of counts impossible

* Exact test for previous occurrence impossible

Need approximate (dynamic) data structure

Finding the missing item

e Sequence of instances [1..N]

* One of them is missing

* |dentify it

Finding the missing item

Sequence of instances [1..N]
One of them is missing

|dentify it

Algorithm N

e Compute sum $:= > i

e For each item decrement s via s+ s —
* At the end identify missing item

Finding the missing item

e Sequence of instances [1..N]
* One of them is missing

* |dentify it

o Algorithm N
e Compute sum $:= > i
e For each item decrement s via s+ s —
* At the end identify missing item

* We only need least significant log N bits

Finding the missing item

e Sequence of instances [1..N]

* Up to k of them are missing

* |dentify them

Finding the missing item

e Sequence of instances [1..N]
* Up to k of them are missing

* |dentify them

e Algorithm
 Compute sumforpuptok 7~ Zzp
* For each item decrement all s; via sp 5, — af
* |dentify missing item by solving polynomial system

* We only need least significant log N bits

Moments

e Characterize the skewness of distribution
* Sequence of instances

* |Instantaneous estimates

F, = an

e Special cases e

* Fois number of distinct items
* F1is number of items (trivial to estimate)

* F, describes ‘variance’ (used e.g. for
database query plans)

Flajolet-Martin counter

* Assume perfect hash functions (simplifies proof)

e Design hash with pr(h(z) = j) =277

log n bits
o 1 0 0 1 1 0 O 0
1 O[O0 [1 |10 [2
o o0 1 0 1 1 1 1 4

* Position of the rightmost O (s posiion 1

e CDF for maximum over nitems F(j)=(1—277)"
(CDF of maximum over n random variables is F")

Flajolet-Martin counter

0(1|0(0|1 100 0
1|0 [0|1 1|0 pm- 2
o 0 1 0 1 1 1 1 4

* Intuitively expect that max h(j) ~ log | X

* Repetitions of same element do not matter
* Need Oflog log | X]|) bits to store counter
* High probability bounding range

Pr (max h(j) — log |X|| > log c) <

2
rxeX S C

Proof (for a version with 2-way independent

hash functions see Alon, Matias and Szegedy)

e Upper bound trivial
X|-277 <2 — 2 > (||

With probability at most 1/c the upper bound
is exceeded (using union bound)
* Lower bound

* Probability of not exceeding j is bounded by
(1-27) ¥ < exp (|&] - 27) < - <
Solve for j to obtain

2j>u
- cC

Variations on FM counter

* Lossy counting
* Increment counter j to ¢ with probability p© for p<0.5
* Yields estimate of log-count (normalization!)

* FM instead of bits inside Bloom filter ... more later

* log n rather than log log n array
* Set bit according to hash

v

o o o0 o0 o 1 o0 1 1 o0 1 1 1 1
e Count consecutive 1 instead of largest bit and fill gaps.

* The log log bounds are tight (see AMS lower bound)

Computing F;

e Strategy
* Design random variable with g 1 £,
* Take average over subsets .
X; = — ZXM
‘ ‘ ‘ J=1
e Estimate is median i . .
X :=med [Xy,..., X,

e Random variable

Xij=| Y., olzij)

| rEstream

* 0 is Rademacher hash with equiprobable {+1}
* In expectation all cross terms cancel out yielding F2

Average-Median Theorem

* Random variables X;; with mean y, variance o

e Mean estimate %, .— * " X;; and X == med [X;, ..., X
a
j=1

* The probability of deviation is bounded by

_ 8
Pr{|X —pu| >¢e} < fora= 8o°e 2 and b = —glogcs

* Note - Alon, Matias & Szegedy claim b= —21og s
but the Chernoff bounds don’t work out AFAIK

Proof

* Bounding the mean
Pick « = 85%¢ 2 and apply Chebyshev bound to see

that Pr{|X; —p| > €} < §

* Bounding the median
e Ensure that for at least half X; deviation is small

* Failure probability is at most 1/8
* Chernoff (Mitzenmacher & Upfahl Theorem 4.4)

182

Priz> (1+0)u)} <e %
Plug in
€ =3 U= g hence 0 < exp <—3§b> and b < —glogé

Computing F2

* Mean
_ q 2 q 2
E | X;|=E Z o(x,i,7)| =E ZO‘ZE,Z,] — Zni
| xEstream _ reX reX
* Variance B
EX]=E| » o(xij)| =3 » nini —-2)» n;
| xEstream r,x' €X reX
E[X2] - [E[X;]]2=2 Zn =2 ny <2F;
r,x’'eX reX

* Plugging into the Average-Median theorem
shows that algorithm uses O(e 2 log(1/6)log|X|n) bits

Computing Fk in general

* Random variable with expectation Fy
* Pick uniformly random element in sequence

e Start counting instances until end

d S T a n d O m a S C a n b e
3 1 y) 3
1 1

e Use count r;j for

Xij :m(’l”f; _(rij —1)k)

* Apply the Average-Median theorem

* Mean via telescoping sum
E[X;] =[15 + (2F —15) + ...+ (0 = (m = 1))

+ .+ () — () — 1)k)}

—ZTL —Fk

reX

* Variance by brute force algebra
Var [X;;] < E[X,;] < kX" VRE
* We need at most O(k|x|*"*/*¢21og 1/5(log m + log | X|)
bits to estimate Fi. The rate is tight.

* Mean via telescoping sum
E[X;] =[15 + (2F —15) + ...+ (0 = (m = 1))

.t (nfm (nyx| — 1)k)}
_ Z nk = F, no better than brute
rEX force for large k

* We need at most O(k|x|*"1* c=21og 1/6(logm + log | X))
bits to estimate Fi. The rate is tight.

Uniform sampling

— df}

Subsampling a stream

* Incoming data stream

* Draw item uniformly from support X
* But we don’t know X

* Initialize c =0 and g =

* Observe x from stream

o |f h(x) = g increment ¢ = c+ 1

o |f h(z) <gsetc=1andg=h(x)

Subsampling a stream

* Analysis
* Hash function assigns random value |
* Probability that x has smallest hash is g

(ignoring collisions)
* Once we find it we count all occurrences
* Extension
* Keep count of items with k smallest hashes
* Reject duplicates

* Use the hashID to get a handle on domain
(see papers by Li, Hastie, Church; Broder’s shingles)
* Alternative estimate for Fi (but higher variance)

3.3 Heavy Hitters

Heavy Hitter Detection

e Data stream
* Find k heaviest items
* For arbitrary sequence

* Take advantage of power-law distribution if it exists
(automatically)

e Use O(k) space and O(1/k) accuracy
* Applications
* Advertising (find frequent clickers, popular ads)
* News (popular keywords, trending terms)
* Web search (popular queries)
* Network security (detect attacks, heavy resource users)

o

Space-Saving Algorithm

Initialize k pairs (count; = 0,label; = 0) in list T
observe x

e if xisin label set of T
Increment counter count; = count; + 1

e else locate label with lowest count
Upddi’e its count; = count; 4+ 1 and Se‘l' labeli — T

(a,4) (b,4) (,2)

(a,4)

2)
(a,4) (e3)
(b,5) (a,4) (e3)

Space-Saving Algorithm

* Initialize k pairs (count; = 0,label; = 0) in list T
* observe x

e if xisin label set of T
Increment counter count; = count; + 1

e else locate label with lowest count
UpdCﬂ'e its count; = count; 4+ 1 and Se‘l' labeli — T

* Trivial to implement e.g. with a Boost.Bimap
hitp://www.boost.org/doc/libs/1 48 0/boost/bimap/bimap.hpp
Provides list sorted by two indices (label&count)

http://www.boost.org/doc/libs/1_48_0/boost/bimap/bimap.hpp
http://www.boost.org/doc/libs/1_48_0/boost/bimap/bimap.hpp

Guarantees

1.Error is bounded by 7, < count, <n, + %

2.In fact, bound is even tighter - smallest counter

3.In fact, bound is even tighter

Y (k)
n, < count, < n, - — where I} = an

1>k
4.In fact, the rate is optimal
5.Estimate at position i majorizes i true count

6. Inserting more ‘head’ items does not increase
approximation error

It works well, too

(a) Run Time for FE on Zipf(1.5) Data (b) Precision for FE on Zipf(1.5) Data
W Space-Saving B GroupTest [JFrequent W Space-Saving B GroupTest [JFrequent
800 - 1 -
700 K 09 =
0.8 -
E ?00 0.7 -
g 500 - s 06 -
= 400 - g 05 -
5 300 - £ 044
200 1 ol
0.2 4
100 A 0.1 4
0 A 0 4
1/1000 177 0 1/750 1/500 1/100
Suppon Support
(c) Recall for FE on Zipf(1.5) Data (d) Space for FE on Zipf(1.5) Data
M Space-Saving M GroupTest []Frequent M Space-Saving B GroupTest (] Frequent
q - 35 1
0.8 4 3
0.8 1 8
0.7 - = 2.5 1
= 0.6 ©
@ 21
§ 0.5 4 S .
04 4 o 1.5 1
o
0.3 4 g 1
l n
0.2 1 0.5 -
01 1) from Metwally, Agrawal,
0 - |
/1000 17

1/1000 1/750 1/500 1/250 1/100 1/500 1/250 1/100 EI Abqu| 2005

Support Support

Proof

n

1.Error is bounded by n, < count, <n, + -

* At each step counter increments by 1
e k bins, so smallest bin smaller than n/k
2.Insert error bounded by smallest element in list

6. observing an element already in the list doesn’t
increase the error

* if we observe, drop, and then observe again,
count only increases (so always upper bound)

Proof

4. Rate is optimal

* Deterministic algorithm tracking k counters

* Feed it two sequences S{a} and S{b}
* Assume that {a} was never observed before
* Assume that {b} is not being tracked. Can always make

its frequency O(n/k)

* Since {b} isn't tracked, algorithm cannot distinguish it from
{a}

* |t must output same estimate for {a} and {b}.

e This forces an O(n/k) error

e Optimality proof for F1l more tricky (see Berinde et al.)

Proof

7. Any item with count nx larger than smallest count in T must be in array
 Assume it isn’t

e At last occurrence it must have been inserted

* Counter in array is upper bound

* Hence it cannot have been removed

5. Count at position i majorizes it frequency

ltem is not in array. Hence smallest element in list must be larger.
ltem at position i. OK by upper bounding property.

ltem at position | > i. OK by fact that we have sorted list.

o o T Q

ltem at position | < i. Hence there must be counter k that has higher
rank and is at or below position i. Monotonicity proves the claim.

Proof

3. Even tighter bound

(k)

L 2 (k) _ |
n, < count, < n, - — where F}" = ;nz
(/

* Residual sum after first k terms must be upper
bounded by Filkl due to property 5.

e Smallest element at most as large as average
over residual bins.

More sketches

* Lossy counting (Manku & Motwani)
* Keep list with confidence bounds

e At each k observations eliminate items which are below
accuracy threshold

* New items are inserted with lose confidence
* Frequent (see e.g. Berinde et al.)
» Keep k counters like Space Saving
* When there’s space, insert new item with count 1

* When counters full and new element occurs, decrement
all counters by 1

* This yields a lower bound on item frequencies

Some (research) problems

* Distributed sketch generation
* Each box receives fraction of realtime stream
* Fault tolerant setup (what if a machine dies)
* Improved accuracy with more machines

* Temporal attributes
* Query for a given time interval
 Compression over time

* Frequent item combinations

3.4 Semiring Statistics

Bloom filters

BLOOMCOM

SSSSSSSSSSSSSSSSS

Beyond Heavy Hitters

* Check for previously seen items
* but don’t need to have counts, just existence
e Check for frequency estimate
* but don’t want to store labels
* but want estimate for all items (not just HH)
* but want to be able to aggregate
* but want turnstile computation

Bloom filter, Count-Min sketch, Counter braids

Bloom Filter

* Bit array b of length n
* insert(x): for all i set bit b[h(x,i)] = 1
e query(x): return TRUE if for all i b[h(x,i)] = 1

{x,y,2}

A oSS

o(1(011{1}170({0(0)0]0]1[0(1T[0]10]1]0
w

Bloom Filter

* Bit array b of length n

* insert(x): for all i set bit b[h(x,i)] = 1

e query(x): return TRUE if for all i b[h(x,i)] = 1
* Only returns TRUE if all k bits are set

* No false negatives but false positives possible

* Probability that an arbitrary bit is set
mk
Pripfil =1} =1-(1--) ~1-e %

* Probability of false positive (approx. indep.)

mk

k
Pr {b[h(z,1)] = ... = b[h(z, k)] = 1} ~ (1 _ 6—7)

Bloom Filter

* Minimizing k to minimize false positive rate

0y [klog (1— e=+/m)] = log (1 — e=mk/n) 4 R _€

—mk/n

n 1—e-mk/n
. . k
This vanishes for % = log 2 and hence k£ = — log 2
with a false positive rate of 2*

* More refined analysis & details, e.g. in the
Mitzenmacher & Broder 2004 tutorial.

* Matching lower bound shows that Bloom filter
is within 1.44 best efficiency.

Cool things to do with a Bloom Filter

* Bloom filter of union of two sets by OR

0{0j11010(1(1(0]1T]70(0(0[0]|1]0
11o0j0(of1f1f{o0fofofof{1{1{0{0}|0
ir(of1{o0j1)111(0(170]11110(1/0

e Parallel construction of Bloom filters

* Time-dependent aggregation

* Fast approximate set union
(bitmap operation rather than set manipulation)

e Also use it to halve bit resolution of Bloom filter

Cool things to do with a Bloom Filter

e Set intersection via AND

0(0(1T(O0[O0O|1T[T1T[O0]1]O0 01
110j0(0(1(1(010(0]|O 00
0({0(O0(O0[O0O|T1T[O0[O0]O0]O0O 00

* No false negatives
* More false positives than building from scratch

e Use bits to estimate size of set union/intersection
Pr{b=1} =Pr{b=1|S1} +Pr{b=1|52} — Pr{b= 1|5, U Sy}

k[Sq] _ Kk[Sa] _ k[S1US4q]

m — € m _l_e m

~] — e

Counting Bloom Filter

 Plain Bloom filter doesn’t allow removal

o(o{1710(0(11110(170(0(O0O]O0|T1T(O0O]|T1T 1|1
* insert(x): for all i set bit b[h(x,i)] = 1
we don’t know whether this was set before
e query(x): return TRUE if for all i b[h(x,i)] = 1
e Counting Bloom filter keeps track of inserts
e query(x): return TRUE if for all i b[h(x,i)] > O
* insert(x): if query(x) = FALSE (don’t insert twice)
for all i increment b[h(x,i)] = b[h(x,i)] + T
* remove(x): if query(x) = TRUE (don’t remove absents)

for all i decrement blh(x,i)] = b[h(x,i)] - 1 only needs
log log m bits

Count min sketch

-

/5 ©
Vi3

Count min sketch

] Dq‘l'q s'l'rU C'l'U re m bins d hash functions

h1(x)
h2(x)
ha(x)
h4(x)

* Algorithm

insert(z):
for =1 to d do

Mli, hi(z)] <= M3, hi(x)] + 1
end for

query(z):

c =min{h;(z) for all 1 < < d}
return c supports turnstile

Count min sketch

] Dq‘l'q s'l'rU C*l'U re m bins d hash functions

hi(x)
ha(x)
ha(x)
h4(x)

e Guarantees

e Approximation quality is
Ne < Cp <Ny + EZ n,. for m = [ﬂ with probability 1 — e ¢

* For power law distributions with exponent z
we need only O(c"'/*) space

(see Cormode & Muthukrishnan)

Proof

e Datastructure

m bins

e Lower bound

d hash functions

hi(x)
ha(x)
ha(x)
h4(x)

* Each bin is updated whenever we see an item

e So each bin is lower bound, hence min is OK

* Expectation

* Probability of incrementing a bin at random is
1/m, hence expected overestimate is n/m.

Proof

* Gauss-Markov inequality on random variable

E [wli, h(i,)] — 1] = % hence Pr {w[i,h(z’,aﬁ)] oy > e%} < el

* Minimum boosts probability exponentially
(only need to ensure that there’s at least one
random variable which satisfies the condition)

n
Pr {cx — Ny > e—} < e @
m

Heavy Hitters finding

e Hierarchical
event structure

 |P numbers

* Prices

* Activity logs
* Keep top nodes (s,
explicitly

* Traverse range a e

via CM sketch

Range query
(34

M

Tail guarantees

» Zipfian distributions

Priz) = — =

(a + x)?
* Bounding heads/tails (fora =0 and z > 1)

c, k= d c,(k—1)17*
<) fi <
i=k

z—1 _ z—1

* only small number of heavy items exists
* bound heavy hitters separately
e probability of collision is small

* tail is small enough for low offset

Tail guarantees

e Set head to m/3 of all bins
* Probability we don’t hit head is 2/3 per hash

@)

3 n-—~ C n
E[c,[noheavy] = n, + 5—) i <Ny E for k= —
lc[noheavy] =n +2m, n; < ng + m 320z — 1) or 3

e Apply Gauss-Markov for ‘noheavy’ with p=1/2
* Boost residual probability by min operation

* The space needed for Zipfian distribution is
0, (e_ min{l,1/2} 15 1/5) with Pr {ce >n, +en} <6

Counter Braids

Aj|BLCLD
fig. 1

Part A - The Counter

* Datastructure m bins

d hash functions

hi(x)
ha(x)
ha(x)
h4(x)

* Algorithm

insert(z):
for =1 to d do

Mli, hi(z)] <= M3, hi(x)] + 1
end for

query(z):
c =min{h;(z) for all 1 < < d}
return c

a priori lower bound
on counter is O

if we know all inserts
we can get new
lower bound

Part A - The Counter

PS Da-l-qs.l.ru C.l.UI.e m bins d hash functions

hi(x)
ha(x)
ha(x)
h4(x)

* Lower bound
wli, j| = Z n, < Z c; hence ¢; >l := wli, j] — Z Cop/
h(i,x)=j h(t,x)=j h(t,x)=7,x' #x

e Upper bound

wli, j| > Z [hence c; < uy, :=wli, j| — Z -
h(i,z)=j h(i,z)=j,a' £

Part A - The Counter

* lterate lower and upper bounds until converged

 proof highly nontrivial

* cheap construction but expensive decoding

e Lower bound

Z n, < Z c; hence ¢; >l := wli, j] — Z Cop/

h(i,z)=j R(i,z)=j h(i,z)=j,2’ £a

o Up er bound
l. hence c; < u, :=wli, j| — Z [
h(z x)=j h(i,x)=7,x'F#x

Part B - The Braid

/]

/1 I

Full 32bit counter overkill for

many bins (almost empty)
Low bit resolution in first filter

Insert overflows into secondary
counter

Cascade filters
Reconstruction by iteration

3.5 Realtime Analytics

* How to scale sketches beyond single machine?

e Accuracy (limited memory)
* Reliability (fault tolerance)
 Scalability (more inserts)

* Time series data
* Limited memory

* Sequence compression

3 Tools

1. Count min sketch (as before)

* Provides realtime sketching service
(but no time intervals)

2. Consistent hashing

* Provides load-balancing.

* Extension to sets provides fault tolerance.
3. Interpolation

* Marginals of joint distribution

* Exponential backoff of count statistics

Consistent hashing

Increasing Insert Throughput

-
-

-
-)

m(x) := argmin h(m,)
me M
* Consistent hashing (Karger et al.)
e Split the keys x between a pool of machines M
e Reproducible
e Small memory footprint & fast
 Can be extended to proportional hashing (see Reed, USENIX 2011)

Increasing Insert Throughput

-)
-)

-
-)

m(x) := argmin h(m,)
me M

* Accuracy increases with O(1/k)
e Throughput increases with O(k)

* Reliability decreases

Increasing Reliability

(] Single chhine n bins d hash functions

hi(x)
ha(x)
ha(x)
h4(x)

* Multiple Machines

machine 1

machine 3

machine 4

Increased Reliability

3
~

-

* Failure probability decreases exponentially
* Throughput is constant
* Query latency increases

* No acceleration of insert parallelism

Increasing Query Throughput

o
- = BT

- 2 >

* Failure probability decreases exponentially
(if machine fails we can use others)

* Insert throughput is constant
* Query throughput is O(k)

Putting it all together

* Tricks
* Assign keys only to a subset of machines
* Overreplicate for reliability
* Overreplicate for query parallelism

* Consistent set hashing

C(z):= argmin Z h(m, x)
CeM with [C|=k =

* |nsert into a k machines at a time

* Request from k' < k machines at a time
(use set hashing on C(x) with client ID)

Putting it all together

 Theorem
Assume we have up to f failures among m
machines and let 2d < m. Then we need at most
1./ 2 td/m additional inserts over the single
machine count min sketch for e error.

* Proof

* Bound probability that failures intersect with
storage significantly

* Majorize drawing without replacement by
drawing with replacement

Putting it all together

a server ‘

- .

! server |
‘ server

Insert

Interpolation

B
T

-

Properties of the count min sketch

e Linear statistic
H -
-
o

o Sketch of two sets is sum of sketches

* We can aggregate time intervals
o Sketch of lower resolution is linear function

* We can compress further at a later stage

Time aggregation

* Time intervals of exponentially increasing length

1,1,2,4,8,16,32,64 ...

TR
TR A

* Every 2n time steps recompute all bins up to 2n
o 1+1=2; 1+1+2=4; 1+1+2+4=8; 1+1+2+4+8=16
* Always fill first bin.
* Aggregation is O(log log t) amortized.

= i

e Storage is Olog 1)

Time aggregation

Time aggregation

Time aggregation

Key aggregation

* Reduce bit resolution for sketch every 2! steps

- (TR TCITH T LTI
TRTTHIRIIT

UTHHTTAL
Alalkst

m Oflog t) storage
m O(1) maximum update cost

N 00 OO0 h QOB

Key aggregation

* Reduce bit resolution for sketch every 2! steps

Oflog t) storage
O(1) maximum update cost

Interpolation

* Time aggregation
Decreasing temporal resolution - n(x,last year)

* |tem aggregation
Decreasing accuracy at fine time resolution

2

p(i)p(t)

n(i)n(t)

n

p(i,t)

= n(i,t) ~

u 1l
g
-

maintain sketch
aggregating both
time and items

Data Streams

Data & Applications
* Moments
* Flajolet counter
e Alon-Matias-Szegedy sketch
* Heavy hitter detection
* Lossy counting
* Space saving
* Randomized statistics
* Bloom filter
e CountMin sketch
* Realtime analytics
* Fault tolerance and scalability
* Interpolating sketches

Further reading

Muthu Muthukrishnan’s tutorial
hitp://www.cs.rutgers.edu/ ™ muthu/stream-1-1.ps

Alon Matias Szegedy
http://www.sciencedirect.com/science/article/pii/S0022000097915452

Count-Min sketch
https://sites.google.com/site/countminsketch/

Bloom Filter survey by Broder & Mitzenmacher
hitp://www.eecs.harvard.edu/™ michaelm/postscripts/im2005b.pdf

Metwally, Agrawal, El Abbadi (space saving sketch)
http://www.cs.ucsb.edu/research/tech reports/reports/2005-23.pdf

Berinde, Indyk, Cormode, Strauss (space optimal bounds for space saving)

http://www.research.att.com/people/Cormode Graham/library/publications/
BerindeCormodelndykStrauss10.pdf

Graham Cormode’s tutorial

http://dimacs.rutgers.edu/” graham/pubs/papers/sk.pdf
Flajolet-Martin 1985
http://algo.inria.fr/flajolet/Publications/FIMa85.pdf

http://www.sciencedirect.com/science/article/pii/S0022000097915452
http://www.sciencedirect.com/science/article/pii/S0022000097915452
https://sites.google.com/site/countminsketch/
https://sites.google.com/site/countminsketch/
http://www.cs.ucsb.edu/research/tech_reports/reports/2005-23.pdf
http://www.cs.ucsb.edu/research/tech_reports/reports/2005-23.pdf
http://www.research.att.com/people/Cormode_Graham/library/publications/BerindeCormodeIndykStrauss10.pdf
http://www.research.att.com/people/Cormode_Graham/library/publications/BerindeCormodeIndykStrauss10.pdf
http://www.research.att.com/people/Cormode_Graham/library/publications/BerindeCormodeIndykStrauss10.pdf
http://www.research.att.com/people/Cormode_Graham/library/publications/BerindeCormodeIndykStrauss10.pdf
http://dimacs.rutgers.edu/~graham/pubs/papers/sk.pdf
http://dimacs.rutgers.edu/~graham/pubs/papers/sk.pdf
http://algo.inria.fr/flajolet/Publications/FlMa85.pdf
http://algo.inria.fr/flajolet/Publications/FlMa85.pdf

