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3. Data Streams
Building realtime *Analytics at home



Data & Applications
•Moments

•Flajolet-Martin counter
•Alon-Matias-Szegedy sketch

•Heavy hitter detection
•Lossy counting
•Space saving

•Semiring statistics
•Bloom filter
•CountMin sketch

•Realtime analytics
•Fault tolerance and scalability
• Interpolating sketches

Data Streams



3.1 Streams



Data Streams
• Cannot replay data
• Limited memory / computation / realtime analytics
• Time series

Observe instances (xt, t)
stock symbols, acceleration data, video, server logs, 
surveillance

• Cash register
Observe instances xi (weighted), always positive increments
query stream, user activity, network traffic, revenue, clicks

• Turnstile
Increments and decrements (possibly require nonnegativity)
caching, windowed statistics



Website Analytics

• Continuous stream of users (tracked with cookie)
• Many sites signed up for analytics service
• Find hot links / frequent users / click probability / right now

NIPS



Query Stream

• Item stream
• Find heavy hitters
• Detect trends early (e.g. Obsama bin Laden killed)
• Frequent combinations (cf. frequent items)
• Source distribution
• In real time



Network traffic analysis
• TCP/IP packets
• On switch with 

limited memory 
footprint

• Realtime analytics
• Busiest connections
• Trends
• Protocol-level data 
• Distributed 

information 
gathering



Financial Time Series

• time-stamped data stream
• multiple sources
• different time resolution

• real time 
prediction

• missing data
• metadata

(news, quarterly 
reports, financial 
background)



News

• Realtime news stream 
• Multiple sources (Reuters, AP, CNN, ...)
• Same story from multiple sources
• Stories are related



3.2 Moments



Warmup

• Stream of m items xi

• Want to compute statistics of what we’ve seen 

• Small cardinality n
• Trivial to compute aggregate counts (dictionary lookup)
• Memory is O(n)
• Computation is O(log n) for storage & lookup

• Large cardinality n
• Exact storage of counts impossible 
• Exact test for previous occurrence impossible

• Need approximate (dynamic) data structure

?...
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Finding the missing item
• Sequence of instances [1..N]
• One of them is missing
• Identify it

• Algorithm
• Compute sum 
• For each item decrement s via
• At the end identify missing item

• We only need least significant log N bits

s :=
NX

i=1

i

s s� xi
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Finding the missing item
• Sequence of instances [1..N]
• Up to k of them are missing
• Identify them

• Algorithm
• Compute sum for p up to k
• For each item decrement all sp via
• Identify missing item by solving polynomial system 

 
• We only need least significant log N bits

sp :=
NX

i=1

ip

sp  sp � x

p
i
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Estimating Fk



Moments
• Characterize the skewness of distribution

• Sequence of instances
• Instantaneous estimates

• Special cases
• F0 is number of distinct items
• F1 is number of items (trivial to estimate)
• F2 describes ‘variance’ (used e.g. for 

database query plans)

F
p

:=
X

x2X
np

x



• Assume perfect hash functions (simplifies proof)
• Design hash with

• Position of the rightmost 0 (LSB is position 1)

• CDF for maximum over n items                            
(CDF of maximum over n random variables is Fn)

Flajolet-Martin counter

Pr(h(x) = j) = 2�j

0 1 0 0 1 1 0 0

1 0 0 1 1 0 1 1

0 0 1 0 1 1 1 1

0

2

4

log n bits

F (j) = (1� 2�j)n



• Intuitively expect that
• Repetitions of same element do not matter
• Need O(log log |X|) bits to store counter
• High probability bounding range

Flajolet-Martin counter
0 1 0 0 1 1 0 0

1 0 0 1 1 0 1 1

0 0 1 0 1 1 1 1

0

2

4

max

x2X
h(j) ⇡ log |X |

Pr

✓����max

x2X
h(j)� log |X |

���� > log c

◆
 2

c



Proof (for a version with 2-way independent 
hash functions see Alon, Matias and Szegedy)

• Upper bound trivial

With probability at most 1/c the upper bound 
is exceeded (using union bound)

• Lower bound
• Probability of not exceeding j is bounded by

Solve for j to obtain

|X | · 2�j  1

c
=) 2j � c|X |

(1� 2

�j
)

|X |  exp

�
|X | · 2�j

�
 1

c
 e�c

2j � |X |
c



Variations on FM counter
• Lossy counting

• Increment counter j to c with probability p-c for p<0.5
• Yields estimate of log-count (normalization!)

• FM instead of bits inside Bloom filter ... more later
• log n rather than log log n array

• Set bit according to hash

• Count consecutive 1 instead of largest bit and fill gaps. 
• The log log bounds are tight (see AMS lower bound)

0 0 0 0 0 1 0 1 1 0 1 1 1 1

wastewaste



Computing F2

• Strategy
• Design random variable with
• Take average over subsets

 
• Estimate is median 

• Random variable

• σ is Rademacher hash with equiprobable 
• In expectation all cross terms cancel out yielding F2

E[Xij ] = F2

X̄i :=
1

a

aX

j=1

Xij

X̄ := med
⇥
X̄1, . . . , X̄b

⇤

X

ij

:=

"
X

x2stream

�(x, i, j)

#2

{±1}



Average-Median Theorem
• Random variables Xij with mean μ, variance σ
• Mean estimate                  and 

• The probability of deviation is bounded by

• Note - Alon, Matias & Szegedy claim
but the Chernoff bounds don’t work out AFAIK 

X̄i :=
1

a

aX

j=1

Xij X̄ := med
⇥
X̄1, . . . , X̄b

⇤

Pr

�
| ¯X � µ| � ✏

 
 � for a = 8�2✏�2

and b = �8

3

log �

b = �2 log �



Proof
• Bounding the mean

Pick              and apply Chebyshev bound to see 
that 

• Bounding the median
• Ensure that for at least half     deviation is small
• Failure probability is at most 1/8
• Chernoff (Mitzenmacher & Upfahl  Theorem 4.4)

Plug in 

a = 8�2✏�2

X̄i

Pr {x � (1 + �)µ)}  e

�µ�2

3

✏ = 3;µ =

b

8

hence �  exp

✓
�3b

8

◆
and b  �8

3

log �

Pr
�
|X̄i � µ| > ✏

 
 1

8



Computing F2
• Mean

• Variance

• Plugging into the Average-Median theorem 
shows that algorithm uses                           bits

E [X
ij

] = E

"
X

x2stream

�(x, i, j)

#2

= E

"
X

x2X
�(x, i, j)n

x

#2

=
X

x2X
n

2
x

E
⇥
X

2
ij

⇤
= E

"
X

x2stream

�(x, i, j)

#4

= 3
X

x,x

02X
n

2
x

n

2
x

0 � 2
X

x2X
n

4
x

E
⇥
X2

ij

⇤
� [E [X

ij

]] 2 = 2
X

x,x

02X
n2
x

n2
x

0 � 2
X

x2X
n4
x

 2F 2
2

O(✏�2
log(1/�) log |X |n)



Computing Fk in general
• Random variable with expectation Fk

• Pick uniformly random element in sequence
• Start counting instances until end

• Use count rij for

• Apply the Average-Median theorem

a s r a n d o m a s c a n b e
1 2 3

1

Xij = m
�
rkij � (rij � 1)k

�

3
1



More Fk

• Mean via telescoping sum

• Variance by brute force algebra

• We need at most
bits to estimate Fk. The rate is tight.

E[X
ij

] =
h
1k + (2k � 1k) + . . .+ (nk

1 � (n1 � 1)k)

+ . . .+ (nk

|X | � (n|X | � 1)k)
i

=
X

x2X
nk

x

= F
k

Var [Xij ]  E [Xij ]  k|X |1�1/kF 2
k

O(k|X |1�1/k✏�2
log 1/�(logm+ log |X |)



More Fk

• Mean via telescoping sum

• Variance by brute force algebra

• We need at most
bits to estimate Fk. The rate is tight.

E[X
ij

] =
h
1k + (2k � 1k) + . . .+ (nk

1 � (n1 � 1)k)

+ . . .+ (nk

|X | � (n|X | � 1)k)
i

=
X

x2X
nk

x

= F
k

Var [Xij ]  E [Xij ]  k|X |1�1/kF 2
k

O(k|X |1�1/k✏�2
log 1/�(logm+ log |X |)

no better than brute 
force for large k



Uniform sampling



Subsampling a stream

• Incoming data stream
• Draw item uniformly from support X
• But we don’t know X

• Initialize c = 0 and g = ∞
• Observe x from stream
• If 
• If 

h(x) = g increment c = c+ 1

h(x) < g set c = 1 and g = h(x)



Subsampling a stream
• Analysis

• Hash function assigns random value
• Probability that x has smallest hash is

(ignoring collisions)
• Once we find it we count all occurrences

• Extension
• Keep count of items with k smallest hashes
• Reject duplicates
• Use the hashID to get a handle on domain

(see papers by Li, Hastie, Church; Broder’s shingles)
• Alternative estimate for Fk (but higher variance)

1

|X |



3.3 Heavy Hitters



Heavy Hitter Detection
• Data stream
• Find k heaviest items

• For arbitrary sequence
• Take advantage of power-law distribution if it exists 

(automatically)
• Use O(k) space and O(1/k) accuracy

• Applications
• Advertising (find frequent clickers, popular ads)
• News (popular keywords, trending terms)
• Web search (popular queries)
• Network security (detect attacks, heavy resource users)



Space-Saving Algorithm
• Initialize k pairs                           in list T
• observe x

• if x is in label set of T
increment counter

• else locate label with lowest count
update its                       and set

(counti = 0, labeli = ;)

counti = counti + 1

counti = counti + 1 labeli = x

(a,4) (b,4) (c,2) (d,2)
(a,4) (b,4) (e,3) (c,2)
(b,5) (a,4) (e,3) (c,2)
(b,5) (a,4) (e,3) (f,3)

e
b
f



Space-Saving Algorithm
• Initialize k pairs                           in list T
• observe x

• if x is in label set of T
increment counter

• else locate label with lowest count
update its                       and set

• Trivial to implement e.g. with a Boost.Bimap
http://www.boost.org/doc/libs/1_48_0/boost/bimap/bimap.hpp

Provides list sorted by two indices (label&count)

(counti = 0, labeli = ;)

counti = counti + 1

counti = counti + 1 labeli = x

http://www.boost.org/doc/libs/1_48_0/boost/bimap/bimap.hpp
http://www.boost.org/doc/libs/1_48_0/boost/bimap/bimap.hpp


Guarantees
1.Error is bounded by
2. In fact, bound is even tighter - smallest counter
3. In fact, bound is even tighter

4. In fact, the rate is optimal
5.Estimate at position i majorizes ith true count
6. Inserting more ‘head’ items does not increase 

approximation error*

n
x

 count

x

 n
x

+

n

k

n
x

 count

x

 n
x

+

F (k)
1

n� k
where F (k)

1 =

X

i>k

n
i



It works well, too

from Metwally, Agrawal,
El Abbadi 2005



Proof
1.Error is bounded by 

•At each step counter increments by 1
•k bins, so smallest bin smaller than n/k
2. Insert error bounded by smallest element in list
6.observing an element already in the list doesn’t 

increase the error
•if we observe, drop, and then observe again, 

count only increases (so always upper bound)

n
x

 count

x

 n
x

+

n

k



Proof
4. Rate is optimal
• Deterministic algorithm tracking k counters
• Feed it two sequences S{a} and S{b}

• Assume that {a} was never observed before
• Assume that {b} is not being tracked. Can always make 

its frequency O(n/k)
• Since {b} isn’t tracked, algorithm cannot distinguish it from 

{a}
• It must output same estimate for {a} and {b}.
• This forces an O(n/k) error
• Optimality proof for F1(k) more tricky (see Berinde et al.)



Proof
7. Any item with count nx larger than smallest count in T must be in array
• Assume it isn’t
• At last occurrence it must have been inserted
• Counter in array is upper bound
• Hence it cannot have been removed
5. Count at position i majorizes ith frequency

a. Item is not in array. Hence smallest element in list must be larger. 
b. Item at position i. OK by upper bounding property.
c. Item at position j > i. OK by fact that we have sorted list.
d. Item at position j < i. Hence there must be counter k that has higher 

rank and is at or below position i. Monotonicity proves the claim.



Proof
3.Even tighter bound

• Residual sum after first k terms must be upper 
bounded by F1(k) due to property 5.

• Smallest element at most as large as average 
over residual bins.

n
x

 count

x

 n
x

+

F (k)
1

n� k
where F (k)

1 =

X

i>k

n
i



More sketches
• Lossy counting (Manku & Motwani)

• Keep list with confidence bounds
• At each k observations eliminate items which are below 

accuracy threshold
• New items are inserted with lose confidence

• Frequent (see e.g. Berinde et al.)
• Keep k counters like Space Saving
• When there’s space, insert new item with count 1
• When counters full and new element occurs, decrement 

all counters by 1
• This yields a lower bound on item frequencies



Some (research) problems 
• Distributed sketch generation

• Each box receives fraction of realtime stream
• Fault tolerant setup (what if a machine dies)
• Improved accuracy with more machines

• Temporal attributes
• Query for a given time interval
• Compression over time

• Frequent item combinations



3.4 Semiring Statistics



Bloom filters



Beyond Heavy Hitters

• Check for previously seen items
• but don’t need to have counts, just existence

• Check for frequency estimate
• but don’t want to store labels
• but want estimate for all items (not just HH)
• but want to be able to aggregate
• but want turnstile computation

Bloom filter, Count-Min sketch, Counter braids



Bloom Filter
• Bit array b of length n

• insert(x): for all i set bit b[h(x,i)] = 1
• query(x): return TRUE if for all i b[h(x,i)] = 1



Bloom Filter
• Bit array b of length n

• insert(x): for all i set bit b[h(x,i)] = 1
• query(x): return TRUE if for all i b[h(x,i)] = 1

• Only returns TRUE if all k bits are set
• No false negatives but false positives possible

• Probability that an arbitrary bit is set

• Probability of false positive (approx. indep.)
Pr {b[i] = 1} = 1�

✓
1� 1

n

◆mk

⇡ 1� e�
mk
n

Pr {b[h(x, 1)] = . . . = b[h(x, k)] = 1} ⇡
⇣
1� e

�mk
n

⌘k



Bloom Filter
• Minimizing k to minimize false positive rate

This vanishes for
with a false positive rate of 2-k 

• More refined analysis & details, e.g. in the 
Mitzenmacher & Broder 2004 tutorial.

• Matching lower bound shows that Bloom filter 
is within 1.44 best efficiency.

@k
h
k log

⇣
1� e�mk/n

⌘i
= log

⇣
1� e�mk/n

⌘
+

mk

n

e�mk/n

1� e�mk/n

mk

n
= log 2 and hence k =

n

m
log 2



Cool things to do with a Bloom Filter

• Bloom filter of union of two sets by OR

• Parallel construction of Bloom filters
• Time-dependent aggregation
• Fast approximate set union 

(bitmap operation rather than set manipulation)
• Also use it to halve bit resolution of Bloom filter

0 0 1 0 0 1 1 0 1 0 0 0 0 1 0 1 1 1

1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 1

1 0 1 0 1 1 1 0 1 0 1 1 0 1 0 1 1 1



Cool things to do with a Bloom Filter

• Set intersection via AND

• No false negatives
• More false positives than building from scratch

• Use bits to estimate size of set union/intersection

0 0 1 0 0 1 1 0 1 0 0 0 0 1 0 1 1 1

1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 1

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1

Pr {b = 1} =Pr {b = 1|S1}+ Pr {b = 1|S2}� Pr {b = 1|S1 [ S2}

⇡1� e�
k|S1|

m � e�
k|S2|

m + e�
k|S1[S2|

m



Counting Bloom Filter
• Plain Bloom filter doesn’t allow removal

• insert(x): for all i set bit b[h(x,i)] = 1
we don’t know whether this was set before

• query(x): return TRUE if for all i b[h(x,i)] = 1
• Counting Bloom filter keeps track of inserts

• query(x): return TRUE if for all i b[h(x,i)] > 0
• insert(x): if query(x) = FALSE (don’t insert twice)

for all i increment b[h(x,i)] = b[h(x,i)] + 1
• remove(x): if query(x) = TRUE (don’t remove absents)

for all i decrement b[h(x,i)] = b[h(x,i)] - 1

0 0 1 0 0 1 1 0 1 0 0 0 0 1 0 1 1 1

only needs
log log m bits



Count min sketch



Count min sketch
• Datastructure

• Algorithm

d hash functions

h1(x)
h2(x)
h3(x)
h4(x)

m bins

xxxx
like Bloom filter 

but with counters

supports turnstile



Count min sketch
• Datastructure

• Guarantees
• Approximation quality is

• For power law distributions with exponent z 
we need only           space
(see Cormode & Muthukrishnan)

d hash functions

h1(x)
h2(x)
h3(x)
h4(x)

m bins

O(✏�1/z)

n
x

 c
x

 n
x

+ ✏
X

x

0

n
x

0
for m =

⌃
e

✏

⌥
with probability 1� e�d



• Datastructure

• Lower bound
• Each bin is updated whenever we see an item
• So each bin is lower bound, hence min is OK

• Expectation
• Probability of incrementing a bin at random is 

1/m, hence expected overestimate is n/m.

Proof
d hash functions

h1(x)
h2(x)
h3(x)
h4(x)

m bins



• Gauss-Markov inequality on random variable

• Minimum boosts probability exponentially
(only need to ensure that there’s at least one 
random variable which satisfies the condition)

Proof

E [w[i, h(i, x)]� n

x

] =
n

m

hence Pr
n

w[i, h(i, x)]� n

x

> e

n

m

o

 e

�1

Pr
n

c
x

� n
x

> e
n

m

o

 e�d



Heavy Hitters finding
• Hierarchical 

event structure
• IP numbers
• Prices
• Activity logs

• Keep top nodes 
explicitly

• Traverse range  
via CM sketch

1.3. Frequency Based Sketches 21
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Fig. 1.5 Searching for heavy hitters via binary-tree search

set of Heavy Hitters to change considerably over time. In such cases it is not
possible to draw a large sample from the input stream.

Heavy Hitters over Strict Distributions. When the data arrives in the turn-
stile model, decreases in the frequency of one item can cause another item to
become a heavy-hitter implicitly—because its frequency now exceeds the (re-
duced) threshold. So the method of keeping track of the current heavy hitters
as in the cash-register case will no longer work.

It can be more effective to keep a more complex sketch, based on multiple
instances of the original sketch over different views of the data, to allow more
efficient retrieval of the heavy hitters. The “divide and conquer” or “hierar-
chical search” technique conceptually places a fixed tree structure, such as
a binary tree structure, over the domain. Each internal node is considered to
correspond to the set of items covered by leaves in the induced subtree. Each
internal node is treated as a new item, whose frequency is equal to the sum of
the frequencies of the items associated with that node. In addition to a sketch
of the leaf data, a sketch of each level of the tree (the frequency distribution
of each collection of nodes at the same distance from the root) is kept.

Over frequency data in the strict model, it is the case that each ancestor of
a heavy hitter leaf must be at least as frequent, and so must appear as a heavy
hitter also. This implies a simple divide-and-conquer approach to finding the
heavy hitter items: starting at the root, the appropriate sketch is used to es-



Range query
1.3. Frequency Based Sketches 27

20

3 8 34671

135

14

9

34

7

2

Fig. 1.6 Using dyadic ranges to answer a range query

fast updates and accurate estimations across the broadest range of data types.

1.3.4.3 Range Queries and Quantiles

Another common type of query is a range-count , e.g.

SELECT COUNT(*) FROM D
WHERE D.val >= l AND D.val <= h

for a range l . . .h. Note that these are the exactly the same as the range-count
and range-sum queries considered over histogram representations (defined in
[21, Section 3.1.1]).

A direct solution to this query is to pose an appropriate inner-product
query. Given a range, it is possible to construct a frequency distribution f 0

so that f 0(i) = 1 if l  i  h, and 0 otherwise. Then f · f 0 gives the desired
range-count. However, when applying the AMS approach to this, the error
scales proportional to

p
F2( f )F2( f 0). So here the error grows proportional

to the square root of the length of the range. Using the Count-Min sketch
approach, the error is proportional to N(h� l + 1), i.e. it grows proportional
to the length of the range, clearly a problem for even moderately sized ranges.
Indeed, this is the same error behavior that would result from estimating each
frequency in the range in turn, and summing the estimates.

accuracy penalty only on nodesaccuracy penalty only on nodesaccuracy penalty only on nodes



Tail guarantees
• Zipfian distributions

• Bounding heads/tails (for a = 0 and z > 1)

• only small number of heavy items exists
• bound heavy hitters separately
• probability of collision is small
• tail is small enough for low offset

Pr {x} =
c

(a+ x)z

Formally, a Zipf distribution with parameter z has the
property that f

i

, the (relative) frequency of the ith most
frequent item is given by f

i

=

cz
i

z , where c
z

is an appropriate
scaling constant. We will consider distributions over the
range [1 . . . U ], where U is the range, or universe size. For
the skewed distributions we consider, we can often allow U
to be1. c

z

is determined by z (and U ) since for a probability
distribution we must have

P
U

i=1 f
i

= 1. Given a vector a
whose entries are distributed according to a Zipf distribution,
the count of the ith most frequent item is simply kak1fi

.
Many skewed distributions are well captured by Zipf

distributions with appropriate parameters. Natural phenom-
ena, such as sizes of cities, distribution of income, social
networks and word frequency can all be modeled with Zipf
distributions. Even the number of citations of papers demon-
strates a highly skewed Zipf distribution [47]. More relevant
to our study of large data streams, web page accesses for
different sites have been observed to obey a skewed Zipf dis-
tribution with parameter between 0.65 and 0.8. [9]. The
“depth” to which surfers investigate websites is also captured
by a Zipf distribution, with parameter 1.5 [27]. Files com-
municated over the Internet display Zipf distribution in a va-
riety of ways: transmission times are Zipf with parameter
approximately 1.2; the size of files requested, transmitted,
and available for download are all Zipf with parameters re-
spectively measured as 1.16, 1.06 and 1.06 [8]. FTP traffic
sizes was estimated to have z in the range 0.9 to 1.1. More
strongly, such skewed behavior of requests appears not only
over individual addresses but also when grouped into subnets
or larger networks [33], meaning that the skewed distribution
is self-similar (multi-fractal).

Related work on Mining Skewed Streams. A distinguish-
ing element of our work is to bring the skew of the data into
the analysis of summarizing and mining data whereas much
of the extant work deals with arbitrary distributions (with
some exceptions). For the heavy hitters problem Manku and
Motwani [42] presented the “lossy counting” algorithm that
requires space O(

1
"

log "kak1) to give the same accuracy
bounds as our results in general; but under the assumption
that each new item is drawn from a fixed probability distri-
bution, then the space is (expected) O(

1
"

) and the error guar-
anteed. Our results are dual to this, given guaranteed space
bounds and expected error bounds; however, with more in-
formation about the distribution, our bounds are dependent
on skew z, being much better for moderate to large skew, but
never worse. For the top k problem, [10] specifically stud-
ied Zipfian data and showed that for z > 1

2 , O(

k

"

2 ) space
suffices. For large skew, our methods improve this bound
to O(

k

"

). Using data skew is not uncommon in database re-
search, but only recently there are examples of data mining
in presence of skew in massive data such as [18] of analyzing
trading anomalies. Our work differs from previous works by
being a systematic algorithmic study of summarization and

mining problems in data streams with skew to give much im-
proved bounds and performance.

Zipf tail bounds. For our analysis, we will divide up
the range of the parameter z into three regions. We refer
to 1

2 < z  1 as moderate skew, and 1 < z as skewed.
Otherwise, when z  1

2 , we will say that the distribution has
light skew.

The following facts result from bounding the discrete
distribution by its continuous counterpart.

FACT 4.1. For z > 1, 1� 1
z

 c
z

 z � 1.

FACT 4.2. For z > 1,
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Our analyses generalize to when the data distribution is
dominated by zipfian or more generally, what we call Zipf-
like distributions: a distribution is Zipf-like with parameter
z > 1 if the tail after k largest items has weight at most
k1�z of the total weight (one could also allow scaling by
a constant, eg, the tail has weight at most ck1�z; such
extensions follow easily). Although we state results in this
paper for zipfian data, with a few more technical details, the
results hold for Zipf-like distributions as well.

5 Point Queries

5.1 Upper Bounds

The crucial insight for giving better bounds for the Count-
Min sketch in the presence of skewed distributions is the
observation that items with large counts can cause our esti-
mates to be poor if they collide with other items in the array
of counters. In a skewed distribution a few items consume a
large fraction of the total count. When estimating the count
of an item, if none of these large items collide with it un-
der the hash functions, then we can argue that the estimates
will be better than the w = 1/" bound given by the generic
argument in [13].

THEOREM 5.1. For a Zipf distribution with parameter
z, the space required to answer point queries with er-
ror "kak1 with probability at least 1 � � is given by
O("�min{1,1/z}

ln 1/�).

Proof. For z  1, the best results follow from analysis
in [13]. For z > 1, we use the same estimation technique to
return an estimate for a

i

as â
i

= min

j

count[h
j

(i)], but give



Tail guarantees
• Set head to m/3 of all bins
• Probability we don’t hit head is 2/3 per hash

• Apply Gauss-Markov for ‘noheavy’ with p=1/2
• Boost residual probability by min operation
• The space needed for Zipfian distribution is

                           with

E[c
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> n
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+ ✏n}  �O
⇣
✏�min{1,1/z}

log 1/�
⌘



Counter Braids



Part A - The Counter
• Datastructure

• Algorithm

d hash functions

h1(x)
h2(x)
h3(x)
h4(x)

m bins

xxxx a priori lower bound 
on counter is 0

if we know all inserts 
we can get new 
lower bound

y

z



Part A - The Counter
• Datastructure

• Lower bound

• Upper bound

d hash functions

h1(x)
h2(x)
h3(x)
h4(x)

m bins
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Part A - The Counter
• Iterate lower and upper bounds until converged

• proof highly nontrivial
• cheap construction but expensive decoding

• Lower bound

• Upper bound

w[i, j] =
X

h(i,x)=j
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
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Part B - The Braid

• Full 32bit counter overkill for 
many bins (almost empty)

• Low bit resolution in first filter
• Insert overflows into secondary 

counter
• Cascade filters
• Reconstruction by iteration



3.5 Realtime Analytics



Problems

• How to scale sketches beyond single machine?
• Accuracy (limited memory)
• Reliability (fault tolerance)
• Scalability (more inserts)

• Time series data
• Limited memory
• Sequence compression



3 Tools
1. Count min sketch (as before)

• Provides real-time sketching service 
(but no time intervals)

2. Consistent hashing
• Provides load-balancing. 
• Extension to sets provides fault tolerance.

3. Interpolation
• Marginals of joint distribution
• Exponential backoff of count statistics



Consistent hashing



Increasing Insert Throughput

m(x) := argmin
m2M

h(m,x)

single
machine

server

server

server

• Consistent hashing (Karger et al.)
• Split the keys x between a pool of machines M 
• Reproducible
• Small memory footprint & fast
• Can be extended to proportional hashing (see Reed, USENIX 2011)



Increasing Insert Throughput

m(x) := argmin
m2M

h(m,x)

single
machine

server

server

server

• Accuracy increases with O(1/k)
• Throughput increases with O(k)
• Reliability decreases



• Single Machine

• Multiple Machines

Increasing Reliability
d hash functions

h1(x)
h2(x)
h3(x)
h4(x)

n bins

machine 1

machine 2

machine 3

machine 4



Increased Reliability

single
machine

server

server

server

• Failure probability decreases exponentially
• Throughput is constant
• Query latency increases
• No acceleration of insert parallelism



Increasing Query Throughput

single
machine

server

server

server

• Failure probability decreases exponentially
(if machine fails we can use others)

• Insert throughput is constant
• Query throughput is O(k)



Putting it all together
• Tricks

• Assign keys only to a subset of machines
• Overreplicate for reliability
• Overreplicate for query parallelism

• Consistent set hashing

• Insert into a k machines at a time
• Request from k’ < k machines at a time

(use set hashing on C(x) with client ID)

C(x) := argmin
C2M with |C|=k

X

m2C

h(m,x)



Putting it all together
• Theorem

Assume we have up to f failures among m 
machines and let 2d < m. Then we need at most 
1.72 fd/m additional inserts over the single 
machine count min sketch for e-d error.

• Proof
• Bound probability that failures intersect with 

storage significantly
• Majorize drawing without replacement by 

drawing with replacement



Putting it all together

server

server

server

server

server

server

insert query

server



Interpolation



Properties of the count min sketch

• Linear statistic

• Sketch of two sets is sum of sketches
• We can aggregate time intervals

• Sketch of lower resolution is linear function
• We can compress further at a later stage



Time aggregation
• Time intervals of exponentially increasing length

1,1,2,4,8,16,32,64 ...

• Every 2n time steps recompute all bins up to 2n
• 1+1=2; 1+1+2=4; 1+1+2+4=8; 1+1+2+4+8=16
• Always fill first bin. 
• Aggregation is O(log log t) amortized.
• Storage is O(log t)
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Key aggregation
• Reduce bit resolution for sketch every 2t steps

1

2

3

4

5

6

7

O(log t) storage
O(1) maximum update cost



Key aggregation
• Reduce bit resolution for sketch every 2t steps

1

2

3

4

5

6

7

O(log t) storage
O(1) maximum update cost



Interpolation
• Time aggregation

Decreasing temporal resolution - n(x,last year)
• Item aggregation

Decreasing accuracy at fine time resolution

time

items p(i, t) ⇡ p(i)p(t)

) n(i, t) ⇡ n(i)n(t)

n

maintain sketch
aggregating both

time and items



Data & Applications
•Moments

•Flajolet counter
•Alon-Matias-Szegedy sketch

•Heavy hitter detection
•Lossy counting
•Space saving

•Randomized statistics
•Bloom filter
•CountMin sketch

•Realtime analytics
•Fault tolerance and scalability
• Interpolating sketches

Data Streams



Further reading
• Muthu Muthukrishnan’s tutorial

http://www.cs.rutgers.edu/~muthu/stream-1-1.ps
• Alon Matias Szegedy

http://www.sciencedirect.com/science/article/pii/S0022000097915452
• Count-Min sketch

https://sites.google.com/site/countminsketch/
• Bloom Filter survey by Broder & Mitzenmacher

http://www.eecs.harvard.edu/~michaelm/postscripts/im2005b.pdf
• Metwally, Agrawal, El Abbadi (space saving sketch)

http://www.cs.ucsb.edu/research/tech_reports/reports/2005-23.pdf
• Berinde, Indyk, Cormode, Strauss (space optimal bounds for space saving)

http://www.research.att.com/people/Cormode_Graham/library/publications/
BerindeCormodeIndykStrauss10.pdf

• Graham Cormode’s tutorial
http://dimacs.rutgers.edu/~graham/pubs/papers/sk.pdf

• Flajolet-Martin 1985
http://algo.inria.fr/flajolet/Publications/FlMa85.pdf
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