

SIGIR 2010
Geneva, Switzerland

July 19-23, 2010

Feature Generation and Selection for Information Retrieval

Workshop of the 33rd Annual International
ACM SIGIR Conference

on Research and Development
in Information Retrieval

Workshop organizers:
Evgeniy Gabrilovich (Yahoo! Research)

Alex Smola (Australian National University and Yahoo! Research)
Naftali Tishby (Hebrew University of Jerusalem)

Contents

Organizing Committee 4

Preface 5

Schedule 6

Papers and Presentations 7
KEYNOTE — The DDI Approach to Features: Don’t Do It

Kenneth Church . 7
Online Feature Selection for Information Retrieval

Niranjan Balasubramanian, Giridhar Kumaran and Vitor Carvalho 8
Hubness in the Context of Feature Selection and Generation

Milos Radovanovic, Alexandros Nanopoulos, and Mirjana Ivanovic 9
Information Retrieval and Machine Learning at the Long Tail

Neel Sundaresan . 10
Greedy RankRLS: a Linear Time Algorithm for Learning Sparse Ranking Models

Tapio Pahikkala, Antti Airola, Pekka Naula, and Tapio Salakoski 11
Extensions to Self-Taught Hashing: Kernelisation and Supervision

Dell Zhang, Jun Wang, Deng Cai, and Jinsong Lu . 19
KEYNOTE — Hierarchical Bayesian Models of Language and Text

Yee Whye Teh . 27
Feature Selection for Document Ranking using Best First Search and Coordinate Ascent

Van Dang and Bruce Croft . 28
Enhancing Query-oriented Summarization based on Sentence Wikification

Yajie Miao and Chunping Li . 32
A Compression Framework for Generating User Profiles

Xiaoxiao Shi, Kevin Chang, Vijay K. Narayanan, Vanja Josifovski, and Alex J. Smola . . 36
An SVM Based Approach to Feature Selection for Topical Relevance Judgement of Feeds

Yongwook Shin and Jonghun Park . 40
Representing and Exploiting Searcher Interaction Data

Eugene Agichtein . 44

Organizing Committee

Organizers Evgeniy Gabrilovich, Yahoo! Research
Alexander Smola, Yahoo! Research and Australian National University
Naftali Tishby, Hebrew University Jerusalem

Program Committee Francis Bach, INRIA, USA
Misha Bilenko, Microsoft Research, USA
David Blei, Princeton, USA
Karsten Borgwardt, Max Planck Institute, Germany
Wray Buntine, NICTA, Australia
Raman Chandrasekar, Microsoft Research, USA
Kevyn Collins-Thompson, Microsoft Research, USA
Silviu Cucerzan, Microsoft Research
Brian Davison, Lehigh University, USA
Gideon Dror, Academic College of Tel-Aviv-Yaffo, Israel
Arkady Epshteyn, Google, USA
Wai Lam, CUHK, Hong Kong
Tie-Yan Liu, Microsoft Research Asia, China
Shaul Markovitch, Technion, Israel
Donald Metzler, Yahoo Research, USA
Daichi Mochihashi, NTT, Japan
Patrick Pantel, Yahoo, USA
Filip Radlinski, Microsoft Research, United Kingdom
Rajat Raina, Facebook, USA
Pradeep Ravikumar, University of Texas at Austin, USA
Mehran Sahami, Stanford, USA
Le Song, CMU, USA
Krysta Svore, Microsoft Research, USA
Volker Tresp, Siemens, Germany
Eric Xing, CMU, USA
Kai Yu, NEC, USA
ChengXiang Zhai, UIUC, USA
Jerry Zhu, University of Wisconsin

Sponsors
We gratefully acknowledge contributions from the Pascal 2 Network of Excellence towards the travel
expenses of the keynote speakers.

Webpage
http://alex.smola.org/workshops/sigir2010

4

Preface
Feature extraction, generation, and selection for textual documents is a rather hotly contested subject.
Opinions range from the advice to perform no feature selection whatsoever to highly sophisticated
nonparametric Bayesian models which generate latent representations of documents. This perspective is
muddled further by the fact that quite often in documents ’words are the best features’, yet a naive use
of words does not lead to state of the art document processing tools. Matters are even more complex
once the existence of curated corpora such as Wikipedia, ontologies, and lists are taken into account.

There is much opportunity in designing algorithms based on information retrieval, statistics, machine
learning, data mining, and systems design to address this need for representation and extraction. Some
algorithms, while quite attractive at a smaller scale, may fall short due to scalability issues (e.g. graphical
models with state spaces that exceed the available RAM of a computer) unless approximations are made.
At the same time, purely frequency based algorithms may not suffice to capture document content.

Hence much research remains to be done in designing simple, scalable and effective methods for
representing and describing documents and the knowledge contained in them. This was the motivation for
organizing a workshop on feature extraction and generation in information retrieval. We have attempted
to bring together a broad range of (opposing) viewpoints such that a fertile discussion may ensue.

Evgeniy Gabrilovich, Alexander J. Smola, and Naftali Tishby
Santa Clara, July 7, 2010

5

Schedule
Friday, July 23, 2010

8:30–8:35 Welcome and Opening Remarks
Evgeniy Gabrilovich

8:35–9:30 KEYNOTE — The DDI Approach to Features: Don’t Do It
Ken Church

9:30–10:00 Online Feature Selection for Information Retrieval
Niranjan Balasubramanian, Giridhar Kumaran, and Vitor Carvalho

10:00–10:30 Hubness in the Context of Feature Selection and Generation
Alexandros Nanopoulos

10:30–11:00 Coffee Break

11:00–11:30 Information Retrieval and Machine Learning at the Long Tail
Neel Sundaresan

11:30–12:00 Greedy RankRLS: a Linear Time Algorithm for Learning Sparse Ranking
Models
Tapio Pahikkala, Antti Airola, Pekka Naula, and Tapio Salakoski

12:00–12:30 Extensions to Self-Taught Hashing: Kernelisation and Supervision
Dell Zhang, Jun Wang, Deng Cai, and Jinsong Lu

12:30-14:00 Lunch

14:00-15:00 KEYNOTE — Hierarchical Bayesian Models of Language and Text
Yeh Whye Teh

15:00-15:30 Coffee Break

15:30-15:50 Feature Selection for Document Ranking using Best First Search and Co-
ordinate Ascent
Van Dang and W. Bruce Croft

15:50-16:10 Enhancing Query-oriented Summarization based on Sentence Wikification
Yajie Miao and Chunping Li

16:10-16:30 A Compression Framework for Generating User Profiles
Xiaoxiao Shi, Kevin Chang, Vijay K. Narayanan, Vanja Josifovski, and
Alex J. Smola

16:30-16:50 An SVM Based Approach to Feature Selection for Topical Relevance Judge-
ment of Feeds
Yongwook Shin and Jonghun Park

16:50-17:20 Representing and Exploiting Searcher Interaction Data
Eugene Agichtein

6

KEYNOTE — The DDI Approach to Features: Don’t Do It

Kenneth Church Kenneth.Church@jhu.edu
Human Language Technology Center of Excellence
Johns Hopkins University, Baltimore, MD

25 years ago, Mercer, a member of the IBM speech group, tossed the bomb shell, “There is no data
like more data!” A few years later, his boss, Jelinek, added, “Whenever I fire a linguist our system
performance improves.” Jelinek later moved to Hopkins and hired Brill who concluded, “It never pays
to think until you’ve run out of data,” and therefore we should “fire everyone and spend the money on
data.” I will refer to this period as the DDI (don’t do it) approach to features (and everything else).

A decade later, the web came along and life was good for the DDI approach. But the community is
beginning to discover that although the web is large, it may not be that large. The web is also making
it clear that Information Retrieval is not a simple game of Solitaire with a user up against the house
(the library), but modern web search is a much more interesting multiplayer game with authors, users,
advertisers and spammers all working together (as well as cross purposes). Different features are more
appropriate for different perspectives. Features like TF, IDF and Page Rank shed light on authors’
perspectives, but users are more interested in readers’ perspectives.

Recently, we have been working on classification of audio documents with few (if any) resources (dic-
tionaries/corpora). It is standard practice to connect black boxes (ASR speech recognition, IR, NLP)
in series. Although this approach tends to multiply errors, GALE has demonstrated that it can be
effective, especially for high resource languages (English, Chinese and Arabic). We have been exploring
an alternative for languages with few resources (most languages) that applies classification directly to
the speech without taking a dependency on ASR. This approach takes us full circle back to the DDI
approach to features.

Biography

Ken is currently the Chief Scientist of the Human Language Technology Center of Excellence at the
Johns Hopkins University. Ken is also VP-elect of the Association for Computational Linguistics (ACL),
and President of SIGDAT (special interest group that organizes EMNLP conferences). Before moving
to Hopkins, Ken was a researcher at Microsoft Research in Redmond, and before that he was the head
of a data mining department in AT&T Labs-Research (formally AT&T Bell Labs). He received his BS,
Masters and PhD from MIT in computer science in 1978, 1980 and 1983, respectively. He enjoys working
with very large corpora such as the Associated Press newswire back in the 1990s when that was considered
large (1 million words per week) and larger datasets such as telephone call detail (1-10 billion records
per month) and web logs (even larger). He has worked on many topics in computational linguistics
including: web search, language modeling, text analysis, spelling correction, word-sense disambiguation,
terminology, translation, lexicography, compression, speech (recognition and synthesis), OCR, as well as
applications that go well beyond computational linguistics such as cloud computing, revenue assurance
and virtual integration (using screen scraping and web crawling to integrate systems that traditionally
don’t talk together as well as they could such as billing and customer care).

7

Online Feature Selection for Information Retrieval

Niranjan Balasubramanian, Giridhar Kumaran and Vitor Carvalho niranjan@cs.umass.edu
University of Massachusetts, Amherst, MA
Microsoft Corporation, Redmond, WA

In this talk, we describe an approach for automatic query reduction on the Web, and discuss its connec-
tions to online feature selection for information retrieval.

Long web queries form an important segment in Web search. However, most web search engines
perform poorly for long queries. We propose automatic query reduction as an approach for improving
the effectiveness of long web queries. Specifically, we focus on a relative effectiveness estimation technique
that enables automatic selection of reduced representations of the original long query.

This approach is related to feature selection in two ways. First, the effectiveness estimation technique
that we develop can be viewed as an online feature selection technique. Web search engines use features
that can be associated with each query term (or a set of query terms). These features are then combined
in a machine learning framework to score documents. In this setting, selecting the best reduced version
of a long query can be viewed as selecting the best subset of features during ranking. Second, the
effectiveness estimation technique can also be used to directly select between ranking algorithms trained
on multiple feature subsets. We will present some early results in this direction.

While traditional feature selection techniques that aim to reduce redundancy in features and select
the best subset of features that work well for all future queries, the techniques we propose aim to identify
features that work the best for each individual query. Given the typically large query-level variance in
retrieval performance, we believe that such query-dependent selection of features can further help to
improve the performance of learning algorithms.

This is joint work with Giridhar Kumaran and Vitor Carvalho.

8

Hubness in the Context of Feature Selection
and Generation (Extended Abstract)

Miloš Radovanović
Department of Mathematics

and Informatics
University of Novi Sad

Serbia
radacha@dmi.uns.ac.rs

Alexandros Nanopoulos
Institute of Computer Science

University of Hildesheim
Germany

nanopoulos@ismll.de

Mirjana Ivanović
Department of Mathematics

and Informatics
University of Novi Sad

Serbia
mira@dmi.uns.ac.rs

Hubness is a property of vector-space data expressed by the ten-
dency of some points (hubs) to be included in unexpectedly many
k-nearest neighbor (k-NN) lists of other points in a data set, accord-
ing to commonly used similarity/distance measures. Alternatively,
hubness can be viewed as increased skewness of the distribution
of node in-degrees in the k-NN digraph obtained from a data set.
Hubness has been observed in several communities (e.g., audio re-
trieval), where it was described as a problematic situation. The
true causes of hubness have, for the most part, eluded researchers,
which is somewhat surprising given that the phenomenon repre-
sents a fundamental characteristic of vector-space data.

In recent work, we have shown that hubness is actually an inher-
ent property of data distributions in multidimensional space, caused
by high intrinsic dimensionality of data. Hubness can therefore be
viewed as a notable novel aspect of the “curse of dimensionality.”
We have explored the implications of hubness on various tasks, in-
cluding distance-based methods for machine learning [1], and vec-
tor space models for information retrieval [2], with the common
conclusion that hubness is an important concern when dealing with
data that is intrinsically high-dimensional.

We have concentrated our research efforts so far on explaining
the origins of hubness and its effects on different tasks, assuming a
given set of features defined for a particular data set. Although our
works briefly consider the interaction of hubness with dimensional-
ity reduction, the implications of hubness on feature selection, and
especially generation, are still open research questions.

Besides hubness, we will center our current discussion on the
notion of the cluster assumption (CA) which, assuming that data
contains labels, roughly states that two points in the same cluster
should in most cases be of the same class. This assumption is one
of the pillars of semi-supervised ML methods, and is also known
in IR circles as the cluster hypothesis, which is formulated in an
analogous manner using the notion of relevance. The cluster as-
sumption, i.e., the degree of its violation, effectively represents the
degree to which the featural representation of the data fails to cor-
respond with some notion of “ground truth” about the data given,
e.g., by class labels. A high degree of CA violation indicates that
models will be difficult to build from the data, and may suggest a
reconsideration of the featural representation.

For a given data set and distance measure, let Nk(x) denote the
number of times point x occurs in the k-NN lists of other points in
the data set. We express hubness using the skewness of the distri-
bution of Nk(x), as its standardized third moment, denoted SNk .
Also, let BN k(x) be the number of times x occurs in the k-NN
lists of other points, where the labels of x and the points in ques-
tion do not match (making BN k(x) a measure of “badness” of x).
The normalized sum of BN k(x) for a given data set, BN k ratio,
represents one way to express the degree of violation of the CA.

0 20 40 60 80 100

−0.5

0

0.5

1

1.5
Information gain

Features (%)

S
N

10

musk1
mfeat−factors
spectrometer

(a)

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4
Information gain

Features (%)

B
N

10
 r

at
io

musk1
mfeat−factors
spectrometer

(b)

Figure 1: Skewness and “badness” ratio.

Figure 1 illustrates how SNk and BN k ratio change when fea-
tures are selected using the classical information gain method, on
three data sets from the UCI repository also used in [1]. Regarding
Fig. 1(a), looking from right to left, skewness of Nk stays relatively
constant until a small percentage of the original number of features
is left, when it abruptly drops. This is the point where the intrinsic
dimensionality is reached, with further selection incurring loss of
information. This loss is also visible in Fig. 1(b), where at similar
points there is an increase in BN k ratio, suggesting that the reduced
representation ceases to reflect the information provided by labels
very well.

Observing the two charts in the opposite direction, from left to
right, offers a glimpse into the benefits and drawbacks of feature
generation. Adding features that bring new information to the data
representation will ultimately increase SNk and produce hubs. Fur-
thermore, for the chosen examples, the reduction of BN k ratio
“flattens out” fairly quickly, limiting the usefulness of adding new
features in the sense of being able to express the “ground truth.”
Depending on the application, instead of BN k ratio some other
criterion could have been used in Fig. 1(b), like classifier error rate,
producing similarly shaped curves. While the majority of research
in feature selection/generation has focused on optimizing criteria
reminiscent to those in Fig. 1(b), little attention has been paid to the
fact that in intrinsically high-dimensional data hubness will result
in an uneven distribution of the cluster assumption violation (in our
case, hubs will generally attract more label mismatches with neigh-
boring points), and with it an uneven distribution of responsibility
for classification or retrieval error among data points. We believe
that investigating the interaction between hubness and different no-
tions and analogues of CA violation can result in important new
insights relevant to the tasks of feature selection and generation.

REFERENCES
[1] M. Radovanović, A. Nanopoulos, and M. Ivanović. Hubs in

space: Popular nearest neighbors in high-dimensional data.
Journal of Machine Learning Research. Forthcoming.

[2] M. Radovanović, A. Nanopoulos, and M. Ivanović. On the
existence of obstinate results in vector space models. In Proc.
SIGIR, 2010.

9

Information Retrieval and Machine Learning at the Long Tail

Neel Sundaresan nsundaresan@ebay.com
eBay Research Labs, San Jose, CA

In this presentation we discuss how algorithms in IR and ML are adapted to build systems in the context
of eBay Marketplace. The long tail nature of ”few-of-a-kind” items create unique challenges for building
catalogable products. The lack of catalogable products, in turn, create unique challenges building search
applications, recommender systems and managing trust. However, the participatory nature of the users
combined with availability of large amount of data also provides unique opportunities for incorporating
user input into building simple scalable algorithms.

10

Greedy RankRLS: a Linear Time Algorithm for Learning
Sparse Ranking Models

Tapio Pahikkala
University of Turku and Turku
Centre for Computer Science

(TUCS), Turku, Finland
firstname.lastname@utu.fi

Antti Airola
University of Turku and Turku
Centre for Computer Science

(TUCS), Turku, Finland
firstname.lastname@utu.fi

Pekka Naula
University of Turku

Turku, Finland
firstname.lastname@utu.fi

Tapio Salakoski
University of Turku and Turku
Centre for Computer Science

(TUCS), Turku, Finland
firstname.lastname@utu.fi

ABSTRACT
Ranking is a central problem in information retrieval. Much
work has been done in the recent years to automate the de-
velopment of ranking models by means of supervised ma-
chine learning. Feature selection aims to provide sparse
models which are computationally efficient to evaluate, and
have good ranking performance. We propose integrating the
feature selection as part of the training process for the rank-
ing algorithm, by means of a wrapper method which per-
forms greedy forward selection, using leave-query-out cross-
validation estimate of performance as the selection crite-
rion. We introduce a linear time training algorithm we call
greedy RankRLS, which combines the aforementioned pro-
cedure, together with regularized risk minimization based
on pairwise least-squares loss. The training complexity of
the method is O(kmn), where k is the number of features to
be selected, m is the number of training examples, and n is
the overall number of features. Experiments on the LETOR
benchmark data set demonstrate that the approach works
in practice.

Keywords
feature selection, learning to rank, ranking, RankRLS, reg-
ularized least-squares, variable selection

1. INTRODUCTION
Learning to rank for information retrieval has been a

topic of intense research during the recent years. The possi-
ble benefits of automatically inducing ranking models from
data, compared to purely handcrafted systems, include re-
duced manual labor, increased ranking performance, and
adaptivity to individual user preferences. A number of su-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR Workshop on Feature Generation and Selection for Information Re-
trieval 2010 Geneva, Switzerland
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

pervised machine learning methods have been proposed, and
successfully applied for this task. These include both pair-
wise approaches such as RankSVM [8], RankNet [2], and
RankRLS [16, 17], as well approaches which optimize mul-
tivariate loss functions defined over queries, also known as
the listwise approach [3, 4, 25].

In this article we consider the task of feature selection for
learning to rank, specifically concentrating on the task of
document retrieval. The task is to recognize an informative
subset of the features, such that a machine learning method
trained on the subset achieves good ranking performance
on unseen future data. Perhaps the most fundamental ad-
vantage of this approach is that it leads to sparse models,
as only a limited subset of features is used for prediction.
Since applications such as web-search engines are typically
constrained by strict real-time response demands, being able
to restrict the number of features that need to be calculated
can be quite useful. Further, feature selection can also pro-
vide feedback on the quality of different features, which can
be very useful when developing and testing new ones.

Feature selection methods are typically divided into three
categories [6]. In the filter approach the features are se-
lected as a pre-processing step before applying a learning
algorithm, wrapper methods select features through inter-
action with a learning algorithm, and embedded methods
perform the selection as part of the learning process itself.
Feature selection for ranking is not as of yet a well stud-
ied area, but a number of approaches have been introduced
during the past few years. Geng et al. [5] proposed a fil-
ter method for selecting such features which produce good
rankings, while at the same time aiming to minimize the
redundancy in the set of selected features. The work was
further improved upon by Yu et al. [24]. Metzler [12] and
Pan et al. [19] considered feature selection for ranking with
Markov random fields and boosted trees, respectively.

Since the final goal of the feature selection process is to
produce a sparse ranking model with good performance, we
argue that the most natural selection criterion is the so-
called wrapper approach [6,10,11]. We select such features,
which result in maximal ranking performance for the super-
vised learning method that we are actually using to learn our
model. A standard approach for estimating the generaliza-
tion performance of a model trained on a subset of features

11

is to use cross-validation, as proposed by [10] for wrapper
based feature selection. More specifically, we propose us-
ing leave-query-out (LQO) cross-validation. This allows one
to make maximal use of training data, and guarantees that
data points related to the same query are never split between
the training and test folds. Further, to make the search over
the power set of features feasible, we propose to use greedy
forward selection, where on each iteration the feature whose
addition yields best cross-validation performance is selected.

In this article we propose the greedy RankRLS algorithm,
that is able to efficiently perform the aforementioned selec-
tion procedure. The algorithm is equivalent to a wrapper
method that for each tested feature set, and each round of
cross-validation would train the RankRLS method [16, 17],
which minimizes the pairwise regularized least-squares loss.
It can also be considered as an embedded method, since the
proposed training algorithm for greedy RankRLS training
is far more efficient than the straightforward approach of
using RankRLS as a black-box method within the selection
process would be. Previously, RankRLS has been shown
to produce good ranking results in document retrieval, and
in general achieve ranking performance similar to that of
RankSVM [16,17].

To achieve computational efficiency for the wrapper
method, we combine the training algorithm with matrix al-
gebra based shortcuts. These are made possible by the fact
that RankRLS has a closed form solution, which can be fully
expressed in terms of matrix operations. Firstly, the devel-
oped shortcuts allow efficient update of the solution when
new features are added, without having to recompute the
solution from scratch. We have previously proposed similar
shortcuts for the greedy RLS algorithm [13,14], which allows
one to train sparse regressors and classifiers in linear time.
Second, based on the results in [1,15] we derive a formula for
the exact LQO estimate that is more efficient than the one
previously proposed in [16], and combine it with the update
operation for feature addition. The resulting complexity of
greedy RankRLS training is O(kmn), where k is the num-
ber of features to be selected, m is the number of training
examples, and n is the overall number of features. The mem-
ory complexity of the method is O(mn). We are not aware
of as efficient greedy forward selection methods with cross-
validation based selection criterion for other state-of-the-art
learning to rank methods.

2. SETTING
We start by introducing some notation. Let Rm and

Rn×m, where n,m ∈ N, denote the sets of real valued col-
umn vectors and n × m-matrices, respectively. To denote
real valued matrices and vectors we use bold capital letters
and bold lower case letters, respectively. Moreover, index
sets are denoted with calligraphic capital letters. By denot-
ing Mi, M:,j , and Mi,j , we refer to the ith row, jth column,
and i, jth entry of the matrix M ∈ Rn×m, respectively. Sim-
ilarly, for index sets R ⊆ {1, . . . , n} and L ⊆ {1, . . . ,m}, we
denote the submatrices of M having their rows indexed by
R, the columns by L, and the rows by R and columns by L
as MR, M:,L, and MR,L, respectively. We use an analogous
notation also for column vectors, that is, vi refers to the ith
entry of the vector v.

We assume, that we are given a training set in a form of
data matrix X ∈ Rn×m and a label vector y ∈ Rm. The
rows of the data matrix are indexed by the n features and

the columns by the m training examples. Thus, by X:,i we
denote the column vector containing the features of the ith
example, sliced from the data matrix and by yi we denote its
corresponding real value label. Let I = {1 . . .m} denote the
index set for the training set. The index set is divided into
a number of disjoint queries, where Q = {Q(1), . . . ,Q(|Q|)}
is the set of queries, and Q(i) ⊂ I,

S|Q|
i=1Q(i) = I and

Q(i) ∩ Q(j) = ∅, if i 6= j. Each example represents a query-
document pair. The features are a joint feature represen-
tation for the query the example is associated with, and
a candidate document, and the label denotes how relevant
the document is with respect to the query. The ranking of
the documents associated with a query can be obtained by
sorting them according to the values of their labels.

In feature selection, the task is to select a subset S ⊂
{1 . . . n}, |S| = k, of the n available features, such that
the resulting predictor is sparse, but still produces a good
ranking performance on new data. The number of selected
features k may be decided in advance, or selected against a
validation set, according to application specific criteria. We
consider linear predictors of type

f(x) = wTxS , (1)

where w is the k-dimensional vector representation of the
learned predictor and xS can be considered as a mapping
of the data point x into k-dimensional feature space. Note
that the vector w only contains entries corresponding to the
features indexed by S. The rest of the features of the data
points are not used in prediction phase. The computational
complexity of making predictions with (1) and the space
complexity of the predictor are both O(k), provided that
the feature vector representation xS for the data point x is
given.

The pairwise ranking error for a learned predictor f can
be defined as

1

|Q|
X
Q(i)∈Q

1

N (i)

X
j,k∈Q,yj<yk

H(f(X:,j)− f(X:,k)), (2)

where H is the Heaviside step function defined as

H(a) =

8<: 1, if a > 0
1/2, if a = 0
0, if a < 0

and N (i) is the number of pairs in the i:th query, for which
yj < yk holds true. In this definition, the error is normalized
so that each considered query has the same importance, re-
gardless of size. Since (2) is non-convex, successful pairwise
approaches for learning to rank typically minimize convex
approximations instead.

The RankRLS algorithm [16, 17] is based on regularized
risk minimization, where a least-squares based approxima-
tion of (2) is minimized, together with a quadratic regular-
izer. We approximate (2) with the pairwise least-squares
loss, where step function H is replaced with the pairwise
squared loss

l(i, j) = (yi − yj − f(X:,i) + f(X:,j))2.

Compared to the discrete pairwise loss, this loss also en-
forces the magnitudes of the prediction differences. For the
purpose of simplifying the derivation and implementation of
the learning algorithm, we modify the normalizers, and also

12

include tied predictions within the same query in the loss.
The linear RankRLS solution is found by solving

argmin
w∈R|S|

(X
Q∈Q

1

2|Q|
X

i,j∈Q
l(i, j) + λ‖w‖2

)
(3)

where the first term is the empirical risk measuring how
well the model determined by w fits to the training data,
and the second term called regularizer penalizes complex
models. The regularization parameter λ > 0 controls the
tradeoff between these terms.

Let

Ll = I− 1

l
11T

be the l × l-centering matrix with l ∈ N. The matrix L
is an idempotent matrix and multiplying it with a vector
removes the mean of the vector entries from all elements of
the vector. Moreover, the following equality can be shown

1

2l

lX
i,j=1

(ci − cj) = cTLlc ,

where ci are the entries of any vector c. Without loss of
generality, we can assume that the training data is ordered
according to the queries, so that first come the examples
belonging to the first query, next to the second, etc. Now,
let us consider the following quasi-diagonal matrix:

L =

0B@ Ll1

. . .

Ll|Q|

1CA ,

where li = |Qi| for i ∈ {1, . . . , |Q|}. The matrix L is again
symmetric and idempotent, and can be interpreted as a
query-wise centering matrix, that removes the mean from
the prediction errors for each query [18]. It is also a normal-
ized version of the Laplacian matrix encoding the structure
of the preference graph induced by the queries, which has
been used in previous derivations of RankRLS [16,17].

Now, (3) can be re-written in matrix notation as

argmin
w∈R|S|

n
((wTXS)T − y)TL((wTXS)T − y) + λwTw

o
.

(4)
Analogously to the results in [16,17], a minimizer of (4) is

w = (XSL(XS)T + λI)−1XSLy.

Due to the symmetry and idempotence of L, this can be
re-written as

w = (bXS(bXS)T + λI)−1 bXSby, (5)

where bXS = XSL and by = Ly. Using the sparse decom-
position of L, the first multiplication can be performed in
O(m|S|), and the second inO(m) time. We note (see e.g. [7])
that equivalently, the RankRLS solution can be obtained
from

w = bXS((bXS)T bXS + λI)−1by. (6)

The overall complexity of solving (5) is O(m|S|2 + |S|3),
and that of solving (6) O(m2|S|+m3). We note that these
are solutions to the ordinary regularized least squares (RLS)
problem. Thus, by the query-wise centering of the data
matrix the RankRLS problem can be mapped to that of
solving the ordinary RLS problem.

Finally, we consider the issue of cross-validation. As dis-
cussed before, we aim to perform LQO cross-validation,
where in turn each query is left out of the training set, and
used for testing. Let Q be the index set of a query, and let
Q = I \ Q be the complement of this index set.

Let us consider the centered data matrix from which the
rows corresponding to the Q have been removed, bXSQ. Due
to the quasi-diagonal structure of L, the submatrices LQQ
have only zero entries. Therefore, we have

XSQLQQ = bXSQ −XSQLQQ = bXSQ.
The significance of this result is that when removing a query
from the training set, we can recover the centered repre-

sentation of the remaining data simply by slicing bX. The
centering operation does not need to be re-calculated. The
feature representation for the test query is also centered, if
we recover it from the centered training data matrix. Since
using centered data does not affect the relative ordering or
relative differences in prediction values, as long as ranking
based performance measures are used, this makes no differ-
ence.

These results considerably simplify the development of ef-
ficient cross-validation methods for RankRLS. As long as
folds are defined along query lines, the task of performing
cross-validation with RankRLS is identical to that of per-
forming cross-validation with RLS using centered training
data. In problem settings where L does not have quasi-
diagonal structure, such as when learning from a single
global ranking, such results do not exist, making develop-
ment of cross-validation shortcuts more challenging.

3. ALGORITHM DESCRIPTION
Here, we present the computational short-cuts that enable

the efficient feature subset search strategy for RankRLS with
LQO error as a heuristic. First, we recall an approach for
computing the hold-out error for the RLS algorithm. By
hold-out, we indicate the method that is used to estimate
the performance of the learning algorithm by holding a part
of the given data set as a test set and training a learner with
the rest of the data. Our hold-out formulation assumes that
the whole data set is used to train a RLS predictor and the
hold-out set is then“unlearned”afterwards. The formulation
can then be used, for example, to perform a N -fold CV by
holding out a different part of the data set at a time and
averaging the results. In this paper, we use it specifically for
LQO-CV, that is, each query is held out from the training
set at a time, and for a particular query, the corresponding
hold-out set consists of all the training examples associated
with the query.

Now, let us define

G = ((bXS)T bXS + λI)−1

and

a = Gby.
The following theorem can be straightforwardly inferred
from the results presented by [1,15].

Theorem 3.1. The predictions for the data points in-
dexed by Q made by a RLS predictor trained using the fea-
tures indexed by S and with the whole training set except the
examples indexed by Q can be obtained frombyQ − (GQQ)−1aQ.

13

According to the above theorem, the result of LQO-CV with
squared error as a performance measure can be obtained
from X

Q∈Q

(pQ)TpQ, (7)

where

pQ = (GQQ)−1aQ.

It is quite straightforward to show that the vector of hold-
out errors is centered query-wise, that is, p = Lp, because

we use bX and by in place of X and y. Therefore, the sum
of squared hold-out errors (7) is, in fact, the sum of squared
query-wise centered hold-out errors. As shown earlier, this
corresponds to the sum of pairwise squared losses, calculated
for each query separately.

Algorithm 1: Greedy RankRLS

Input: bX ∈ Rn×m, by ∈ Rm, k, λ
Output: S, w
a← λ−1by;1

C← λ−1 bXT;2

U← bXT;3

p← by;4

S ← ∅;5

while |S| < k do6

e←∞;7

b← 0;8

foreach i ∈ {1, . . . , n} \ S do9

c← (1 + bXiC:,i)
−1;10

d← cCT
iby;11

ei ← 0;12

foreach Q ∈ Q do13

γ ← (−c−1 + CT
i,QUQ,i)

−1;14

p̃Q ← pQ−dUQ,i−γUQ,i(U
T

i,Q(aQ−dCQ,i));15

ei ← ei + (p̃Q)Tp̃Q;16

if ei < e then17

e← ei;18

b← i;19

c← (1 + bXbC:,b)
−1;20

d← cCT
bby;21

t← cbXbC;22

foreach Q ∈ Q do23

γ ← (−c−1 + CT
b,QUQ,b)

−1;24

pQ ← pQ − dUQ,b − γUQ,b(U
T

b,Q(aQ − dCQ,b));25

UQ ← UQ −UQ,bt− γUQ,b(U
T

b,Q(CQ −CQ,bt));26

a← a− dC:,b;27

C← C−C:,bt;28

S ← S ∪ {b};29

w← bXSa;30

Next, we go through the actual feature selection algorithm
whose pseudo code is presented in Algorithm 1. Let us first
define the following quasi-diagonal matrix:

Q =

0B@ (GQ1,Q1)−1

. . .

(GQ|Q|,Q|Q|)
−1

1CA .

In order to take advantage of the computational short-cuts,
the feature selection algorithm maintains the current set of
selected features S ⊆ {1, . . . , n}, the vectors a,p ∈ Rm, and

the matrices C,U ∈ Rm×n whose values are defined as

a = Gby,
C = GbXT,

U = QGbXT,

p = QGby.
In the initialization phase of the greedy RankRLS algorithm
the set of selected features is empty, and hence the values of

a, C, U, and p are initialized to λ−1by, λ−1 bXT, bXT, and by,
respectively. The computational complexity of the initial-
ization phase is dominated by the O(mn) time required for

storing the matrices C, U, and bX in memory. Thus, the ini-
tialization phase is no more complex than one pass through
the training data.

Let us now consider the computation of the LQO perfor-
mance for the modified feature set S ∪ {i}, where i is the
index of the feature to be added. Recall that the hold-out
prediction for the examples that are associated with query Q
can be computed from pQ = (GQ,Q)−1aQ, where a = Gby.
However, since a new feature is temporarily added into the
set of selected features, we must use the matrixeG = ((bXS)T bXS + (bXi)

T bXi + λI)−1

in place of G. Due to the well-known Sherman-Morrison-

Woodbury (SMW) formula, the matrix eG can be rewritten
as eG = G−G(bXi)

T(1 + bXiG(bXi)
T)−1 bXiG

= G− cC:,iC
T

i,

where

c = (1 + bXiC:,i)
−1.

Accordingly, the updated vector of dual variables ã can be
written as

ã = eGby
= (G− cC:,iC

T
i)by

= a− dC:,i,

where

d = cCT
iby.

Now, concerning (eGQ,Q)−1, we have

(eGQ,Q)−1 = ((G− cC:,iC
T

i)Q,Q)−1

= (GQ,Q − cCQ,iC
T

i,Q)−1

= (GQ,Q)−1

−γ(GQ,Q)−1CQ,iC
T

i,Q(GQ,Q)−1

= (GQ,Q)−1 − γUQ,iU
T

i,Q,

where

γ = (−c−1 + CT
i,QUQ,i)

−1

and the equality between the second and third rows are again
due to the SMW formula. Finally, we can compute the hold-
out predictions p̃Q for the updated feature set as

p̃Q = (eGQ,Q)−1ãQ

= (GQ,Q)−1ãQ − γUQ,i(U
T

i,QãQ)

= pQ − dUQ,i − γUQ,i(U
T

i,Q(aQ − dCQ,i)).

14

The calculation of the last row requires onlyO(|Q|) time pro-
vided that we have all the required caches available. Since
the sizes of the query index sets sum up to m, the overall
complexity of LQO-CV for the updated feature set becomes
O(m). Further, as the greedy forward selection approach
tests each of the order of n unselected features before the
best of them is added into the set of selected features, the
complexity of the selection step is O(mn).

What is still left in our consideration is the phase in which
the caches are updated after an new feature is added into the
set of selected features. The vectors a and p are updated in
the same way as they were temporarily updated in the LQO-
CV computations. The update processes of the matrices U
and C are analogous to those of the vectors p and a except
that the matrix C is used in place of the vector a and the
vector

t = cbXbC,

where b is the index of the selected feature, is used in place of
the constant d. The computational time required for updat-
ing U and C is O(mn), that is, updating the caches after
the selection step is not more complex than the selection
step itself.

Putting everything together, the overall computational
complexity of greedy RankRLS is O(kmn), where k is the
number of features the algorithm selects until it stops. This
is because the algorithm performs k iterations during which
it adds one new feature to the set of selected features and
each iteration requires O(mn) time as shown above. The
space complexity of the algorithm is O(mn) which is domi-

nated by keeping the matrices C, U, and bX in memory.

4. EXPERIMENTS
We perform experiments on the publicly available LETOR

benchmark data set (version 4.0) for learning to rank for
information retrieval 1 [21]. We run experiments on two
data sets, MQ2007 and MQ2008. MQ2007 consists of 69623
examples divided into 1700 queries, and MQ2800 contains
15211 examples divided into 800 queries. In both data sets
the examples have the same 46 high-level features.

We follow the experimental setup proposed by the au-
thors of LETOR. All results are averages from 5-fold cross-
validation, where on each round 3 folds are used for training,
1 for parameter selection and 1 for testing. We use the exact
splits provided in the data sets. Mean Average Precision
(MAP) is used when selecting parameters. In addition to
average precision, we measure Normalized Discountive Cu-
mulative Gain (NDCG) when calculating test performance.
In the results we present MAP, P@10, mean NDCG, and
NDCG@10 values.

We compare greedy RankRLS to RankRLS and
RankSVM, which are trained on all the features. For greedy
RankRLS, we choose via grid search both the number of se-
lected features and value of regularization parameter, such
that lead to best MAP performance on the validation fold.
For normal RankRLS, which is trained on all the features,
only the value of the regularization parameter needs to be
tuned. RankRLS and greedy RankRLS are implemented as
part of the RLScore open source machine learning frame-
work 2. The RankSVM results are taken directly from the
1http://research.microsoft.com/en-us/um/beijing/
projects/letor/
2http://www.tucs.fi/rlscore

baselines section of the LETOR distribution website. The
experimental setup for the RankSVM runs, as described by
LETOR authors, is the same as outlined here, the used im-
plementation was the SVMrank of Joachims3 [9]. We also
plot performance curves as a function of the number of se-
lected features on the validation sets, and examine the fea-
ture sets selected on different folds.

Tables 1 and 2 contains the selected features on the
MQ2007 and MQ2008 data sets, respectively. Where more
than 10 features was selected, we present only the first 10.
On two of the folds of MQ2007, the optimal number of fea-
tures are 11 and 12, on three of the folds almost all of the
features are chosen. On MQ2008 relatively few features were
chosen on all of the folds, on two of the folds the best valida-
tion performance was reached with only one feature. There
are differences in the feature sets selected in the different
rounds of cross-validation, but one thing remains constant.
On both data sets, and on each cross-validation round, the
feature selected first is feature number 39, “LMIR.DIR of
whole document”. The feature is a language model based
feature which corresponds to a posteriori estimate of the
likelihood of the query given the whole document, where a
Dirichlet prior over the documents is used [26]. Based on
our results this feature seems to be very useful for ranking,
since as it turns out models using only it can in some cases
be competitive with models trained on all the features.

In Figures 1, 2, 3, and 4 are the average MAP and mean
NDCG performances over the validation folds, plotted for
different regularization parameter values. We note that the
results are quite unstable, suggesting that reliable selection
of the regularization parameter and number of selected fea-
tures remains a challenging problem. On MQ2007 the per-
formance increases with the number of selected features.
This is why in three of the folds the selection strategy used
in our study lead to selecting almost all of them. How-
ever, on MQ2008 best validation performances are reached
with relatively few features, after which the performance de-
creases. On MQ2007 close to optimal validation results can
be reached already with around 15 features. This suggests
that perhaps a multi-objective criterion should be used in
parameter selection, which in addition to favoring high vali-
dation performance would also penalize models that use too
many features.

In Tables 3, 4, 5, and 6, are the test results for MQ2007,
and in Tables 7, 8, 9, and 10 are the test results for MQ2008.
Overall, the results for greedy RankRLS, RankRLS and
RankSVM are very close to each other, even on fold-by-fold
basis. The results further verify the earlier results in [16,17],
which suggest that RankRLS and RankSVM optimization
often lead to very similar results. Further, the results show
that at least on this data, sparse models learned using greedy
forward selection are competitive with models learned using
all the features.

5. DISCUSSION AND FUTURE WORK
The greedy RankRLS implementation presented in this

paper is computationally feasible when dealing with data
sets, such as LETOR, in which the overall number of avail-
able features is not very large. However, the situation is
different if the data points are represented, for example, as

3http://www.cs.cornell.edu/People/tj/svm_light/
svm_rank.html

15

Table 1: Selected features on MQ2007.
Model fold1 fold2 fold3 fold4 fold5
λ 28 26 29 28 27

k 11 40 46 44 12
selected 1 39 39 39 39 39
selected 2 19 32 27 28 25
selected 3 25 19 23 45 19
selected 4 23 26 19 23 43
selected 5 32 23 13 43 23
selected 6 16 16 18 33 29
selected 7 43 5 42 13 22
selected 8 22 33 33 18 18
selected 9 5 18 16 22 5
selected 10 33 3 5 15 16

Table 2: Selected features on MQ2008
Model fold1 fold2 fold3 fold4 fold5
λ 20 210 23 26 20

k 1 4 7 4 1
selected 1 39 39 39 39 39
selected 2 23 29 29
selected 3 37 25 25
selected 4 32 23 23
selected 5 46
selected 6 37
selected 7 19

raw text documents, and the words or their composites oc-
curring in the documents form the set of available features.
In this case, there is the drawback that m × n-dimensional
dense matrices has to be maintained in memory, while the
data are stored in a sparse matrix of the same size having
only a few nonzero entries. This is, because each document
has nonzero values only for a small subset of features. In ad-
dition to the feasibility problems with memory, the O(mn)
time required per iteration may be too expensive in practise.
Fortunately, it is possible to design such variations of greedy
RankRLS that are better suited for this type of data.

First, we can avoid storing the dense m × n-matrices by
spending more computational resources. This is possible
with a variation whose time complexity is O(k2mn). As
an additional modification, we can reduce the time spent in
each iteration by selecting the new feature from a random
subset of the available features, resulting to a time complex-
ity O(k2mκ), where κ is the size of random subsets. This
type of idea is used, for example, for selecting the basis vec-
tors for Gaussian process regressors by [22]. Finally, we can
take advantage of the sparsity of the data matrix in reduc-
ing the time complexity down to O(k2mκ), where m is the
average number of training examples for which the features
have nonzero values, if we use so-called back-fitting varia-
tion of our algorithm instead of performing pre-fitting as our
current implementation does. For descriptions of the terms
back-fitting and pre-fitting, we refer to [23]. The detailed

Table 3: Map results on MQ2007
Fold GRankRLS RankRLS RankSVM
1 0.4859 0.4912 0.4894
2 0.4571 0.4573 0.4573
3 0.4655 0.4655 0.4676
4 0.4423 0.4425 0.4401
5 0.4709 0.4687 0.4680
avg 0.4643 0.4650 0.4645

Table 4: P@10 results on MQ2007
Fold GRankRLS RankRLS RankSVM
1 0.3958 0.3997 0.4036
2 0.3858 0.3855 0.3932
3 0.3684 0.3684 0.3699
4 0.3670 0.3673 0.3652
5 0.3808 0.3811 0.3847
avg 0.3796 0.3804 0.3833

Table 5: MeanNDCG results on MQ2007
Fold GRankRLS RankRLS RankSVM
1 0.5228 0.5281 0.5278
2 0.4840 0.4841 0.4810
3 0.5056 0.5056 0.5042
4 0.4757 0.4754 0.4699
5 0.5033 0.5003 0.5003
avg 0.4983 0.4987 0.4966

Table 6: NDCG@10 results on MQ2007
Fold GRankRLS RankRLS RankSVM
1 0.4735 0.4784 0.4818
2 0.4247 0.4246 0.4266
3 0.4466 0.4466 0.4461
4 0.4221 0.4221 0.4163
5 0.4487 0.4460 0.4485
avg 0.4431 0.4435 0.4439

Table 7: Map results on MQ2008
Fold GRankRLS RankRLS RankSVM
1 0.4311 0.4524 0.4502
2 0.4239 0.4300 0.4213
3 0.4582 0.4542 0.4529
4 0.5283 0.5225 0.5284
5 0.5183 0.5006 0.4950
avg 0.4720 0.4719 0.4696

Table 8: P@10 results on MQ2008
Fold GRankRLS RankRLS RankSVM
1 0.2333 0.2391 0.2423
2 0.2178 0.2217 0.2229
3 0.2363 0.2325 0.2357
4 0.2975 0.2949 0.2981
5 0.2484 0.2503 0.2465
avg 0.2467 0.2477 0.2491

Table 9: MeanNDCG results on MQ2008
Fold GRankRLS RankRLS RankSVM
1 0.4454 0.4633 0.4577
2 0.4186 0.4269 0.4296
3 0.4787 0.4741 0.4686
4 0.5403 0.5407 0.5442
5 0.5369 0.5138 0.5159
avg 0.4840 0.4838 0.4832

Table 10: NDCG@10 results on MQ2008
Fold GRankRLS RankRLS RankSVM
1 0.1920 0.2145 0.2117
2 0.1585 0.1669 0.1738
3 0.2558 0.2489 0.2494
4 0.2940 0.2874 0.2892
5 0.2254 0.2165 0.2155
avg 0.2251 0.2268 0.2279

16

0 10 20 30 40
selected features

0.455

0.460

0.465

0.470

0.475

0.480
M

A
P

Reg. parameter

λ=2−7

λ=22

λ=26

λ=28

Figure 1: Average MAP on validation sets for
MQ2007.

0 10 20 30 40
selected features

0.480

0.485

0.490

0.495

0.500

M
e
a
n
N

D
C

G

Reg. parameter

λ=2−7

λ=22

λ=26

λ=28

Figure 2: Average Mean NDCG on validation sets
for MQ2007.

descriptions of these variations are left for future work.
The greedy forward selection approach can sometimes suf-

fer from the so-called nesting effect, meaning that the best
subset of size k, for example, may not necessarily cover the
features included in the best subset of size k − 1. Float-
ing search methods (see e.g. [13, 20, 27]), which are able to
discard features selected in previous iterations, have been
proposed as a means to deal with this issue. Replacing the
greedy search strategy with a floating search would be a
fairly straightforward extension to the presented algorithm.

6. CONCLUSION
To conclude, we propose a computationally efficient

method for learning sparse predictors for ranking tasks. The
method uses on greedy forward selection as a search strategy
and leave-query-out cross-validation as a selection criterion.
The computational complexity of the method is linear in the
number of training examples, in the overall number of fea-
tures, and in the number of features to be selected. Thus,
the method is computationally highly efficient despite the

0 10 20 30 40
selected features

0.455

0.460

0.465

0.470

0.475

0.480

M
A

P

Reg. parameter

λ=2−7

λ=22

λ=26

λ=28

Figure 3: Average MAP on validation sets for
MQ2008.

0 10 20 30 40
selected features

0.480

0.485

0.490

0.495

0.500

M
e
a
n
N

D
C

G

Reg. parameter

λ=2−7

λ=22

λ=26

λ=28

Figure 4: Average Mean NDCG on validation sets
for MQ2008.

fact that the method optimizes a pairwise ranking loss func-
tion and uses a complex cross-validation criterion. Empiri-
cal evaluation with the LETOR benchmark data set demon-
strates the soundness of the proposed approach.

Acknowledgments
We would like to thank the anonymous reviewers for their
insightful comments. This work has been supported by the
Academy of Finland.

7. REFERENCES
[1] S. An, W. Liu, and S. Venkatesh. Fast cross-validation

algorithms for least squares support vector machine
and kernel ridge regression. Pattern Recognition,
40(8):2154–2162, 2007.

[2] C. Burges, T. Shaked, E. Renshaw, A. Lazier,
M. Deeds, N. Hamilton, and G. Hullender. Learning to
rank using gradient descent. In L. D. Raedt and
S. Wrobel, editors, Proceedings of the 22nd

17

international conference on Machine learning (ICML
2005), pages 89–96. ACM, 2005.

[3] Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li.
Learning to rank: from pairwise approach to listwise
approach. In Z. Ghahramani, editor, Proceedings of
the 24th international conference on Machine learning
(ICML 2007), pages 129–136. ACM, 2007.

[4] O. Chapelle, Q. Le, and A. Smola. Large margin
optimization of ranking measures. In NIPS Workshop:
Machine Learning for Web Search, 2007.

[5] X. Geng, T.-Y. Liu, T. Qin, and H. Li. Feature
selection for ranking. In C. L. Clarke, N. Fuhr,
N. Kando, W. Kraaij, and A. P. de Vries, editors,
Proceedings of the 30th annual international ACM
SIGIR conference on Research and development in
information retrieval (SIGIR 2007), pages 407–414.
ACM, 2007.

[6] I. Guyon and A. Elisseeff. An introduction to variable
and feature selection. Journal of Machine Learning
Research, 3:1157–1182, 2003.

[7] H. V. Henderson and S. R. Searle. On deriving the
inverse of a sum of matrices. SIAM Review,
23(1):53–60, 1981.

[8] T. Joachims. Optimizing search engines using
clickthrough data. In D. Hand, D. Keim, and R. Ng,
editors, Proceedings of the 8th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining
(KDD 2002), pages 133–142. ACM, 2002.

[9] T. Joachims. Training linear SVMs in linear time. In
T. Eliassi-Rad, L. H. Ungar, M. Craven, and
D. Gunopulos, editors, Proceedings of the 12th ACM
SIGKDD international conference on Knowledge
discovery and data mining (KDD 2006), pages
217–226. ACM, 2006.

[10] G. H. John, R. Kohavi, and K. Pfleger. Irrelevant
features and the subset selection problem. In W. W.
Cohen and H. Hirsch, editors, Proceedings of the
Eleventh International Conference on Machine
Learning (ICML 1994), pages 121–129, San Fransisco,
CA, 1994. Morgan Kaufmann Publishers.

[11] R. Kohavi and G. H. John. Wrappers for feature
subset selection. Artificial Intelligence,
97(1-2):273–324, 1997.

[12] D. A. Metzler. Automatic feature selection in the
markov random field model for information retrieval.
In Proceedings of the sixteenth ACM conference on
Conference on information and knowledge
management (CIKM’07), pages 253–262. ACM, 2007.

[13] T. Pahikkala, A. Airola, and T. Salakoski. Feature
selection for regularized least-squares: New
computational short-cuts and fast algorithmic
implementations. In IEEE International Workshop on
Machine Learning for Signal Processing (MLSP),
2010. To appear.

[14] T. Pahikkala, A. Airola, and T. Salakoski. Linear time
feature selection for regularized least-squares, 2010.
Preprint http://arxiv.org/abs/1003.3570.

[15] T. Pahikkala, J. Boberg, and T. Salakoski. Fast n-fold
cross-validation for regularized least-squares. In
T. Honkela, T. Raiko, J. Kortela, and H. Valpola,
editors, Proceedings of the Ninth Scandinavian
Conference on Artificial Intelligence (SCAI 2006),

pages 83–90. Otamedia, 2006.

[16] T. Pahikkala, E. Tsivtsivadze, A. Airola, J. Boberg,
and J. Järvinen. An efficient algorithm for learning to
rank from preference graphs. Machine Learning,
75(1):129–165, 2009.

[17] T. Pahikkala, E. Tsivtsivadze, A. Airola, J. Boberg,
and T. Salakoski. Learning to rank with pairwise
regularized least-squares. In T. Joachims, H. Li, T.-Y.
Liu, and C. Zhai, editors, SIGIR 2007 Workshop on
Learning to Rank for Information Retrieval, pages
27–33, 2007.

[18] T. Pahikkala, W. Waegeman, A. Airola, T. Salakoski,
and B. De Baets. Conditional ranking on relational
data. In ECML PKDD ’10: Proceedings of the
European Conference on Machine Learning and
Knowledge Discovery in Databases, 2010. To appear.

[19] F. Pan, T. Converse, D. Ahn, F. Salvetti, and
G. Donato. Feature selection for ranking using
boosted trees. In D. W.-L. Cheung, I.-Y. Song, W. W.
Chu, X. Hu, and J. J. Lin, editors, Proceeding of the
18th ACM conference on Information and knowledge
management (CIKM’09), pages 2025–2028. ACM,
2009.

[20] P. Pudil, J. Novovičová, and J. Kittler. Floating
search methods in feature selection. Pattern
Recognition Letters, 15(11):1119–1125, 1994.

[21] T. Qin, T.-Y. Liu, J. Xu, and H. Li. LETOR: A
benchmark collection for research on learning to rank
for information retrieval. Information Retrieval, 2010.

[22] A. J. Smola and P. Bartlett. Sparse greedy gaussian
process regression. In T. K. Leen, T. G. Dietterich,
and V. Tresp, editors, Advances in Neural Information
Processing Systems 13, pages 619–625. MIT Press,
2001.

[23] P. Vincent and Y. Bengio. Kernel matching pursuit.
Machine Learning, 48(1–3):165–187, 2002.

[24] H. Yu, J. Oh, and W.-S. Han. Efficient feature
weighting methods for ranking. In D. W.-L. Cheung,
I.-Y. Song, W. W. Chu, X. Hu, and J. J. Lin, editors,
Proceeding of the 18th ACM conference on
Information and knowledge management (CIKM’09),
pages 1157–1166. ACM, 2009.

[25] Y. Yue, T. Finley, F. Radlinski, and T. Joachims. A
support vector method for optimizing average
precision. In W. Kraaij, A. P. de Vries, C. L. A.
Clarke, N. Fuhr, and N. Kando, editors, Proceedings of
the 30th annual international ACM SIGIR conference
on Research and development in information retrieval
(SIGIR 2007), pages 271–278. ACM, 2007.

[26] C. Zhai and J. Lafferty. A study of smoothing
methods for language models applied to ad hoc
information retrieval. In W. B. Croft, D. J. Harper,
D. H. Kraft, and J. Zobel, editors, Proceedings of the
24th annual international ACM SIGIR conference on
Research and development in information retrieval
(SIGIR 2001), pages 334–342. ACM, 2001.

[27] T. Zhang. Adaptive forward-backward greedy
algorithm for sparse learning with linear models. In
D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou,
editors, Advances in Neural Information Processing
Systems 21, pages 1921–1928. MIT Press, 2009.

18

Extensions to Self-Taught Hashing:
Kernelisation and Supervision

Dell Zhang
DCSIS

Birkbeck, University of London
Malet Street

London WC1E 7HX, UK
dell.z@ieee.org

Jun Wang
Dept of Computer Science
University College London

Gower Street
London WC1E 6BT, UK

jun.wang@cs.ucl.ac.uk
Deng Cai

State Key Lab of CAD&CG
Zhejiang University

100 Zijinggang Road
Hangzhou 310058, China

dengcai@cad.zju.edu.cn

Jinsong Lu
DEMS

Birkbeck, University of London
Malet Street

London WC1E 7HX, UK
jingsong.lu@gmail.com

ABSTRACT
The ability of fast similarity search at large scale is of great
importance to many Information Retrieval (IR) applications.
A promising way to accelerate similarity search is semantic
hashing which designs compact binary codes for a large num-
ber of documents so that semantically similar documents
are mapped to similar codes (within a short Hamming dis-
tance). Since each bit in the binary code for a document
can be regarded as a binary feature of it, semantic hashing
is essentially a process of generating a few most informa-
tive binary features to represent the documents. Recently,
we have proposed a novel Self-Taught Hashing (STH) ap-
proach to semantic hashing (that is going to be published in
SIGIR-2010): we first find the optimal l-bit binary codes for
all documents in the given corpus via unsupervised learning,
and then train l classifiers via supervised learning to predict
the l-bit code for any query document unseen before. In this
paper, we present two further extensions to our STH tech-
nique: one is kernelisation (i.e., employing nonlinear kernels
to achieve nonlinear hashing), and the other is supervision
(i.e., exploiting the category label information to enhance
the effectiveness of hashing). The advantages of these ex-
tensions have been shown through experiments on synthetic
datasets and real-world datasets respectively.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
data mining ; H.3.1 [Information Storage and Retrieval]:
Content Analysis and Indexing; H.3.3 [Information Stor-
age and Retrieval]: Information Search and Retrieval;

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’10, July 19–23, 2010, Geneva, Switzerland.
Copyright 2010 ACM 978-1-60558-896-4/10/07 ...$10.00.

I.2.6 [Artificial Intelligence]: Learning; I.5.2 [Pattern
Recognition]: Design Methodology—classifier design and
evaluation

General Terms
Algorithms, Experimentation, Performance

Keywords
Similarity Search, Semantic Hashing, Laplacian Eigenmap,
Support Vector Machine, Feature Generation.

1. INTRODUCTION
The problem of similarity search (aka nearest neighbour

search) is: given a query document, find its most similar
documents from a very large document collection (corpus).
It is of great importance to many Information Retrieval (IR)
[26] applications, such as near-duplicate detection [18], pla-
giarism analysis [35], collaborative filtering [23], caching [28],
and content-based multimedia retrieval [25].

Recently, with the rapid evolution of the Internet and the
increased amounts of data to be processed, how to conduct
fast similarity search at large scale has become an urgent re-
search issue. A promising way to accelerate similarity search
is semantic hashing [29] which designs compact binary codes
for a large number of documents so that semantically simi-
lar documents are mapped to similar codes (within a short
Hamming distance). It is extremely fast to perform simi-
larity search over such binary codes, because we can sim-
ply return all the documents that are hashed into a tight
Hamming ball centred around the binary code of the query
document [34].

Since each bit in the binary code for a document can be
regarded as a binary feature of it, semantic hashing is essen-
tially a process of generating a few most informative binary
features to represent the documents.

In our paper that is going to appear in the Proceedings
of SIGIR-2010 [41], we have proposed a novel Self-Taught
Hashing (STH) approach to semantic hashing: we first find
the optimal l-bit binary codes for all documents in the given

19

corpus via unsupervised learning, and then train l classi-
fiers via supervised learning to predict the l-bit code for
any query document unseen before. STH using binarised
Laplacian Eigenmap (LapEig) [3] and linear Support Vector
Machine (SVM) [22, 31] significantly outperforms state-of-
the-art techniques in our experiments.

In this paper that has been accepted by the SIGIR-2010
Workshop on Feature Generation and Selection for Informa-
tion Retrieval (FGSIR), we present two further extensions to
our STH technique: one is kernelisation (i.e., employing non-
linear kernels to achieve nonlinear hashing), and the other
is supervision (i.e., exploiting the category label information
to enhance the effectiveness of hashing). The advantages of
these extensions have been shown through our experiments
on synthetic datasets and real-world datasets respectively.

The rest of this paper is organised as follows. In Section
2, we describe the related work. In Section 3, we review our
recently proposed STH technique. In Section 4, we present
two further extensions to STH, kernelisation and supervi-
sion, in details. In Section 5, we make conclusions.

2. RELATED WORK
There has been extensive research on fast similarity search

due to its central importance in many applications. For
a low-dimensional feature space, similarity search can be
carried out efficiently with pre-built space-partitioning in-
dex structures (such as KD-tree) or data-partitioning index
structures (such as R-tree) [8]. However, when the dimen-
sionality of feature space is high (say > 10), similarity search
aiming to return exact results cannot be done better than
the naive method — a linear scan of the entire collection
[37]. In the IR domain, documents are typically represented
as feature vectors in a space of more than thousands of di-
mensions [26]. Nevertheless, if the complete exactness of
results is not really necessary, similarity search in a high-
dimensional space can be dramatically speeded up by using
hash-based methods which are purposefully designed to ap-
proximately answer queries in virtually constant time [34].

Such hash-based methods for fast similarity search can be
considered as a means for embedding high-dimensional fea-
ture vectors to a low-dimensional Hamming space (the set
of all 2l binary strings of length l), while retaining as much
as possible the semantic similarity structure of data. Unlike
standard dimensionality reduction techniques such as Latent
Semantic Indexing (LSI) [5, 10] and Locality-Preserving In-
dexing (LPI) [17, 16], hashing techniques map feature vec-
tors to binary codes, which is key to extremely fast simi-
larity search (see Section 1). One possible way to get bi-
nary codes for text documents is to binarise the real-valued
low-dimensional vectors (obtained from dimensionality re-
duction techniques like LSI) via thresholding [29]. An im-
provement on binarised-LSI that directly optimises a Ham-
ming distance based objective function, namely Laplacian
Co-Hashing (LCH), has been proposed recently [40].

The most well-known hashing technique that preserves
similarity information is probably Locality-Sensitive Hash-
ing (LSH) [1]. LSH simply employs random linear projec-
tions (followed by random thresholding) to map data points
close in a Euclidean space to similar codes. It is theoretically
guaranteed that as the code length increases, the Hamming
distance between two codes will asymptotically approach the
Euclidean distance between their corresponding data points.
However, since the design of hash functions for LSH is data-

oblivious, LSH may lead to quite inefficient (long) codes in
practice [29, 38].

Several recently proposed hashing techniques attempt to
overcome this problem by finding good data-aware hash
functions through machine learning. In [29], the authors pro-
posed to use stacked Restricted Boltzmann Machine (RBM)
[19, 20], and showed that it was indeed able to generate
compact binary codes to accelerate document retrieval. Re-
searchers have also tried the boosting approach to Similarity
Sensitive Coding (SSC) [32] and Forgiving Hashing (FgH)
[2] — they first train AdaBoost [30] classifiers with simi-
lar pairs of items as positive examples (and also non-similar
pairs of items as negative examples in SSC), and then take
the output of all (decision stump) weak learners on a given
document as its binary code. In [36], both stacked-RBM and
boosting-SSC were found to work significantly better and
faster than LSH when applied to a database containing tens
of millions of images. In [38], a new technique called Spectral
Hashing (SpH) was proposed. It has demonstrated signifi-
cant improvements over LSH, stacked-RBM and boosting-
SSC in terms of the number of bits required to find good
similar items. However, in order to obtain the binary codes
for query documents that are unseen before, SpH has to
assume that the data are uniformly distributed in a hyper-
rectangle, which is apparently very restrictive. In contrast,
our proposed Self-Taught Hashing (STH) approach can work
with any data distribution so it is much more flexible (see
Section 3).

Table 1 gives a brief summary of the above mentioned
typical techniques for accelerating similarity search.

3. A REVIEW OF STH
In our paper that is going to appear in the Proceedings

of SIGIR-2010 [41], we have proposed a novel Self-Taught
Hashing (STH) approach to semantic hashing. As illustrated
in Figure 1, STH is a general learning framework that con-
sists of two distinct stages: we first find the optimal l-bit
binary codes for all documents in the given corpus via unsu-
pervised learning, and then train l classifiers via supervised
learning to predict the l-bit code for any query document un-
seen before. We call the approach “self-taught” because the
hash function is learnt from the data that are auto-labelled
by itself in the previous stage. We explain these two stages
in details as follows.

3.1 Stage 1:
Unsupervised Learning of Binary Codes

Given a collection of n documents which are represented
as m-dimensional vectors {xi}ni=1 ⊂ Rm. Let X denote the
m × n term-document matrix: [x1, . . . ,xn]. Suppose that
the desired length of code is l bits. We use yi ∈ {−1,+1}l
to represent the binary code for document vector xi, where

the p-th element of yi, i.e., y
(p)
i , is +1 if the p-th bit of code

is on, or −1 otherwise. Let Y denote the n× l matrix whose
i-th row is the code for the i-th document, i.e., [y1, . . . ,yn]T .

A“good”semantic hashing should be similarity preserv-
ing to ensure effectiveness. That is to say, semantically sim-
ilar documents should be mapped to similar codes within a
short Hamming distance.

Unlike the existing approaches (such as SpH [38]) that
aim to preserve the global similarity structure of all docu-
ment pairs, we focus on the local similarity structure, i.e.,

20

Table 1: Typical techniques for accelerating similarity search.

low-dimensional space exact similarity search data-aware KD-tree, R-tree
data-oblivious LSH

LSI, LCH,
high-dimensional space approximate similarity search data-aware RBM, SSC, FgH,

SpH, STH

Figure 1: Our recently proposed Self Taught Hashing (STH) technique for accelerating similarity search [41].

k-nearest-neighbourhood, for each document. Since IR ap-
plications usually put emphasis on a small number of most
similar documents for a given query document [26], preserv-
ing the global similarity structure is not only unnecessary
but also likely to be sub-optimal for our problem. There-
fore, we construct the n × n local similarity matrix W for
the given corpus using the cosine similarity [26] or the heat
kernel [3] as follows:

Wij =

{ (
xT

i
‖xi‖

)
·
(

xj

‖xj‖

)
if xi ∈ Nk(xj) or vice versa

0 otherwise
(1)

Wij =

{
exp

(
− ‖xi−xj‖2

2σ2

)
if xi ∈ Nk(xj) or vice versa

0 otherwise
(2)

where Nk(x) represents the set of k-nearest-neighbours of
document x. In other words, W is the adjacency matrix of
the k-nearest-neighbours graph for the given corpus [3]. A
by-product of focusing on such a local similarity structure
instead of the global one is that W becomes a sparse ma-
trix. This not only leads to much lower storage overhead,
but also brings a significant reduction to the computational
complexity of subsequent operations. Furthermore, we in-
troduce a diagonal n × n matrix D whose entries are given
by Dii =

∑n
j=1Wij . The matrix D provides a natural mea-

sure of document importance: the bigger the value of Dii is,
the more “important” is the document xi as its neighbours
are strongly connected to it [3].

The Hamming distance between two binary codes yi and
yj (corresponding to documents xi and xj) is given by the
number of bits that are different between them, which can
be calculated as 1

4
‖yi − yj‖2. To meet the similarity pre-

serving criterion, we seek to minimise the weighted average
Hamming distance (as in SpH [38])

1

4

n∑
i=1

n∑
j=1

Wij‖yi − yj‖2 (3)

because it incurs a heavy penalty if two similar documents
are mapped far apart. After some simple mathematical
transformation, the above objective function can be rewrit-
ten in matrix form as 1

4
Tr(Y TLY), where L = D −W is

the graph Laplacian [7], and Tr(·) means the matrix trace.
We found the above objective function (3) actually pro-

portional to that of a well-known manifold learning algo-
rithm, Laplacian Eigenmap (LapEig) [3], except that LapEig
does not have the constraint yi ∈ {−1,+1}l. So, if we relax
this discreteness condition but just keep the similarity pre-
serving requirement, we can get the optimal l-dimensional
real-valued vector ỹi to represent each document xi by solv-
ing the following LapEig problem:

arg min
Ỹ

Tr(Ỹ TLỸ) (4)

subject to Ỹ TDỸ = I

Ỹ TD1 = 0

where Tr(Ỹ TLỸ) gives the real relaxation of the weighted
average Hamming distance Tr(Y TLY), and the two con-
straints prevent the collapse into a subspace of dimension
less than l. The solution of this optimisation problem is
given by Ỹ = [v1, . . . ,vl] whose columns are the l eigenvec-
tors corresponding to the smallest eigenvalues of the follow-
ing generalised eigenvalue problem (except the trivial eigen-
value 0):

Lv = λDv (5)

21

We now convert the above l-dimensional real-valued vec-
tors ỹ1, . . . , ỹn into binary codes via thresholding: if the
p-th element of ỹi is larger than the specified threshold,

y
(p)
i = +1 (i.e., the p-th bit of the i-th code is on); other-

wise, y
(p)
i = −1 (i.e., the p-th bit of the i-th code is off).

A “good” semantic hashing should also be entropy max-
imising to ensure efficiency, as pointed out by [2]. Accord-
ing to the information theory [33]: the maximal entropy of a
source alphabet is attained by having a uniform probability
distribution. If the entropy of codes over the corpus is small,
it means that documents are mapped to only a small number
of codes (hash bins), thereby rendering the hash table ineffi-
cient. To meet this entropy maximising criterion, we set the

threshold for binarising ỹ
(p)
1 , . . . , ỹ

(p)
n to be the median value

of vp. In this way, the p-th bit will be on for half of the cor-
pus and off for the other half. Furthermore, as the eigenvec-
tors v1, . . . ,vl given by LapEig are orthogonal to each other,
different bits y(1), . . . , y(l) in the generated binary codes will
be largely uncorrelated. Therefore this thresholding method
gives each distinct binary code roughly equal probability of
occurring in the document collection, thus achieves the best
utilisation of the hash table.

3.2 Stage 2:
Supervised Learning of Hash Function

Mapping all documents in the given corpus to binary codes
does not completely solve the problem of semantic hash-
ing, because we also need to know how to obtain the binary
codes for query documents, i.e., new documents that are
unseen before. This problem, called out-of-sample extension
in manifold learning, is often addressed using the Nystrom
method [4, 11]. However, calculating the Nystrom exten-
sion of a new document is as computationally expensive as
an exhaustive similarity search over the corpus (that may
contain millions of documents), which makes it impractical
for semantic hashing. In LPI [17, 16], LapEig [3] is extended
to deal with new samples by approximating a linear function
to the embedding of LapEig. However, the computational
complexity of LPI is very high because its learning algorithm
involves eigen-decompositions of two large dense matrices. It
is infeasible to apply LPI if the given training corpus is large.
In SpH [38], new samples are handled by utilising the latest
results on the convergence of graph Laplacian eigenvectors
to the Laplace-Beltrami eigenfunctions of manifolds. It can
achieve both fast learning and fast prediction, but it relies
on a very restrictive assumption that the data are uniformly
distributed in a hyper-rectangle.

Overcoming the limitations of the above techniques [4,
11, 17, 16, 38], we propose a novel method to compute the
binary codes for query documents by considering it as a

supervised learning problem: we think of each bit y
(p)
i ∈

{+1,−1} in the binary code for document xi as a binary
class label (class-“on” or class-“off”) for that document, and

train a binary classifier y(p) = f (p)(x) on the given cor-
pus that has already been “labelled” by the above binarised-
LapEig method, then we can use the learned binary classi-
fiers f (1), . . . , f (l) to predict the l-bit binary code y(1), . . . , y(l)

for any query document x. As mentioned in the previous sec-
tion, different bits y(1), . . . , y(l) in the generated binary codes
are uncorrelated. Hence there is no redundancy among the
binary classifiers f (1), . . . , f (l), and they can also be trained
independently.

In STH, we choose to use the Support Vector Machine
(SVM) [22, 31] algorithm to train these binary classifiers.
SVM in its simplest form, linear SVM f(x) = sgn(wTx) con-
sistently provides state-of-the-art performance for text clas-
sification tasks [12, 21, 39]. Given the documents x1, . . . ,xn
together with their self-taught binary labels for the p-th bit

y
(p)
1 , . . . , y

(p)
n , the corresponding linear SVM can be trained

by solving the following quadratic optimisation problem

arg min
w,ξi

1

2
wTw +

C

n

n∑
i=1

ξi (6)

subject to y
(p)
i wTxi ≥ 1− ξi, i = 1, . . . , n

ξi ≥ 0, i = 1, . . . , n

Thus, the predicting process of STH for a given query
document is simply to classify the query document using
those l learned classifiers and then assemble the output l
binary labels into an l-bit binary code.

4. EXTENSIONS TO STH

4.1 Kernelisation
A prominent advantage of using SVM classifiers in the

second stage of STH is that we can easily achieve nonlinear
hashing if necessary by rewriting the quadratic optimisation
problem (6) into its dual form

arg min
α

n∑
i=1

αi − 1

2

n∑
i,j=1

y
(p)
i y

(p)
j αiαjx

T
i xj (7)

subject to 0 ≤ αi ≤ C, i = 1, . . . , n
n∑
i=1

αiy
(p)
i = 0 (8)

and replacing the inner product between xi and xj by a
nonlinear kernel [31] such as the Gaussian kernel:

K(x,x′) = exp

(
−‖x− x′‖2

2σ2

)
(9)

Then the p-th bit (i.e., binary feature) of the binary code
for a query document x would be given by

f(x) = sgn

(
n∑
i=1

αiy
(p)
i K(x,xi)

)
(10)

which is a nonlinear mapping.
Here we would like to demonstrate the power of nonlin-

ear hashing through experiments on a couple of synthetic
datasets. In the following STH experiments, the parameter
k = 25 when constructing the k-nearest-neighbours graph
for LapEig, and the nonlinear SVM implementation is from
LIBSVM [6] with the default parameter values except that
the parameter σ for Gaussian kernel (9) is set to a small
value 0.1 to facilitate the generation of flexible nonlinear
hashing.

Let’s first consider a simple “pie” dataset where the data
points are uniformly distributed in a 2D unit circle. There
are 1000 data points for training and another 1000 for test-
ing. Suppose that we want to use 16-bit binary codes to
encode all the documents, the hash function would need to
encompass l = 16 mappings each of which corresponds to
a bit (i.e., binary feature). Each such mapping, either lin-
ear or nonlinear, is essentially a cut of the dataset into two

22

separate partitions: one with the corresponding bit on (1)
and the other with the corresponding bit off (0). According
to the entropy maximising criterion that we have explained
in Section 3.1, the ideal cuts should be both balanced and
orthogonal. If we choose to use only linear hashing, then it
is impossible to keep more than 2 cuts balanced and mean-
while orthogonal. This is because each cut would be just
one straight-line dividing the dataset, here the pie, into two
partitions, as illustrated in Figure 2. If a straight-line cut is
required to be balanced, then it should divide the pie into
equal halves, so it must pass the centre point of the pie.
Hence, l balanced linear cuts can only divide the pie into
2l = 2 × 16 = 32 sectors, which would lead to very ineffi-
cient (long) codes. This simple thought experiment reveals
the severe limitation of all linear hashing techniques (includ-
ing LSH, SSC, etc.). In contrast, SpH and STH (employing a
nonlinear SVM with Gaussian Kernel) can achieve nonlinear
hashing with cuts that are both balanced and orthogonal, as
shown in Figure 3(a) and Figure 3(b) where the black colour
represents bit 1 and the grey colour represents bit 0. There-
fore, using 16-bit binary codes, SpH and STH would be able
to effectively divide the pie into 2l = 216 = 65536 small
pieces. That is the reason why they can generate compact
codes for large datasets. Furthermore, the nonlinear cuts of
SpH turn out to be just straight-stripes, while those gen-
erated by STH are much more flexible. The superiority of
STH to SpH becomes more apparent when we examine their
16-bit hash functions on the “two-moon” dataset, as shown
in Figure 4(a) and Figure 4(b). Even though the dataset
is in a very irregular shape, SpH keeps using straight-stripe
cuts as the hash function, which results from its restric-
tive assumption that the data are uniformly distributed in a
hyper-rectangle. STH, however, adapts its nonlinear cuts to
the real distribution of the data, therefore provides better
hash functions.

Figure 2: Linear hash functions as straight-line cuts
of the dataset.

4.2 Supervision
The k-Nearest-Neighbours (kNN) algorithm [27] is a clas-

sic non-parametric machine learning method widely used for
data classification. Its efficiency and scalability depend on
the speed of similarity search over the large collection of
labelled objects, i.e., training examples. By enabling fast
similarity search at large scale, semantic hashing techniques
like STH makes it feasible to exploit “the unreasonable ef-
fectiveness of data” [14] to accomplish traditionally difficult
tasks. For example, researchers recently achieved great suc-
cess in scene completion and scene recognition using millions
of images on the Web as training data [15, 36].

The standard STH technique [41] is unsupervised. Al-

though a supervised learning algorithm such as SVM is em-
ployed in the second stage of STH, it uses only the pseudo-
labels input from the previous stage, but still consider the
document collection unlabelled.

It is actually easy to extend our STH technique to in-
corporate the class label information available in the train-
ing set of documents for kNN classification. In the first
stage of STH — unsupervised learning of binary codes (see
Section 3.1) — we make use of the class label informa-
tion in the construction of k-nearest-neighbour graph for
LapEig: a training document x’s k-nearest-neighbourhood
Nk(x) would only contain k documents in the same class as
x that are most similar to x. Let STHs denote such a su-
pervised version of STH to distinguish it from the standard
unsupervised version of STH.

One may ask why it is meaningful to use the kNN algo-
rithm on top of STH that employs SVMs but not use the
more powerful SVM algorithm to make classifications di-
rectly. The answer is that the KNN algorithm still has its
advantages over SVMs in some aspects. As a non-parametric
learning algorithm, kNN can yield increasingly complex de-
cision boundaries given more and more training data. More
importantly, the learning and prediction time of any multi-
class SVM classification mechanism would grow at least lin-
early in the number of classes, whereas the kNN algorithm
has no dependence on the number of classes. For example,
if there are 1000 classes, the multi-class SVM approach may
need 1000 binary SVM classifiers using the one-vs-rest en-
semble scheme, but the STH plus kNN approach using 16-bit
binary codes would only require 16 binary SVM classifiers.

We now empirically evaluate supervised version of STH
(e.g., STHs), and compare its performance with vanilla STH
as well as binarised-LSI [29], LCH [40], and SpH [38] that
represents the state of the art (see Section 2). In the follow-
ing STH and STHs experiments, the parameter k = 25 when
constructing the k-nearest-neighbours graph for LapEig, and
the linear SVM implementation is from LIBLINEAR [13]
with the default parameter values.

We have conducted experiments on three publicly avail-
able real-world text datasets: Reuters215781, 20Newsgroups2

and TDT23.
The Reuters21578 corpus is a collection of documents that

appeared on Reuters newswire in 1987. It contains 21578
documents in 135 categories. In our experiments, those doc-
uments appearing in more than one category were discarded,
and only the largest 10 categories were kept, thus leaving us
with 7285 documents in total. We use the ModeApte split
here which gives 5228 (72%) documents for training and
2057 (28%) documents for testing.

The 20Newsgroups corpus was collected and originally
used for document categorisation by Lang [24]. We use the
popular ‘bydate’ version which contains 18846 documents,
evenly distributed across 20 categories. The time-based split
leads to 11314 (60%) documents for training and 7532 (40%)
documents for testing.

The TDT2 (NIST Topic Detection and Tracking) corpus
consists of data collected during the first half of 1998 and
taken from 6 sources, including 2 newswires (APW, NYT),
2 radio programs (VOA, PRI) and 2 television programs

1http://www.daviddlewis.com/resources/testcollections/
reuters21578/
2http://people.csail.mit.edu/jrennie/20Newsgroups/
3http://www.nist.gov/speech/tests/tdt/tdt98/index.htm

23

(a) SpH (b) STH

Figure 3: The 16-bit hash function for the pie dataset.

(a) SpH (b) STH

Figure 4: The 16-bit hash function for the two-moon dataset.

(CNN, ABC). It consists of 11201 on-topic documents which
are classified into 96 semantic categories. In our experi-
ments, those documents appearing in more than one cate-
gory were discarded, and only the largest 30 categories were
kept, thus leaving us with 9394 documents in total. We ran-
domly selected 5597 (60%) documents for training and 3797
(40%) documents for testing. The averaged performance
based on 10 such random selections is reported in this pa-
per.

All the above datasets have been pre-processed by stop-
word removal, Porter stemming, and TF-IDF weighting [26].

Given a dataset, we use each document in the test set
as a query to retrieve documents in the training set within
a fixed Hamming ball of radius 1, and then measure the
performance of a semantic hashing technique while varying
the code length from 4-bit to 64-bit. Figure 5 shows the
averaged precision-recall curve [26] for retrieving same-class
documents. Figure 6 shows the accuracy for kNN classifi-
cation using semantic hashing based similarity search, i.e.,
each test document is classified by the majority label in the
Hamming ball centred around it. Here the number of near-

est neighbours for kNN classification is actually not fixed at
k, but depends on how many training documents are con-
tained in the specific Hamming ball. It is clear that on all
datasets and under both evaluation methodologies, STHs
outperforms STH (and other semantic hashing techniques).
Using 16-bit codes and Hamming ball radius 1, the perfor-
mance improvements are all statistically significant (P value
< 0.01) according to one-sided micro sign test (s-test) [39].

5. CONCLUSIONS
Our recently proposed STH technique for fast similarity

search can be essentially considered as a process of generat-
ing a few most informative binary features to represent the
documents.

The main contribution of this paper is to present two
further extensions to STH, kernelisation and supervision,
and moreover show their advantages through experiments
on synthetic datasets and real-world datasets respectively.
Although both extensions are just minor modifications, they

24

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

pr
ec

is
io

n

LSI
LCH
SpH
STH
STHs

(a) Reuters21578

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

pr
ec

is
io

n

LSI
LCH
SpH
STH
STHs

(b) 20Newsgroups

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

pr
ec

is
io

n

LSI
LCH
SpH
STH
STHs

(c) TDT2

Figure 5: The averaged precision-recall curve for retrieving same-class documents.

10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

code length

ac
cu

ra
cy

LSI
LCH
SpH
STH
STHs

(a) Reuters21578

10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

code length

ac
cu

ra
cy

LSI
LCH
SpH
STH
STHs

(b) 20Newsgroups

10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

code length

ac
cu

ra
cy

LSI
LCH
SpH
STH
STHs

(c) TDT2

Figure 6: The accuracy for kNN classification using semantic hashing based similarity search.

do work very well in practice to enhance the power or per-
formance of STH.

The future work in our mind includes implementing the
STH technique in the MapReduce [9] framework and apply
it to large-scale content-based multimedia retrieval [25].

6. ACKNOWLEDGEMENTS
We are grateful to Dr Xi Chen (Alberta) for his valuable

discussion and the London Mathematical Society (LMS) for
their support of this work (SC7-09/10-6). We would also
like to thank the anonymous reviewers for their helpful com-
ments.

7. REFERENCES
[1] A. Andoni and P. Indyk. Near-optimal hashing algorithms for

approximate nearest neighbor in high dimensions. In
Proceedings of the 47th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 459–468,
Berkeley, CA, USA, 2006.

[2] S. Baluja and M. Covell. Learning to hash: Forgiving hash
functions and applications. Data Mining and Knowledge
Discovery (DMKD), 17(3):402–430, 2008.

[3] M. Belkin and P. Niyogi. Laplacian eigenmaps for
dimensionality reduction and data representation. Neural
Computation, 15(6):1373–1396, 2003.

[4] S. Belongie, C. Fowlkes, F. Chung, and J. Malik. Spectral
partitioning with indefinite kernels using the nystrom
extension. In Proceedings of the 7th European Conference on
Computer Vision (ECCV), pages 531–542, Copenhagen,
Denmark, 2002.

[5] M. W. Berry, S. T. Dumais, and G. W. O’Brien. Using linear
algebra for intelligent information retrieval. SIAM Review,
37(4):573–595, 1995.

[6] C.-C. Chang and C.-J. Lin. LIBSVM: a Library for Support
Vector Machines, 2001.

[7] F. R. K. Chung. Spectral Graph Theory. American
Mathematical Society, 1997.

[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms. MIT Press and McGraw-Hill, 2nd
edition, 2001.

[9] J. Dean and S. Ghemawat. Mapreduce: Simplified data
processing on large clusters. In Proceedings of the 6th
Symposium on Operating System Design and Implementation
(OSDI), pages 137–150, San Francisco, CA, USA, 2004.

[10] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer,
and R. Harshman. Indexing by latent semantic analysis.
Journal of the American Society of Information Science
(JASIS), 41(6):391–407, 1990.

[11] P. Drineas and M. W. Mahoney. On the nystrom method for
approximating a gram matrix for improved kernel-based
learning. Journal of Machine Learning Research (JMLR),
6:2153–2175, 2005.

[12] S. Dumais, J. Platt, D. Heckerman, and M. Sahami. Inductive
learning algorithms and representations for text categorization.
In Proceedings of the 7th ACM International Conference on
Information and Knowledge Management (CIKM), pages
148–155, Bethesda, MD, 1998.

[13] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J.
Lin. LIBLINEAR: A library for large linear classification.
Journal of Machine Learning Research, 9:1871–1874, 2008.

[14] A. Y. Halevy, P. Norvig, and F. Pereira. The unreasonable
effectiveness of data. IEEE Intelligent Systems, 24(2):8–12,
2009.

[15] J. Hays and A. A. Efros. Scene completion using millions of
photographs. ACM Transactions on Graphics (TOG),
26(3):4, 2007.

[16] X. He, D. Cai, H. Liu, and W.-Y. Ma. Locality preserving
indexing for document representation. In Proceedings of the
27th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval
(SIGIR), pages 96–103, Sheffield, UK, 2004.

25

[17] X. He and P. Niyogi. Locality preserving projections. In
Advances in Neural Information Processing Systems (NIPS),
volume 16, pages 153–160, Vancouver and Whistler, Canada,
2003.

[18] M. R. Henzinger. Finding near-duplicate web pages: A
large-scale evaluation of algorithms. In Proceedings of the 29th
Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR), pages
284–291, Seattle, WA, USA, 2006.

[19] G. Hinton, S. Osindero, and Y. W. Teh. A fast learning
algorithm for deep belief nets. Neural Computation,
18(7):1527–1554, 2006.

[20] G. Hinton and R. Salakhutdinov. Reducing the dimensionality
of data with neural networks. Science, 313(5786):504–507, July
2006.

[21] T. Joachims. Text categorization with support vector
machines: Learning with many relevant features. In
Proceedings of the 10th European Conference on Machine
Learning (ECML), pages 137–142, Chemnitz, Germany, 1998.

[22] T. Joachims. Learning to Classify Text using Support Vector
Machines. Kluwer, 2002.

[23] Y. Koren. Factorization meets the neighborhood: a
multifaceted collaborative filtering model. In Proceedings of
the 14th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD), pages
426–434, Las Vegas, NV, USA, 2008.

[24] K. Lang. Newsweeder: Learning to filter netnews. In
Proceedings of the 12th International Conference on Machine
Learning (ICML), pages 331–339, Tahoe City, CA, 1995.

[25] M. S. Lew, N. Sebe, C. Djeraba, and R. Jain. Content-based
multimedia information retrieval: State of the art and
challenges. ACM Transactions on Multimedia Computing,
Communications, and Applications (TOMCCAP), 2(1):1–19,
2006.

[26] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to
Information Retrieval. Cambridge University Press, 2008.

[27] T. Mitchell. Machine Learning. McGraw Hill, international
edition, 1997.

[28] S. Pandey, A. Broder, F. Chierichetti, V. Josifovski, R. Kumar,
and S. Vassilvitskii. Nearest-neighbor caching for
content-match applications. In Proceedings of the 18th
International Conference on World Wide Web (WWW),
pages 441–450, Madrid, Spain, 2009.

[29] R. Salakhutdinov and G. Hinton. Semantic hashing.
International Journal of Approximate Reasoning (IJAR),
50(7):969–978, 2009.

[30] R. E. Schapire. The boosting approach to machine learning:
An overview. In Nonlinear Estimation and Classification.
Springer, 2003.

[31] B. Scholkopf and A. J. Smola. Learning with Kernels. MIT
Press, Cambridge, MA, 2002.

[32] G. Shakhnarovich, P. A. Viola, and T. Darrell. Fast pose
estimation with parameter-sensitive hashing. In Proceedings of
the 9th IEEE International Conference on Computer Vision
(ICCV), pages 750–759, Nice, France, 2003.

[33] C. E. Shannon. A mathematical theory of communication. Bell
System Technical Journal, 27:379–423, 623–656, 1948.

[34] B. Stein. Principles of hash-based text retrieval. In Proceedings
of the 30th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval
(SIGIR), pages 527–534, Amsterdam, The Netherlands, 2007.

[35] B. Stein, S. M. zu Eissen, and M. Potthast. Strategies for
retrieving plagiarized documents. In Proceedings of the 30th
Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR), pages
825–826, Amsterdam, The Netherlands, 2007.

[36] A. B. Torralba, R. Fergus, and Y. Weiss. Small codes and large
image databases for recognition. In Proceedings of the IEEE
Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR), pages 1–8, Anchorage, AK,
USA, 2008.

[37] R. Weber, H.-J. Schek, and S. Blott. A quantitative analysis
and performance study for similarity-search methods in
high-dimensional spaces. In Proceedings of 24th International
Conference on Very Large Data Bases (VLDB), pages
194–205, New York City, USA, 1998.

[38] Y. Weiss, A. B. Torralba, and R. Fergus. Spectral hashing. In
Advances in Neural Information Processing Systems (NIPS),
volume 21, pages 1753–1760, Vancouver, Canada, 2008.

[39] Y. Yang and X. Liu. A re-examination of text categorization
methods. In Proceedings of the 22nd Annual International
ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR), pages 42–49, Berkeley, CA,
1999.

[40] D. Zhang, J. Wang, D. Cai, and J. Lu. Laplacian co-hashing of
terms and documents. In Proceedings of the 32nd European
Conference on IR Research (ECIR), pages 577–580, Milton
Keynes, UK, 2010.

[41] D. Zhang, J. Wang, D. Cai, and J. Lu. Self-taught hashing for
fast similarity search. In Proceedings of the 33rd Annual
International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR), Geneva,
Switzerland, 2010.

26

KEYNOTE — Hierarchical Bayesian Models of Language and Text

Yee Whye Teh ywteh@gatsby.ucl.ac.uk
Gatsby Computational Neuroscience Unit
University College of London, UK

In this talk I will present a new approach to modelling sequence data called the sequence memoizer. As
opposed to most other sequence models, our model does not make any Markovian assumptions. Instead,
we use a hierarchical Bayesian approach which enforces sharing of statistical strength across the different
parts of the model. To make computations with the model efficient, and to better model the power-law
statistics often observed in sequence data, we use a Bayesian nonparametric prior called the Pitman-
Yor process as building blocks in the hierarchical model. We show state-of-the-art results on language
modelling and text compression.

This is joint work with Frank Wood, Jan Gasthaus, Cedric Archambeau and Lancelot James.

Biography

Yee Whye Teh is a Lecturer (equivalent to an assistant professor in US system) at the Gatsby Computa-
tional Neuroscience Unit, UCL. He is interested in machine learning and Bayesian statistics. His current
focus is on developing Bayesian nonparametric methodologies for unsupervised learning, computational
linguistics, and genetics. Prior to his appointment he was Lee Kuan Yew Postdoctoral Fellow at the
National University of Singapore and a postdoctoral fellow at University of California at Berkeley. He
obtained his Ph.D. in Computer Science at the University of Toronto in 2003. He is programme co-chair
of AISTATS 2010.

27

Feature Selection for Document Ranking using Best First
Search and Coordinate Ascent

Van Dang and W. Bruce Croft
Center for Intelligent Information Retrieval

Department of Computer Science
University of Massachusetts

Amherst, MA 01003
{vdang, croft}@cs.umass.edu

ABSTRACT
Feature selection is an important problem in machine learn-
ing since it helps reduce the number of features a learner has
to examine and reduce errors from irrelevant features. Even
though feature selection is well studied in the area of classi-
fication, this is not the case for ranking algorithms. In this
paper, we propose a feature selection technique for rank-
ing based on the wrapper approach used in classification.
Our method uses the best first search strategy incremen-
tally to partition the feature set into subsets. Features in
each subset are then combined into a single feature using co-
ordinate ascent in such a way that it maximizes any defined
retrieval measure on a training set. Our experiments with
many state-of-the-art ranking algorithms, namely RankNet,
RankBoost, AdaRank and Coordinate Ascent, have shown
that the proposed method can reduce the original set of fea-
tures to a much more compact set while at least retaining
the ranking effectiveness regardless of the ranking method
in use.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Selection
process

General Terms
Algorithms, Measurement, Performance, Experimentation.

Keywords
Learning to rank, feature selection

1. INTRODUCTION
An effective ranking framework is certainly the core com-

ponent of any information retrieval (IR) system. Many rank-
ing models have been proposed, the most popular of which
are BM25 [13] and the language modeling framework [6].
These models make use of a small number of features such as
term frequency, inverse document frequency and document
length. They have the advantage of being fast and pro-
duce reasonably good resutls. When more features become
available, however, incorporating them into these models is
usually difficult since it requires a significant change in the

Copyright is held by the author/owner(s).
WOODSTOCK ’97 El Paso, Texas USA
ACM X-XXXXX-XX-X/XX/XX.

underlying model. For example, the BM25 model was mod-
ified to include PageRank as a prior [5] or to incorporate
term proximity information [3].

Supervised learning to rank algorithms [10, 8, 1, 14, 7] can
help overcome that limitation. They treat query-document
pairs as objects to rank, each of which is represented using
any set of features. Existing work has shown, by incorporat-
ing many features, they produce better results than classical
models mentioned above [14, 7].

In the area of machine learning, feature selection is the
task of selecting a subset of features to be considered by the
learner. This is important since learning with too many fea-
tures is wasteful and even worse, learning from the wrong
features will make the resulting learner less effective. In the
classification problem, feature selection approaches can be
divided into three categories: the filter approach which se-
lects features based on some criterion that is independent
of the metric being optimized, the wrapper approach which
picks features that, with the learning technique in use, pro-
duces the best result with respect to the metric being consid-
ered, and the embedding approach which embeds the feature
selection procedure into the learning process.

Even though feature selection for classification is well stud-
ied, there has been less research on this topic for ranking.
The most recent technique that we are aware of is the work
by Geng et al. [9] which follows the filter approach. Instead,
we prefer the wrapper method since the selection of features
is based on the effective metric that will be optimized by the
learning procedure. Our approach uses best first search to
come up with subsets of features and uses coordinate ascent
to learn the weights for those features. Once a best subset
is obtained, a new feature is defined based on the learned
combination of features in this set and these features are
removed from the feature pool. The process is repeated un-
til all features are considered. The set of new features will
be used to train the ranker instead of the original features.
Our experiments with four well-known ranking algorithms –
RankNet [1], RankBoost [8], AdaRank [14] and Coordinate
Ascent [7] – show that the set of new features, while being
much more compact, is at least as effective as the original
set in terms of NDCG@5.

2. PROPOSED METHOD
Our proposed method is a simple modification of the stan-

dard wrapper approach that can be found in [11].

28

Table 1: A Best-First-Search procedure. R = 5 is
used in our experiments.

P = ∅
best = null
Randomly pick a node v
Train A on T using v to maximize Λ(T ,Av)
Add v to P
while |P | > 0

v ← arg maxu∈P Λ(T ,Au)
Remove v from P
if Λ(T ,Av) > Λ(T ,Abest) then best← v
if best did not change in the last R rounds

then STOP and RETURN best
for each of v’s neighbors u

Train A on T using u to maximize Λ(T ,Au)
add u to P

end for
end while
RETURN best

2.1 Notation
Let F = {f1, f2, ..., fn} be the set of original features. Let
T = {r1, r2, ..., rm} be the set of training samples where ri

is the list of documents for the query qi. Let dj
i be the j-th

document in the list ri. Each dj
i is represented as a feature

vector {f (i)(j)
1 , f

(i)(j)
2 , ..., f

(i)(j)
n }

Let AF be any ranking algorithm that utilizes the set
of features F . To rank a list of documents ri using AF , we
reorder all dj

i based on AF (dj
i), which is the score the ranker

assigns to this document.
Let Λ be the metric that the learner tries to optimize.

It can be any effectiveness metric such as NDCG or MAP.
We define Λ(T ,AF) to be the metric score that the rank-
ing algorithm A using the set of features F achieves on the
dataset T . Note that the goal of the training process is to
learn A such that it maximizes Λ(T ,AF).

2.2 Method
The goal of our technique is to partition F in a greedy

way into k non-overlapping subsets {F1,F2, ...,Fk} – each
of which has size of at most s – together with a set of learned
rankers {AF1 ,AF2 , ...,AFk} where each AFt is trained to
maximize Λ(T ,AFt) using the set of features Ft.

We do that in a slightly different way than the method
described in [11]. We first put all the features into a pool.
We build an undirected graph where each node represents a
subset of features in that pool that has size at most s. An
edge is created for any pairs of nodes where one of them can
be obtained from the other by adding exactly one feature.
Then we apply the best first search procedure described in
Table 1 to come up with F1 and AF1 (R = 5 is used in all of
our experiments). All features in F1 are then removed from
the pool. We rebuild the graph from the remaining features
and repeat the same procedure until the pool is empty.

Once the feature selection procedure is done, we define a
new feature f ′t corresponding to each Ft such that

f ′(i)(j)t = AFt(d
j
i). Therefore, each original feature vector

{f (i)(j)
1 , f

(i)(j)
2 , ..., f

(i)(j)
n } becomes {f ′(i)(j)1 , f ′(i)(j)2 , ..., f ′(i)(j)k }

where k < n. The learning process then proceeds with this
new feature vector.

3. RANKING METHODS
To evaluate our feature selection technique, we test it with

four popular ranking algorithms: RankNet [1], RankBoost
[8], AdaRank [14] and Coordinate Ascent [7].

3.1 RankNet
RankNet [1] is a probabilistic pair-wise ranking frame-

work based on neural networks. For every pair of correctly
ranked documents, each document is propagated through
the net separately. The difference between the two outputs
are mapped to a probability by the logistic function. The
cross entropy loss is then computed from that probability
and the true label for that pair. Next, all weights in the
network are updated using the error back propagation and
the gradient descent method.

3.2 RankBoost
RankBoost [8] is a pair-wise boosting technique for rank-

ing. Training proceeds in rounds. It starts with all docu-
ment pairs being assigned with an equal weight. At each
round, the learner selects the weak ranker that achieves
the smallest pair-wise loss on the training data with re-
spect to the current weight distribution. Pairs that are cor-
rectly ranked have their weight decreased and those that
are incorrectly ranked have their weight increased so that
the learner will focus more on the hard samples in the next
round. The final model is essentially a linear combination
of weak rankers. Weak rankers theoretically can be of any
type but they are most commonly chosen as a binary func-
tion with a single feature and a threshold. This function
assigns a score of 1 to a document of which feature value
exceeds the threshold and 0 otherwise.

3.3 AdaRank
The idea of AdaRank [14] is similar to that of RankBoost

except that it is a list-wise approach. Hence, it directly
maximizes any desired IR metric such as NDCG and MAP
whereas RankBoost’s objective is to minimize the pair-wise
loss.

3.4 Coordinate Ascent
Metzler and Croft [7] have proposed a list-wise linear model

for information retrieval which uses coordinate ascent to op-
timize the model’s parameters. Coordinate ascent is a well-
known technique for unconstrained optimization. It opti-
mizes multivariate objective functions by sequentially doing
optimization in one dimension at a time. It cycles through
each parameter and optimizes over it while fixing all the
others. Note that in the context of this paper, we use the
term Coordinate Ascent to refer to this particular ranking
technique other than the general optimization method.

4. EXPERMENTS

4.1 Datasets
We conduct our experiments on the LETOR 4.0 dataset.

It was created from the Gov-2 document collection which
contains roughly 25 million web pages. Two query sets from
Million Query TREC 2007 and 2008 are included in this
dataset, referred to as MQ2007 and MQ2008 respectively.
MQ2007 contains roughly 1700 queries and MQ2008 has
about 800. Each query-document pair is represented by a
46-feature vector.29

Figure 1: Results on the MQ2007 dataset: (a) Performance of rankers using different set of features and (b)
the number of features they use. The first and the second bar in each group correspond to the system using
the set of all original features and the set produced by best@m respectively. The last three bars are for systems
using features generated by our approach with s equals 2, 3, and 4 respectively. ∗ and † indicate significant
difference to orig. and best@m respectively.

4.2 Experimental Design
For our feature selection procedure, we experiment with

different values for s (the size of the feature subset Fi) vary-
ing from 2 to 4. For each value of s, we consider using top-k
subsets {F1,F2, ...,Fk} where k ∈ {1..5} to train the ranker
and use a validation set to select k.

Holding the ranker fixed to a particular technique, we
compare systems with different s values to the baseline which
uses all original features. We will refer to the baseline as
orig. and systems using features generated by our method
as BFSW.

We also consider another baseline in which we use each
feature from the original set to rank all the list of documents
and sort them based on the NDCG@5 they produce. We
then use the top-m of these features to train the ranker. m
is also chosen in the range {1..5} based on a validation set.
The idea is to see whether simply considering only some of
the best features from the original set gives better results
than using the whole set, and whether our method can do
any better than that. This second baseline will be refered
to as best@m.

All experiments are done using five-fold cross validation.
The dataset in each fold is divided into three subsets: the
training set, the validation set and the test set. We train all
the systems on the training set and select the model that
has the best performance on the validation set as the final
model which is evaluated on the test set. NDCG@5 averaged
over five folds is used as the performance measure for each
system.

4.3 Parameter Settings
We implement our proposed technique as described in sec-

tion 2.2. Though the ranking algorithm A used by this pro-
cedure can be freely chosen (e.g. to be the same as whatever
used in learning process), we fix it to Coordinate Ascent for
simplicity.

For both RankNet and RankBoost, we train the ranker for
300 rounds since we observed no performance change after

that in our preliminary experiments. In our implementa-
tion of RankNet, we use the logistic function as its activa-
tion function. We set the learning rate to be 0.001 which is
halved everytime the cross entropy loss on training data in-
creases as suggested in [1]. For AdaRank, we train the ranker
until observing a drop in NDCG@5 between two consecu-
tive rounds that is smaller than a tolerance of 0.002. Since
AdaRank might have the problem of selecting the same fea-
ture again and again, we also apply the trick provided in [4].
For Coordinate Ascent, we train the ranker with 5 random
restarts to avoid local extrema.

4.4 Results
Fig. 1a demonstrates the results on MQ2007. Each group

of bars corresponds to one ranking algorithm. Within each
group, the first and the second bar show the results obtained
using the original set of features and the set of features pro-
duced by best@m respectively. The last three bars indicates
the performance of systems using features generated by our
method with s set to 2, 3 and 4 respectively.

It is worth noting from Fig. 1a that with original fea-
tures, RankNet is less effective than other learning to rank
algorithms. RankNet is based on neural networks which
are known to be hard to train. Many important tricks are
pointed out in [12]. For this paper, however, we implemented
it in a rather straight-forward way. This might be the reason
for the bad performance.

The second thing to note from Fig. 1a is that best@m is al-
most always worse than using the original features except for
the case of RankNet. This suggests that all features are im-
portant to some extent and simply using the top-performing
features will not help.

Features provided by our selection method with s ≥ 3,
on the other hand, are always more effective than the set of
original features and s = 4 gives the best NDCG@5 across
learning techniques. Meanwhile, in terms of the number of
features the learner needs to consider, Fig. 1b shows that
the set generated by our method is much more compact30

Figure 2: Results on the MQ2008 dataset: (a) Performance of rankers using different set of features and (b)
the number of features they use. The first and second bar in each group correspond to the system using the
set of all original features and the set produced by Best@m respectively. The last three bars are for systems
using features generated by our approach with s equals 2, 3, and 4 respectively. ∗ and † indicate significant
difference to orig. and best@m respectively.

compared to the original set.
We did hypothesis testing using the two-tailed t-test and

note that at p < 0.05, the improvement our method pro-
vide over orig. is not significant except in the case of
RankNet. The performance drop that best@m introduces,
on the other hand, is significant. Thus, the difference be-
tween our method and best@m is almost always significant
as indicated in Fig. 1a, suggesting that our method is much
better than only considering the top-performing features.

One of the goals of any feature selection method is to get
the learner to concentrate on important features and neglect
those that are not. Our method works by optimizing a small
group of features locally then collapsing them into a single
features. The learner then only needs to consider a smaller
group – compared to the original set – of better features.
This is our explanation for the consistency of our results
across learning techniques. The results with RankNet, in
fact, further supports our claim. While its performance us-
ing the orginal features is quite bad since we do not apply
any tricks, it becomes comparable to other ranking tech-
niques when using feature selection. This indicates that the
learning task is easier with fewer features.

Fig. 2 shows results obtained on the MQ2008 dataset.
These reveal similar trends except that the system with
s = 3 performs better than s = 4.

5. CONCLUSIONS
In this paper, we propose a simple wrapper-based method

that uses best first search and coordinate ascent to greedily
partition a set of features into subsets. Each subset is then
replaced by a single new feature. Our results on the LETOR
4.0 dataset have shown that learning from the set of new
features, which is much smaller in size, can produce com-
parable or even better NDCG@5 performance than learning
from the original features.

Future work includes looking into more recent work in
feature selection for classification, experimenting with other
ranking algorithms such as SVMRank [10] and LambdaRank

[2] and comparing our method to other feature selection
techniques such as the one proposed in [9].

6. ACKNOWLEDGMENT
This work was supported in part by the Center for Intelli-

gent Information Retrieval and in part by NSF grant #IIS-
0711348. Any opinions, findings and conclusions or recom-
mendations expressed in this material are the author(s) and
do not necessarily reflect those of the sponsor.

7. REFERENCES
[1] C.J.C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N.

Hamilton and G. Hullender. Learning to rank using gradient
descent. In Proc. of ICML, pages 89-96, 2005.

[2] C.J.C. Burges, R. Ragno, and Q.V. Le. Learning to rank with
nonsmooth cost functions. In Proc. of NIPS, 2006.

[3] S. Buttcher, C. L. A. Clarke, and B. Lushman. Term proximity
scoring for ad-hoc retrieval on very large text collections. In
Proc. of SIGIR, pages 621-622, 2006.

[4] M. Cartright, J. Seo and M. Lease. UMass Amherst and UT
Austin @ The TREC 2009 Relevance Feedback Track. In Proc.
of TREC, 2009.

[5] N. Craswell, S. Robertson, H. Zaragoza, and M. Taylor.
Relevance weighting for query independent evidence. In Proc.
of SIGIR, pages 416-423, 2005.

[6] W.B. Croft, D. Metzler, and T. Strohman. Search Engines:
Information Retrieval in Practice. Addison-Wesley, 2009.

[7] D. Metzler and W.B. Croft. Linear feature-based models for
information retrieval. Information Retrieval, 10(3): 257-274,
2000.

[8] Y. Freund, R. Iyer, R. Schapire, and Y. Singer. An efficient
boosting algorithm for combining preferences. The Journal of
Machine Learning Research, 4: 933-969, 2003.

[9] X. Geng, T.Y. Liu, T. Qin and H. Li. Feature selection for
ranking. In Proc. of SIGIR, pages 407-414, 2007.

[10] T. Joachims. Optimizing search engines using clickthrough
data. In Proceedings of KDD, pages 133-142, 2002.

[11] R. Kohavi and G. H. John. Wrappers for feature subset
selection. Artificial Intelligence, 1997.

[12] Y. LeCun, L. Bottou, G.B. Orr and K.R. Muller. Efficient
Backprop. Neural Networks: Tricks of the trade, 1998.

[13] S. E. Robertson and D. A. Hull. The TREC-9 filtering track
final report. In TREC, pages 25-40, 2000.

[14] J. Xu and H. Li. AdaRank: a boosting algorithm for
information retrieval. In Proc. of SIGIR, pages 391-398, 2007.31

Enhancing Query-oriented Summarization based on
Sentence Wikification

Yajie Miao, Chunping Li

School of Software
Tsinghua University

Beijing 100084, China

ABSTRACT
Query-oriented summarization is primarily concerned with
synthesizing an informative and well-organized summary from a
document collection for a given query. In the existing
summarization methods, each individual sentence in the document
collection is represented as Bag of Words (BOW). In this paper,
we propose a novel framework which improves query-oriented
summarization via sentence wikification, i.e., enriching sentence
representation with Wikipedia concepts. Furthermore, we exploit
semantic relatedness of Wikipedia concepts as a smoothing factor
in sentence wikification. The experiments with benchmark dataset
show that sentence wikification performs effectively for
improving query-oriented summarization, and helps to generate
more high-quality summaries.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval – Retrieval models; I.2.7 [Artificial Intelligence]:
Natural Language Processing – Text analysis.

General Terms
Algorithms, Performance, Experimentation.

Keywords
Query-oriented Summarization, Sentence Wikification, Semantic
Relatedness.

1. INTRODUCTION
Given a specific query, query-oriented summarization (QS)

aims to automatically extract salient information from a document
set and assemble them into concise answers in natural language.
This task subsumes interesting applications. For instance, though
search engines can respond to users’ queries by returning lists of
web pages, browsing the pages for desired information is either
time-consuming or unachievable. In this case, it would be nice if

we summarize the points on the target query, which helps users to
digest the returned pages easily. A distinct characteristic of QS is
that the sentences included in the summary are required to be
closely relevant to the query. Therefore, the performance of QS
relies highly on accurate measurement of text similarity.
Traditionally, QS is based on the BOW approach, in which both
the query and sentences are represented with word vectors. This
approach suffers from the shortcoming that it merely considers
lexical elements (words) in the documents, and ignores semantic
relations among sentences.

In this paper, we examine sentences on a different dimension,
i.e., Wikipedia concepts. Through sentence wikification, each
sentence is mapped to a vector whose elements are Wikipedia
concepts. In this feature space, we get the Concept similarity
which serves to complement the original Word similarity derived
from BOW. Then, we take semantic relatedness of Wikipedia
concepts into account. We argue that two different concepts can
be taken as matched if they are semantically close to each other.
Following this, we propose the Matrix similarity, in which
semantic relatedness is utilized for smoothing the process of
concept matching. Finally the renewed sentence similarity
resulting from wikification is employed to benefit query-oriented
summarization.

To the best of our knowledge, this study is the first attempt to
address the problem of combining sentence wikification with QS.
We conduct extensive experimental studies to evaluate the
proposed framework on the DUC 2005 dataset. The experiments
show that sentence wikification indeed takes effect in boosting the
performance of QS. Also, we observe that the Matrix similarity
brings more significant improvements than Concept.

The rest of the paper is organized as follows. Section 2
introduces background information on query-oriented
summarization. Section 3 presents our proposed framework. In
Section 4, we show and discuss the experimental results. Finally,
we have conclusion in Section 5.

2. QUERY-ORIENTED SUMMARIZATION
In this section, we introduce two existing solutions to QS.

Formally, we denote the given query as q and the collection of
documents as D . The goal of QS is to generate a summary which
best meets the information needs expressed by q . To do this, a
QS system generally takes two steps: first, the sentences in D are
ranked with respect to q ; second, top sentences are selected until

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGIR’10, July 19–23, 2010, Geneva, Switzerland.
Copyright 2010 ACM 978-1-60558-483-6/09/07…$5.00.

the length of the summary is reached. For convenience, we let S
denote all the sentences in D .

yajiemiao@gmail.com, cli@tsinghua.edu.cn

32

A straightforward method [9], i.e., TFIDF, is to compute text
similarity between the query and sentences, and rank the
sentences based on this value. Both the query and the sentences
can be represented with TF*IDF vectors. Therefore, the query-
sentence similarity is naturally obtained as the cosine value of
their TF*IDF vectors. Since this method is quite simple, we do
not give elaborations on it.

Graph-based models [1, 2, 3, 5, 8] have been proved to be
effective in sentence ranking and summary generating. In these
models, a graph is constructed in which each node represents a
sentence in S . Each edge measures the similarity between the
corresponding pair of sentences. We consider two factors when
deciding whether sentence is is selected to be included in the
summary. First, is is relevant to the query q . Second, is is
similar with other sentences which have high query-sentence
similarity. This idea is captured by the model in Figure 1, which
mixes query-sentence and sentence-sentence similarity together.
In the figure, we denote the similarity of sentence is with the
query q as (,)isim s q , and the similarity between sentence is
and js as (,)i jsim s s . Then, using a computation process based

on Random Walk, the saliency score for sentence is can be
calculated iteratively as follows.

(1) ()
()

()

,

,
j

i

i

js S

n sim s
Score s d

sim s

q

q
∈

+ = ⋅
∑

()(,)
(1) ()

(,)
j

k

i j

j

j ks S s S

nsim s s
d Score s

sim s s∈
∈

+ − ⋅∑
∑

,

where () ()
i

nScore s is the score of is in thn iteration, d is a
combination coefficient for trading off the two parts. We call this
model as Graph in the following formulations.

3. THE PROPOSED FRAMEWORK

3.1 Sentence Wikification
In the traditional BOW approach, each sentence is is mapped

to a vector of words, that is,

 1 2{ , , , }N

i i i

ww w
i s s swordvector tfidf tfidf tfidf= ,

where j

i

w
stfidf is the TF*IDF value of word jw in sentence is ,

and N is the total number of words. Then the similarity between
two sentences is and js is measured by the cosine value of

iwordvector and jwordvector . This similarity is shortly named as

Word, which is denoted as (,)i jwordsim s s .
Sentence wikification is the practice of representing a sentence

with a set of Wikipedia concepts. We take the exact-match
strategy introduced in [4] as our wikification method. Specifically,
to wikify a sentence is , we scan this sentence and find Wikipedia
concepts that appear explicitly in it. To find high-quality
Wikipedia concepts, we also adopt extra operations such as
excluding meaningless concepts and merging partial concepts. For
instance, for the sentence “How do European Union countries feel
about the US opposition to the Kyoto Protocol?”, the concepts
“Kyoto”, “Protocol” and “Kyoto Protocol” (all of them appear in
the sentence) should be treated as a single concept “Kyoto
Protocol”. In addition, the concepts “Position” and “Proto”,
though in the sentence, obviously cannot act as interpretation of
the sentence, and thus should be eliminated.

These searched concepts are used to comprise the concept
vector for the sentence. Formally, the sentence is is associated
with a concept vector, that is,

1 2{var ,var , , var }W

i i i

cc c
i s s sconceptvector = ,

where var j

i

c
s is a binary variable which indicates whether concept

jc appears in sentence is , and W is the total number of

Wikipedia concepts appearing in S . Then the Concept similarity
between is and js is the cosine similarity of their concept vectors.

(,) i j
i j

i j

conceptvector conceptvector
conceptsim s s

conceptvector conceptvector
⋅

=
⋅

.

3.2 The Matrix Similarity
The Concept similarity is able to represent sentence similarity

on the dimension of Wikipedia concepts. However, Concept is too
“rigid” because it allows matching of two concepts only when
they are identical. In other words, only concepts which are shared
by two sentences can contribute to their Concept similarity. As a
result, some concept vectors, such as {Kyoto protocol, Emissions
trading, Carbon dioxide} and {Global warming, Greenhouse gas,
Fossil fuel}, have no Concept similarity, though they are quite
close according to human judgment. To solve this problem, we
turn to semantic relatedness of Wikipedia concepts, a value
indicating the extent to which two Wikipedia concepts are close
to each other, e.g., “Kyoto protocol” is closer to “Global
warming” than to “Financial crisis”. An effective and efficient
method for semantic relatedness is Wikipedia Link-based
Measure (WLM) [6, 7] which infers semantic relatedness from
link structures in Wikipedia. The basic intuition behind WLM is
that if two concepts are cited by (or link to) many common
concepts, they are much likely to be highly related. A well-
developed demo of WLM can be found at
http://wdm.cs.waikato.ac.nz:8080/service?task=compare.

With sentence wikification, the set of sentences S are
collaboratively represented with a concept matrix. We assume
that semantic relatedness of each concept pair has been given. The
computation of the Matrix similarity takes two steps.

(2)

(3)

(4)

Figure 1. The Graph model.

(1)

33

First, with the semantic relatedness values, we create a
relatedness matrix. The elements of the matrix represent semantic
relatedness among concepts. To avoid excessive matching, we set
a relatedness confidence, denoted as confidence , on the semantic
relatedness values. Only two concepts whose semantic relatedness
exceeds confidence can have a value in the relatedness matrix. If
the semantic relatedness between two concepts ic and jc is

(,)i jSR c c , then the (,)i j element in the relatedness matrix

is (,) (,)i jRM i j SR c c= if (,)i jSR c c confidence> , and 0
otherwise.

Second, the concept matrix is multiplied by the relatedness
matrix (see Figure 2). This matrix multiplication generates a new
relatedness-concept matrix. Each element of this matrix is

1
varvar (,)j k

i i

W
c c
s s jk

k
r RM c c

=
= ⋅∑ ,

where var j
i

c
sr is the relatedness-concept value of concept jc in

sentence is . Equation (5) indicates that the relatedness-concept
value of jc in is equals the weighted sum of the values in the
original concept vector, and the weighting coefficients are
semantic relatedness of concepts.

After these two steps are finished, each sentence is is
represented with a renewed relatedness-concept vector

1 2{ var , var , , var }W

i i i

cc c
i s s srconceptvector r r r= .

Then the Matrix similarity of two sentences is computed as the
cosine similarity of their relatedness-concept vectors.

We give an illustration of the steps in Figure 2. An observation
is that the relatedness matrix serves as a bridge to associate
sentences with their semantically-related concepts. A sentence
consequently obtains weights on the concepts that do not appear
explicitly in it.

3.3 Improving QS
We combine linearly the Concept or Matrix similarity with the

basic Word similarity and obtain the final sentence similarity. For

Figure 2. Illustration of the Matrix similarity.

instance, when considering Concept, the combined similarity is

(,) (,)i j i jcombinesim s s wordsim s s= (,)i jconceptsim s sα+ ⋅ ,
where α is a factor to control the balance between Word and
Concept similarity. The combined similarity is substituted into
either the TFIDF or the Graph model. Using a similar iterative
computation, we can get the saliency score for each sentence. For
limit of space, we do not give the updating formula (like Equation
(1)) here. Note that we replace both the query-sentence and the
sentence-sentence similarity in Graph with this combined
similarity.

3.4 Redundancy Checking
After the sentences are scored, some of the top sentences may

express similar meaning or convey duplicate information. If they
are selected simultaneously, the final summary will be redundant.
We adopt such a method to address this redundancy: each
candidate sentence, before being added to the final output, is
compared with the sentences that are already contained in the
summary. Only the candidates, whose similarity with all the
sentences in the summary is below a predefined threshold λ , can
be added to the summary.

4. EXPERIMENTS
In this section, we conduct experimental studies to test the

effectiveness of the proposed framework. Before going to the
details, we first describe the dataset and evaluation metrics.

4.1 Dataset and Performance Metrics
Document Understanding Conference (DUC) has set a series of

QS tracks and provided benchmark datasets. We use the
DUC2005 dataset which consists of 50 queries. Each query
corresponds to a collection of 25-50 relevant documents. The task
is to generate a summary of 250 words for each query from the
associated document collection. For preprocessing, we partition
the documents into individual sentences with the Sentence-
Detector function of the OpenNLP 1 package. Moreover, stop
words are removed from the vocabulary.

For quantitative evaluation, we use the ROUGE toolkit which
has been widely adopted by DUC for automatic summarization
evaluation. ROUGE measures summary quality by counting
overlapping units such as n-gram, word sequence and word pairs
between a generated summary and a set of reference summaries.
In our experiments, we run ROUGE-1.5.52 with the parameter
settings consistent with DUC 2005: -n 4 -l 250 -w 1.2 -m -2 4 -u -
r 1000 -f A -p 0.5 -t 0, where “-l 250” indicates the evaluated
summaries have the length of 250 words. In the results, we report
three of the ROUGE metrics: ROUGE-1, ROUGE-L and
ROUGE-SU.

4.2 Performance Evaluation
We take the basic TFIDF and Graph models (with Word

similarity solely) as baselines. The parameters are set in the
following ways. Both the coefficient d in the Graph model and
the threshold λ in redundancy checking are empirically set to

1 http://opennlp.sourceforge.net/
2 http://research.microsoft.com/~cyl/download/ROUGE-1.5.5.tgz

(5)

(6)

(7)

34

0.3. For the controlling factor α , we experiment on a wide range
of values and choose the best one in terms of the evaluation
metrics. In Graph, when α is fixed to its best value, we continue
to tune confidence from 0 to 1.0 with 0.1 as the step size. All the
iterative algorithms converge when the difference between the
scores computed at two successive iterations for any sentences
falls below a threshold (510− in this study).

Table 1. Experimental results.

Models Similarity Rouge1 RougeL RougeSU

TFIDF

Word
(Baseline) 0.34974 0.31813 0.11782

Word +
Concept 0.35597 0.32350 0.12190

Word +
Matrix 0.35870 0.32623 0.12076

Graph

Word
(Baseline) 0.36648 0.33714 0.12570

Word +
Concept 0.36916 0.33972 0.12664

Word +
Matrix 0.37124 0.34005 0.12780

Table 1 shows the experimental results when different types of
similarity are used. We can see that the introduction of the
Concept similarity improves QS in each case and on every metric.
This proves that sentence wikification is an effective strategy for
enhancing the performance of query-oriented summarization.
Also, when combining the Word similarity with the Matrix, rather
than Concept, similarity, we can obtain even better results. The
difference between Concept and Matrix is that in Matrix, we
reweight the concept vectors with semantic relatedness. The
smoothing effects of semantic relatedness result in sentence
similarity which is more consistent with human judgment, and
therefore helps to produce more desirable query-oriented
summaries.

When the type of sentence similarity is identical, the Graph
model consistently outperforms TFIDF. Even the baseline Graph
(Word) can perform better than the enhanced TFIDF (Word +
Matrix). This observation conforms to previous literatures which
show that Graph, considering both query-sentence and sentence-
sentence similarity in a unified computation process, has
advantages over the simpler TFIDF model.

We also investigate the influence of the relatedness confidence,
i.e., confidence . Figure 3 shows the ROUGE-1 metric for Word
+ Matrix when we use the Graph model and confidence is set to
various values. The best performance is achieved when
confidence is set to 0.4. This tells us that the concept pairs with
small (less-than-0.4) semantic relatedness actually contribute little
to the QS task. Meanwhile, when confidence exceeds 0.4, we
filter the concept pairs too aggressively and lose some valuable
information, which causes the performance to decrease.

5. CONCLUSION AND FUTURE WORK

In this paper, we study whether sentence wikification can
improve the performance of query-oriented summarization (QS).

0.35

0.355

0.36

0.365

0.37

0.375

0 0.2 0.4 0.6 0.8 1
confidence

ROUGE-1

In our proposed framework, both queries and sentences in QS are
enriched with Wikipedia concepts as additional features. Also, we
present the computation of the Matrix similarity, in which
semantic relatedness of Wikipedia concepts is considered for
smoothing concept matching. Then the combined sentence
similarity is employed in the TFIDF or Graph model. From the
experiments, we can conclude that sentence wikification improves
QS effectively. In addition, the incorporation of semantic
relatedness enables us to get better results.

6. ACKNOWLEDGMENTS
This work was supported by National Natural Science Funding

of China under Grant No. 90718022 and National 863 Project
under Grant No. 2009AA01Z410.

7. REFERENCES
[1] Y. Chali, and S. R. Joty. Improving the Performance of the

Random Walk Model for Answering Complex Questions. In
Proceedings of ACL-HLT’08, pages 9-12, 2008.

[2] Y. Chali, and S. R. Joty. Exploiting Syntactic and Shallow
Semantic Kernels to Improve Random Walks for Complex
Question Answering. In Proceedings of ICTAI’08, pages
123-130, 2008.

[3] G. Erkan, D. R. Radev. LexRank: Graph-based Lexical
Centrality as Salience in Text Summarization. In Journal of
Artificial Intelligence Research, Vol. 22, 2004.

[4] X. Hu, X. Zhang, C. Lu, E. K. Park, and X. Zhou. Exploiting
Wikipedia as External Knowledge for Document Clustering.
In Proceedings of SIGKDD’09, pages 389-396, 2009.

[5] F. Li, Y. Tang, M. Huang, and X. Zhu. Answering Opinion
Questions with Random Walks on Graphs. In Proceedings of
ACL’09, pages 733-745, 2009.

[6] D. Milne. Computing Semantic Relatedness using Wikipedia
Link Structure. In Proceedings of the 5th New Zealand
Computer Science Research Student Conference, 2007.

[7] D. Milne, and I. H. Witten. An effective, low-cost measure
of semantic relatedness obtained from Wikipedia links. In
Proceedings of the AAAI Workshop on Wikipedia and
Artificial Intelligence (WIKIAI'08), 2008.

[8] J. Otterbacher, G. Erkan, and D. R. Radev. Using Random
Walks for Question-focused Sentence Retrieval. In
Proceedings of HLT-EMNLP’05, pages 915–922, 2005.

[9] J. Tang, L. Yao, and D. Chen. Multi-topic based Query-
oriented Summarization. In Proceedings of SDM’09, pages
1148-1159, 2009.

Figure 3. QS performance as confidence varies.

35

A Compression Framework for Generating User Profiles

Xiaoxiao Shi
Department of Computer Science

University of Illinois at Chicago
xiaoxiao@cs.uic.com

Kevin Chang, Vijay K. Narayanan
Vanja Josifovski, Alexander J. Smola

Yahoo! Research
Santa Clara, CA 95051, USA

{klchang, vnarayan, vanjaj, smola}@yahoo-inc.com

ABSTRACT
Predicting user preferences is a core task in many online
applications from ad targeting to content recommendation.
Many prediction methods rely on the being able to repre-
sent the user by a profile of features. In this paper we pro-
pose a mechanism for generating such profiles by extracting
features that summarize their past online behavior. The
method relies on finding a compressed representation of the
behavior by selecting the dominant features contributing to
the Kullback-Leibler divergence between the default distri-
bution over user actions and the user specific properties. We
show that the feature selection model of [1] can be extended
to a hierarchical encoding of user behavior by means of us-
ing an intermediate clustering representation. Preliminary
experiments suggest the efficacy of our method.

1. INTRODUCTION
In order to be able to reason about the user, search en-

gines, computational advertising platforms, and recommen-
dation systems require a suitable representation of the user.
The profile is created based on the user’s past behavior and
such as to target the user with the suitable content or ad-
vertising. The targeting is usually performed by a model
that predicts the user’s interest. The key challenge in deter-
mining the right profile representation is to find predictive
features. One alternative for this task is to use a generative
methods, such as singular value decomposition of the (user,
action) matrix; topical analysis by Latent Dirichlet Alloca-
tion [2]; clustering users based on their actions; or Proba-
bilistic Latent Semantic Indexing factorization [4]. These
methods describe the user in terms of some other represen-
tation (dense vectors, sparse sets of abstract topics, cluster
ids). Often this suffices for the purpose of inference, since
secondary algorithms do not require interpretable features.

In some cases, though, interpretability is important: ad-
vertisers want to know which users are being targeted by
their ad campaigns. For instance some advertising contracts
may specify that an ad be shown to males living in Califor-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

nia, aged 18-25 years. We aim to obtain more fine-grained
yet understandable representations. This problem is not lim-
ited to advertising. For instance, social scientists want to
have understandable representations to support decisions.

We show that is possible to achieve both goals — to
obtain interpretable features describing users in a human-
understandable fashion and to obtain features which are
good for predicting a user’s actions. Our work builds on
that of [1] who suggested a simple algorithm to determine
meaningful features of users: choose features whose distribu-
tion differs most from the global baseline in terms of their
Kullback-Leibler (KL) divergence. This retains an inter-
pretable set of features, since it simply selects a subset of
user actions ’pars pro toto’. While this rule was proposed in
a slightly ad-hoc fashion, it is rather well founded: choosing
the actions which contribute the most to the KL divergence
between a given user and the sample average selects terms
from the distribution which require the largest number of ad-
ditional bits to encode. Note that the KL divergence D(p‖q)
quantifies the number of additional bits needed by encoding
data drawn from p with the code optimal for q.

However, a simple multinomial model as used by [1] is
not necessarily ideal when it comes to representing the dis-
tribution over the actions of many users. Instead, we may
choose more sophisticated formulations such as clustering,
topics, or any of the other factorization approaches men-
tioned above. The simple KL divergence selection heuristic
now becomes one of encoding the structure in a sparse fash-
ion and subsequently one of encoding the user with regard
to its latent representation. As a running example we use
clustering for the latent representation. Hence, in order to
represent a user’s features we first pick a representation of
a user’s cluster in terms of sparse features and second we
pick the user’s actions relative to its cluster. This two-stage
approach could be easily extended to many stages by fea-
ture extraction in hierarchical clustering. Likewise, in topic
models [2] we could represent a user’s action in terms of the
actions most representative for the topics associated with
the user and secondly with the actions which cannot be ex-
plained equally well by the topic model (and hence which
have large KL divergence). Such multistage models effec-
tively smooth out the actions of a user.

For instance, assume that one set of users would use the
term ’car’ and another set ’automobile’. While they clearly
should belong to the same cluster, thus smoothing over mi-
nor differences in behavior, there clearly is additional infor-
mation to be gained by recording the dichotomy between
’cars’ and ’automobiles’.

36

2. ENCODING FRAMEWORK

Sufficient Statistics
In the following we denote by i users and by xi their actions.
More specifically, xij encodes action j by user i. It is our goal
to extract some features φ(x) from x such that φ(x) leads a)
to good predictions downstream and b) to understandable
representation. First note that whenever φ(x) is a sufficient
statistic of x it follows that

p(y|x, φ(x)) = p(y|φ(x)). (1)

In other words, given a good representation φ(x) of x we
can dispose of x itself. This is particularly desirable since
we can assume that x is rather noisy, having been drawn as
a sample from the distribution over all actions a particular
user might take. Hence, if we find a more compact set of
(sufficient) statistics which describe x sans noise, we should
be able to obtain equal or better estimation performance
after applying φ(x).

Kullback Leibler Divergence
Recall that the information contained in a stream of samples
from some distribution p is given by its entropy, that is by

H[p] := Ez∼p[− log2 p(z)] (2)

One may show (see e.g. [3]) that the optimal code for en-
coding z requires − logw p(z) bits on average. In this view
the Kullback Leibler divergence

D(p‖q) := Ez∼p[log2 p(z)− log2 q(z)] (3)

quantifies the excess number of bits we spend on average by
encoding z ∼ p with a code which is optimal for z ∼ q. This

provides a natural weight for symbols z via p(z) log p(z)
q(z)

, the

expected contribution of z to the excess in encoding. In
other words, if we want to reduce the excess in encoding
q we should focus on setting aside those terms z with the
largest contribution to the KL-divergence. This is precisely
what the algorithm of [1] amounts to. Symbols z′ with small
deviations in the encoding contribution are more likely to be
due to sampling noise, hence we benefit from omitting them.

Multinomial Distribution Model
The following example clarifies this rather abstract model.
Assume that we have a multinomial distribution p over sym-
bols z, parameterized by probabilities θz, i.e. p(z) = θz.
Such a distribution can be estimated, e.g. for a set of users,
by the background model over all their actions: denote by
m the total number of actions of all users and let nz :=∑
i,j {xij = z} be the number of times any user takes action

z. Then we can estimate

θz =
nz
m

or θz =
nz + α

m+Nα
(4)

where the second equation is obtained by smoothing with
a Dirichlet prior. Observing actions xij for user i we de-
fine the corresponding quantities niz :=

∑
j {xij = z} and

mi =
∑
z n

i
z. This yields smoothed estimates for the action

distribution for the user via θiz =
ni

z+α′

mi+Nα′ for a Dirichlet

smoother α′. When using the background distribution as
quantified by θ rather than the user specific distribution θi

we pay d(p‖q|z) := θiz log θiz/θz additional bits for symbol z.

Hence to minimize the amount of inefficiency in coding, we
should store θiz for all z with d(p‖q|z) ≥ c for some thresh-
old c. It yields understandable features, obviously provided
that z amounts to human-understandable actions or tokens.

Mixture of Multinomials Model
A single multinomial distribution is not a very accurate char-
acterization of user actions. One of the simplest modifica-
tions is to use a mixture of multinomials rather than a single
multinomial. That is, we assume that observations follow
the distribution

p(x) =
∑
y

p(x|y)p(y) (5)

where both p(x|y) and p(y) are multinomials (conveniently
with an associated Dirichlet smoother). As a result the en-
coding problem now decomposes into two parts: encoding
the distribution p(x|y) and encoding the difference between
xi and the estimated cluster yi. We address this problem
by applying the encoding strategy for multinomial distribu-
tions twice – once to encode the cluster distribution above
the global baseline profile, and another time to encode the
user distribution above the cluster profile. That is, for the
cluster we select all z which satisfy

d(p(·|yi)‖q|z) ≥ c (6)

with respect to the common baseline distribution q. More-
over, to encode xi we select all z which satisfy

d(pi‖p(·|yi)|z) ≥ c (7)

Note that (7) is slightly imprecise: since we did not encode
p(·|yi) entirely, it behooves us to compare the smoothed es-
timate of the user distribution pi not with p(·|yi) but rather
only with the encoded subset of tokens from p(·|yi).

General Framework
Given a model of the form

p(x) =

∫
p(x|α)p(α|β)p(β|γ) . . . dαdβdγ . . . (8)

we may resort to a hierarchical encoding by successively se-
lecting z which contribute most to the KL-divergence terms

D(p(x|γ)‖p(x)) or D(p(x|β)‖p(x|γ)) or . . . D(pi‖p(x|α)).

3. TOKENS FOR USER ACTIONS
We assign tokens to each possible user event that we log.

The tokens can be of varying granularity depending on the
nature of the end application that uses this user profile. For
instance, a user searching for “toyota prius” could be tok-
enized in a granular manner as “query for toyota prius” or
in a coarser manner as “query related to autos”.

We constructed a dataset from the events of a sample of 1
million users at Yahoo!, over the 55 day period from Jan 1,
2010 to Feb 24, 2010. We used events from 6 types of user
activities: web page views (pv), views of display ads (adv),
clicks on display ads (adc), search queries (sch), clicks on
search results (slc) and clicks on search ads (olc). We tag
each of these events with categories in a taxonomy of user
interests, based on the content of the webpage, ad, or search
query, through a combination of editorially labeled dictio-
naries and automated machine learned categorizers. We rep-
resent each event as the token“c<event-type>-<category>”.

37

We then represent a user’s history as a sequence of to-
kens of actions. For example, if the user had 1) a page view
on autos.yahoo.com, followed by 2) a search query for “mu-
tual fund”, followed by 3) a click on a result of this search
query, the sequence of tokens would be: “cpv-autos”, “csch-
finance”, “cslc-finance”. In all, there were a total of 5911
different unique tokens, constructed from the 6 event types
and 1205 different categories for these events. We estimated
the multinomial user model from this sequence of tokens.

4. EXPERIMENTS
We clustered the users in this dataset and estimated the

average profile of users belonging to each cluster, and per-
formed some preliminary experiments using our user profiles
for the modeling task of ad conversion modeling.

4.1 Analysis of Clustering
Figure 1 shows the distributions of KL divergence between

the user profile and the global profile and that between the
user profile and the cluster profile. The distribution of the
KL divergence between user and the cluster profiles is dis-
tinctively skewed towards lower values compared to the dis-
tribution of KL divergence between the user and the global
profiles, demonstrating that clustering can effectively encode
a large fraction of users. For example, more than 50% of the
users have KL divergence in the range [0, 0.7] between the
user profile and the associated cluster profile, while less than
25% of the users have KL divergence in this range between
the user profile and the global profile. Hence, a cluster pro-
file is a more accurate representation of a user profile than
the global profile. Figure 2 shows that clustering can still
preserve groups of unique users which have high KL diver-
gence from the global background, and does not wash out
the profiles of users with distinctive profiles compared to the
global profile.

Figures 1 and 2 show that clustering can effectively group
together similar users by their behaviors, and also preserve
groups of users with unique profiles compared to the global
profile. Another interesting experiment is to understand the
relevant features identified by the clustering encoding. Ta-
ble 1 shows the user features in two different clusters that
contribute most to the KL-divergence terms as described in
(8). These features are the ones that most distinguish the
cluster from the global profile.

It is clear that clustering can group together users with
the similar latent interests represented by the tokens. For
example, Cluster 1 consists of users with many technology
related tokens, while Cluster 2 consists of users with many
finance related and mobile phones related tokens.

Table 2 shows the most distinguishing tokens of 2 users
selected at random from Cluster 1 and another user from
Cluster 2. The highlighted tokens in bold letters show the
features in the user profile that are also present in their re-
spective clusters. Comparing the profiles of users 1 and 2,
it is clear that while they share events related to technol-
ogy, they are still different from each other in that user 1
has more events related to finance and sports, while user 2
has events related to beauty, personal care and babies. User
3 on the other hand has a number of events related to fi-
nance and cellular phones, and is also further interested in
retail products. Thus, we observe that a) clustering effec-
tively groups users with similar events in their profiles b)
clustering-based encoding can judiciously capture the most

Figure 1: Contribution to the KL divergence be-
tween user profile and global profile (yellow) and
between user profile and cluster profile (red). Clus-
tering is a better model for encoding the data (most
users can be accurately captured by the model small
KL divergence.

Figure 2: Revealing unique user groups. Clustering
can still preserve the groups of unique users with
large KL divergence (1.0 < KL < 3.0)

significant tokens among similar users; c) different clusters
reveal different significant tokens. These three observations
show the potential power of incorporating intermediate clus-
tering representations to encode user profiles.

4.2 Preliminary conversion modeling results
We constructed a linear model to predict whether or not a

user would convert on a specific ad, where we have one model
per ad. The baseline model considered raw user events, while
the experimental model considered raw user events as well as
the user profile, constructed as user’s cluster profile, and the
50 most divergent tokens between the user and the global
profile, and the user and cluster profile. We evaluated the
191 models by computing the area under the ROC curve
(AUC), on a test set that ocurred after the train set in time.

In order to compare the user profile-based models and the
baseline across the 155 different ads/models, we tallied the
“wins” as the number of ads for which the user profile-based
models AUC exceeded the baseline models.

conv # ads % win profile AUC base AUC
≥ 10 155 62% 0.57 0.56

[10, 100] 112 68% 0.55 0.53
≥ 100 43 47% 0.60 0.60

As an example to aid interpretation of the table, there
were 112 ads with between 10 and 100 conversions in the

38

Table 1: Important events in the cluster specific profile and KL divergence from the baseline. The instances
show that user events are well grouped and human understandable. Cluster 1 shows a strong affinity for
events related to technology, while Cluster 2 groups events in finance and cellular phone related tokens.

Cluster ID Important User Behaviors KL Divergence
Cluster 1 cpv-Technology/Internet Services 0.3883

(Technology Group) cpv-Technology/Internet Services/Online Community 0.3854
cpv-Technology 0.3840
cpv-Technology/Internet Services/Online Community/Email 0.2829
cpv-Technology/Internet Services/Online Community/Portals 0.2806
cpv-Technology/Internet Services/Online Community/Photos 0.0122

Cluster 2 cadv-Finance 0.0365
(Finance Group) cadv-Finance/Credit Services 0.0274

cadv-Finance/Insurance 0.0145
cadv-Finance/Insurance/Automobile 0.0119
cadv-Telecommunications/Cellular and Wireless Services 0.0081
cadv-Technology/Consumer Electronics/Comms/Mobile/Cellular Telephones 0.0078

Table 2: Profiles of 2 users randomly selected from Cluster 1 and one user from Cluster 2, with their event
tokens and frequencies. The boldface tokens are common to the average profile of the relevant cluster.

User Index Behavior set
User 1 cadv-Technology/Internet Services/Online Community:134

Cluster 1 cpv-Technology/Internet Services/Online Community:190
cpv-Technology/Internet Services:192
cpv-Technology:192
cpv-Technology/Internet Services/Online Community/Email:190
cadv-Technology:150
cadv-Technology/Internet Services/Online Community/Email:132
cadv-Technology/Internet Services:142
cadv-Finance/Insurance:52
cadv-Finance:52
cpv-Sports/Soccer:21
cpv-Sports/Auto Racing:32

User 2 cpv-Technology:212
Cluster 1 cpv-Technology/Internet Services/Online Community:212

cpv-Technology/Internet Services:212
cpv-Technology/Internet Services/Online Community/Email:212
cadv-Consumer Packaged Goods:18
cadv-Consumer Packaged Goods/Beauty and Personal Care:14
cadv-Life Stages/Parenting and Children/Baby:10
cadv-Life Stages:10

User 3 cadv-Finance/Credit Services:72
Cluster 2 cadv-Finance:190

cadv-Finance/Investment/Discount Brokerages:44
cadv-Technology/Consumer Electronics/Communication/Mobile/Cellular Telephones:34
cadv-Technology/Consumer Electronics/Communication/Mobile:104
cadv-Small Business and B2B:44
cadv-Life Stages:32
cadv-Retail:24

test set used to compute the AUC. User profile models had
a greater AUC than the baseline for 68% of these ads, and
had an average AUC of 0.55 vs 0.53 for the baseline. We
note that the user profile-based models perform better when
there is less data. Models with little data tend to be more
sensitive to noise, and therefore beneift from cluster-based
user profiles that provide a smoother set of features.

5. CONCLUSION
We have proposed a method of extracting features from

user profiles, based upon first clustering the users and then
encoding the user profile as a combination of the cluster pro-
file and the most distinguishing features between the user
and this cluster profile. Experimental results show that the
two stage approach of first clustering the user profiles, and
then encoding the users with the cluster profile and the dif-
ference from this cluster profile, is a more effective method

to encode a user profile, as opposed to a single step encoding
of the users using the distinguishing features compared to
the global profile alone. Preliminary modeling results show
that the profiles can improve conversion modeling, especially
when there are few positive examples in the data.

6. REFERENCES
[1] M. Shmueli-Scheuer, H. Roitman, D. Carmel, Y. Mass,

and D. Konopnicki. Extracting User Profiles from
Large Scale Data. In PMDAC, 2010.

[2] D. Blei, A. Ng, and M. Jordan. Latent Dirichlet
allocation. JMLR, 3:993–1022, 2003.

[3] T. M. Cover and J. A. Thomas. Elements of
Information Theory. John Wiley and Sons, NY, 1991.

[4] T. Hofmann. Unsupervised learning by probabilistic
latent semantic analysis. Machine Learning,
42(1/2):177–196, 2001.

39

An SVM Based Approach to Feature Selection for Topical
Relevance Judgement of Feeds

Yongwook Shin and Jonghun Park
Information Management Lab.

Seoul National University
599 Gwanak-ro, Gwanak-gu, Seoul, Korea

{yongwook, jonghun}@snu.ac.kr

ABSTRACT
Relevance judgement method is an essential part of a feed
search engine, which determines candidates for ranking query
results. However, the different characteristics of feeds from
traditional web pages may make existing relevance judge-
ment approaches proposed for web page retrieval produce
unsatisfactory result. Compared to web pages, feed is a
structured document in that it contains several data ele-
ments, including title and description. In addition, feed is
a temporal document since it dynamically publishes infor-
mation on some specific topics over time. Accordingly, the
relevance judgement method for feed retrieval needs to ef-
fectively address these unique characteristics of feeds. This
paper considers a problem of identifying significant features
which are a feature set created from feed data elements,
with the aim of improving effectiveness of feed retrieval. We
conducted extensive experiments to investigate the problem
using support vector machine on real-world data set, and
found the significant features that can be used for feed search
services.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Search and Re-
trieval; H.3.5 [Information Systems]: Online Information
Services; H.5.4 [Information Systems]: Hypertext/Hy-
permedia

General Terms
Experimentation, Measurement, Performance

Keywords
Information Retrieval, Search Engine, Feed Search, Feed,
Feature Selection, Relevance Judgement, Text Classification

1. INTRODUCTION
The number of web sites publishing feeds is dramatically

increasing and it is now common to acquire information by

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SIGIR’10 19-23 July 2010, Geneva, Switzerland
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

subscribing to feeds. Feed is an XML document published
by a web site to facilitate syndication of its contents to sub-
scribers. News and blogs are common sources for feeds, and
recently social media and microblogging sites are increas-
ingly delivering information through feeds.

Feed search engine that can help users effectively seek for
feeds becomes necessary in order to address the challenges
imposed by recent explosion of feeds. Through feed search
engine, users can discover feeds for the purpose of subscrip-
tion in order to keep themselves updated with recent infor-
mation. Feed search engine takes a query from users and
generates ranking candidates which are feeds judged to be
relevant to the query. Afterwards, it returns a ranked list
of feeds by scoring the candidates based on a specific feed
retrieval model. Accordingly, relevance judgement method
that detemines the ranking candidates plays an important
role in enhancing feed search quality.

Under binary relevance judgement framework, the rele-
vance judgement method classifies feeds as relevant or non-
relevant against a user query in order to construct the rank-
ing candidates [11]. In particular, in relevance judgement
for feed retrieval using feature-based model, the relevance
is defined by using a feature set constructed from a user
query and a feature set from a feed. It is necessary that
a feature set for a feed is constructed by selecting specific
features suited to feed relevance judgement. Unfortunately,
existing relevance judgement methods for web page retrieval
may not be appropriate for relevance judgement for feed re-
trieval since they are different in terms of available features.

Specifically, relevance judgement problem for feed retrieval
poses interesting challenges due to two different properties
of feeds, compared to web pages. Feed is a structured as
well as temporal document in a sense that it contains sev-
eral data elements, including a feed title, a feed description,
and multiple entries each of which consists of a title and
description dynamically published over time, whereas web
pages tend to be rather static. With the structural nature
of feed, the problem is to find out which data elements need
to be selected to define a feature set for relevance judge-
ment. The temporal charateristic of feed raises a problem
of determining how many entries need to be considered for
relevance judgement.

To the best of authors’ knowledge, there has been no study
that attempted to define features used for feed relevance
judgement method by considering the unique structural and
temporal characteristics of feed. In this paper, we attempt
to identify significant features for feed relevance judgement
with respect to a user query. The significant features are

40

defined as a feature set constructed from feed data elements
that can improve effectiveness of feed retrieval.

Ranking function for blog feed retrieval model was stud-
ied previously, taking account of unique properties of feeds.
Research in [4] investigated whether it is more effective for
feed retrieval to view a feed as a single document or mul-
tiple documents composed of entries. However, it did not
pay attention to feature selection problem for feed relevance
judgement. In addition, temporal characteristics of feed as
well as structural elements such as feed title and feed de-
scription were not considered in [4].

An enhanced ranking model for blog posts, named PTRank,
was proposed to improve search quality beyond the simple
keyword matching, utilizing various information available
from blog feeds [7]. Yet, it suggested the scoring function
to assess the degree of relevance between a query and blog
posts, instead of selecting the significant featues for feed rel-
evance judgement. Furthermore, temporal characteristic of
feed was not considered by PTRank.

In this paper, we attempt to identify the significant fea-
tures to judge relevance for feed retrieval through feed clas-
sification based on a topic using a topic-labeled feed data
set. The rest of the paper is organized as follows. Section
2 defines the problem and presents our proposed approach
to identify the significant features. In Section 3, we report
experimental results and finally, we give concluding remarks
in Section 4.

2. PROPOSED APPROACH
Feed is an XML file that contains partial or full descrip-

tions of web page articles along with links to the original
contents and other information. Two popular feed formats
are RSS (Really Simple Syndication) and Atom [6]. Figure 1
shows a typical example that illustrates major elements of
an Atom feed.

Specifically, the schema of Atom 1.0 includes two core el-
ements, namely <feed> and <entry>. <feed> is the root
element of an Atom document and contains feed title and
description. <feed> should have at least one <entry> el-
ement, and it contains mandatory sub-elements, <title>
and <subtitle>. <entry> element includes <title> and
<summary> elements. While <title> contains the title of a
web page article, <summary> element has a short summary
or full body of the article.

Among the various feed elements, we consider four ele-
ments in identifying the significant features for feed rele-
vance judgement. We refer to <title> element in <feed>
as a feed title, and <subtitle> element in <feed> as a feed
description. We also refer to <title> element of <entry> as
an entry title and <summary> element of <entry> as an
entry description.

This study concentrates on identification of the signifi-
cant features for feature-based relevance judgement method
in feed retrieval. The significant features are defined as a
feature set created from data elements available from a feed
that can maximize effectiveness of relevance judgement.

Specifically, we use a vector space model for representing
the features. The notations used in our problem are pre-
sented as follows. Given the set of m feeds, F = {f1, f2,
..., fm}, and the set of terms, T , let Ei = {eij |j = 1, ..., n}
represent the set of entries for fi, i = 1, ...,m, constructed
by choosing the most recent n entries from the set of all en-
tries published from fi. Our vecter space model is based on

<?xml version=“1.0” encoding=“utf-8”?>
<feed xmlns=“http://www.w3.org/2005/Atom”>

<title>Example Feed</title>
<subtitle>A subtitle.</subtitle>
<link href=“ttp://example.org/feed/” rel=“self” />
<link href=“http://example.org/” />
<updated>2003-12-13T18:30:02Z</updated>
<entry>

<title>Atom-Powered Robots Run Amok</title>
<link href=“http://example.org/2003/12/13/atom03” />
<link rel=“alternate” type=“text/html”
href=“http://example.org/2003/12/13/atom03.html”/>
<updated>2003-12-13T18:30:02Z</updated>
<summary>Some text.</summary>

</entry>
</feed>

Figure 1: An example Atom feed

a bag of terms representation, and we denote the term bags
of feed title and feed decription as fti and fdi, respectively.
The term bag of title in eij is represented as etij , while the
term bag of description in eij is represented as edij .

In the following, we use notation B for representing a bag
of terms, and |B| for the total number of term occurrences
in B. In addition, tf(t, B) represents term frequency (TF)
of term t ∈ T in term bag B.

Let Q denote a set of queries, and q ∈ Q a term set rep-
resentation of a query. Given query q and Ei, fi is mod-
eled as a feature vector represented by (σ(q, fti), σ(q, fdi),
σ(q, eti1), ..., σ(q, etin), σ(q, edi1), ..., σ(q, edin)). σ(q, fti),
σ(q, fdi), σ(q, etij), and σ(q, edij) for i = 1, ...,m and j =
1, ..., n are scoring functions defined as normalized TF, and
they indicate feature scores specified for feed title, feed de-
scription, entry title, and entry description, respectively. We
consider normalized TF among other alternatives, since it is
reported that normalized TF is effective in many text class-
fication problems [8]. We call normalized TF as TF in the
following.

Under the assumption of normalized TF, σ(q,B) for term
bag B is defined as:

σ(q,B) =

{ ∑
t∈q tf(t, B)/|B| if q ∈ B

0 otherwise

We attempt to find the significant features through exam-
ining various alternatives for constructing the feature vec-
tor, considering the unique properties of feed mentioned in
the previous section. First, feed data elements constituting
the significant features are identified by investigating several
combinations of structural data elements in feature vector
construction. Second, we investigate the number of entries
considered for the feature vector by varying n to address the
temporal characteristics of feed.

We employ support vector machine (SVM) for our feed
classification task, since it is reported that SVM is one of
the most popular and effective supervised learning methods
for text classification problems [3], [10]. In this paper, SVM
treats feed classification problem as the one involving binary
class labels, which we refer to as “non-relevant” and “rele-
vant”. SVM builds a model using the given labeled tranining
data, which predicts whether an instance of feature vector
of a feed falls into “non-relevant” or “relevant”.

To evaluate effectiveness of relevance judgement, we use
precision, recall, and F measure which are commonly used to
compare the relative performance with different features [2].

41

Table 1: Results produced by various feature vector
construction methods

P R FM

FT 0 .977 .390 .557

FD 0 .948 .432 .594
FT+FD 0 .956 .556 .703

ET 40 .941 .425 .586
80 .946 .418 .580
120 .947 .426 .588
160 .946 .429 .590
200 .947 .436 .597

ED 40 .936 .513 .663
80 .943 .517 .668
120 .944 .522 .672
160 .947 .523 .674
200 .944 .521 .671

FT+FD 40 .953 .599 .736
+ET 80 .959 .586 .727

120 .959 .576 .720
160 .959 .564 .710
200 .959 .557 .705

FT+FD 40 .954 .612 .746

+ED 80 .955 .609 .744
120 .957 .610 .745
160 .959 .604 .741
200 .958 .598 .736

FT+FD 40 .957 .603 .740
+ET+ED 80 .961 .589 .730

120 .959 .577 .720
160 .961 .566 .712

200 .958 .557 .704

Precision, P , is a measure of the usefulness of feeds judged as
“relevant” and recall, R, is a meaure of the completeness of
a relevance judgement method. F measure, FM , is defined
as the harmonic mean of recall and precision. FM provides
a single metric for comparison across different experiments.

In what follows, among possible configurations of features,
the significant features achieve the best performance on a
specific evaluation metric. We use notation SF (EM) for
representing the significant features identified from experi-
ments on evaluation metric, EM , where EM can be P , R,
or FM .

3. EXPERIMENTS
A topic-labeled feed data set for our experiments was col-

lected from “Bundles from Google”, which is provided by
Google Reader [5], a Google’s web-based feed reading ser-
vice. Several feeds for a topic are bundled in order to serve
feed recommendation to Google reader users in “Bundles
from Google”. We call “Bundles from Google” as “Google
data set”. Google data set has various topics and broad
types of feeds from public media sites, blogs, podcasts, and
social media sites. Our data set consists of 3,050 feeds and
the size of the most recent entries for each feed is 200. The
total number of topics taken as queries is 435, and for each
topic, the number of feeds belonging to the topic varies from
3 to 20. On the average, there are 7 feeds per topic.

Baseline features are selected among the features available
from feed under the assumption that relevance judgement
method using as many as feed data elements and entries
possible is most effective. Similarly to the significant fea-
tures, baseline features are defined in terms of the feed data
elements used for constructing the feature vector and the
number of entries. Given F , we select fti, fdi, etij , and
edij , i = 1, ...,m, j = 1, ..., n as structural data elements for
baseline features, and set n = 200 for the time span of feed

Table 2: Results summarized by feed data elements
P R FM

FT .977 .396 .557

FD .948 .432 .594
FT+FD .956 .556 .703

ET .947 .436 .597
ED .947 .523 .674

ET+ED .952 .505 .660
FT+ET .961 .535 .687
FT+ED .959 .584 .726

FT+ET+ED .960 .558 .706
FD+ET .952 .543 .690
FD+ED .950 .599 .733

FD+ET+ED .956 .570 .711
FT+FD+ET .959 .599 .736

FT+FD+ED .959 .612 .746

FT+FD+ET+ED .961 .603 .740

since the largest number of entries per feed available from
our data sets is 200.

For our experiments, we used the libSVM toolkit [1] to
train the SVM models. We work with linear SVM models
since the existing literature on text classification indicates
that the nonlinear versions of SVM gain very little in terms
of performance, compared to the linear version [9]. A five
fold cross-validation technique is used to evaluate the per-
formance.

Table 1 shows our experiment design and results for TF,
and it contains representative results selected from com-
plete results, which include the significant features, the base-
line features, feed data elements, and some combinations of
them. Table 2 summarizes feed data elements and their
combinations from complete results in order to investigate
which feed data elements need to be used for constructing a
feature vector. In Table 2, precision, recall and F measure
of feed data elements and their combinations represent the
maximum values produced in our experiments.

In the result tables, FT stands for feed title, FD for feed
description, ET for entry title, and ED for entry description.
The first column on the left side in the result tables indicates
feed data elements and their combinations. We denote com-
bination of feed data elements for the feature vector with
“+”. In particular, the second column of Table 1 indicates
n, where n = 0 means that entries are not used for con-
structing the feature vector. For instance, when feed data
element combination is FT+ET and n=40, fi is modeled
as a feature vector represented by (σ(q, fti), σ(q, eti1), ...,
σ(q, eti40)), i = 1, ...,m without features for feed description
and entry description. The first row on the top side of the
result tables represents evaluation metrics.

In Table 1, numbers in gray boxs are precision, recall and
F measure results of the baseline features defined earlier,
and bold numbers in white boxs correspond to precision of
SF (P), recall of SF (R) and F measure of S(FM). For
SF (P), significant features were constructed from FT with-
out entry, and for SF (R) and SF (FM), significant features
were built from FT+FD+ED with 40 entries. From the
experimentation results, we found that the significant fea-
tures outperform the baseline features as Table 1 shows. We
present a detail analysis based on feed data element and n
with respect to precision and F measure results in the fol-
lowing.

Table 2 indicates that FT achieves the best precision, and
precision values of FD, ET, and ED are almost same. Also,

42

●
● ●

●

●

F
 m

ea
su

re

n

40 80 120 160 200

0.55

0.60

0.65

0.70

0.75

O
O

O O
O

X
X

X

X
X

O

X

ET
ED
FT+FD+ET
FT+FD+ED

Figure 2: Performance evaluation of feed data ele-
ments in various n’s

it is remarkable that FT and FD produce higher precision by
combining with ET and ED than ET and ED alone. From
these observations, we can conclude that FT and FD are
more competitive than other feed data elements in terms
of the precision performance of feed relevance judgement
method.

On the other hand, FT+FD+ED produces the best re-
sult for F measure in Table 2. It is interesting to see that
FT+FD is more effective than ET and ED for F measure.
Furthermore, Table 2 shows that FD and ED with a large
number of terms have higher F measure than FT and ET
with a small number of terms.

From the fact that FT and FD ahieve low recall and high
precision results, it can be concluded that many feeds put
their topics into FT and FD, and there is a high proba-
bility that terms in FT and FD represent topics of feeds.
In addition, FT+FD+ED does not completely outperform
FT+FD+ET for F measure, where ED requires high cost
for computing features as it has a large number of terms.
The difference between F measure of FT+FD+ED and that
of FT+FD+ET is only 0.01, suggesting that FT+ FD+ET
is more competitive than a combination of all feed data el-
ements, considering the cost for computing feature scores.

Moreover, we examine an effect of n on the performance
in Table 1. In general, large n’s give better precision results
than small n’s when entries are used for the feature vec-
tor. However, it is interesting to see that precision hardly
improves beyond n of 120 as represented in Table 1.

Figure 2 depicts that large n’s have better F measure per-
formance than small n’s in ET, ED, and ET+ED. On the
contrary, small n’s yield better performance than large n’s
for combinations of ET, ED, FT and FD. It turns out that
use of FT and FD together with ET and ED is more ap-
propriate to judge relevance of feed than use of ET and ED
alone. Accordingly, these results lead us to the conclusion
that a large number of entries including old entries are not
necessary for constructing the feature vector, but instead
that a small number of recent entries are enough to judge
relevance of a feed.

Finally, we remark that feed relevance judgement method
based on FT+FD+ET and a small number of entries can
produce comparable performance to the significant features,
SF (FM), while at the same time reducing cost for comput-
ing feature scores for entry descriptions.

4. CONCLUSION
In this paper, we investigated the significant features for

relevance judgement method in feed retrieval. New feature
selection approach for feed relevance judgement was pro-
posed based on the vector space model, considering unique
characteristics of feeds.

Extensive experiments were conducted using a data set
collected from Google reader. From the experimental re-
sults, we found that when a small number of entries are
used, feed title, feed description, and entry description be-
come feed data elements for the significant features. In addi-
tion, our experimental results show that the relevance judge-
ment method based on feed title, feed descripion and entry
title produces similar performance to the identified signifi-
cant features. It is expected that our research results will
contribute to enhancing the retrieval performance of feed
search engines.

5. ACKNOWLEDGMENT
This work was supported by the Korea Science and Engi-

neering Foundation (KOSEF) grant funded by the Korean
government (MOST) (No. R01-2007-000-11167-0).

6. REFERENCES
[1] C. Chang and C. Lin, LIBSVM : a library for support

vector machines, [Software]. Available:
http://www.csie.ntu.edu.tw/~cjlin/libsvm. 2001.

[2] W. B. Croft, D. Metzler, and T. Stronhman, Search
engines: information retrieval in practice, Addison
Wesley, 2010.

[3] H. Drucker, D. Wu, and V. Vapnik, “Support vector
machines for spam categorization,” IEEE Trans. Neural
Networks, vol. 10(5), pp. 1048-1054, 1999.

[4] J. L. Elsas et al., “Retrieval and feedback models for
blog feed search,” Proc. 31st Ann. Int’l ACM SIGIR
Conf. Research and Development in Information
Retrieval (SIGIR), pp. 347-354, 2008.

[5] Google reader, http://reader.google.com.
[6] D. Johnson, RSS and Atom in action: web 2.0 building

blocks, Manning Publications, 2006.
[7] S. Han et al., “Exploring the relationship between

keywords and feed elements in blog post search,” World
Wide Web, vol. 12, pp. 381-398, 2009.

[8] Y. H. Li and A. K. Jain, “Classification of text
documents,” The Computer Journal, vol. 41(8), pp.
537-546, 1998.

[9] D. Mladenić et al., “Feature selection using linear
classifier weights: interaction with classification
models,” Proc. 27nd Ann. Int’l ACM SIGIR Conf.
Research and Development in Information Retrieval
(SIGIR), pp. 234-241, 2004.

[10] L. Zhang, J. Zhu, and T. Yao, “An evaluation of
statistical spam filtering techniques,” ACM Trans.
Asian Language Information Processing, vol 3(4), pp.
243-269, 2004.

[11] Z. Zheng et al., “A regression framework for learning
ranking functions using relative relevance judgments,”
Proc. 30th Ann. Int’l ACM SIGIR Conf. Research and
Development in Information Retrieval (SIGIR), pp.
287-294, 2007.

43

Representing and Exploiting Searcher Interaction Data

Eugene Agichtein eugene@mathcs.emory.edu
Math & Computer Science Department
Emory University, Atlanta, GA

Understanding the relationship between searcher intent and behavior is crucial for improving web search.
Recently, it has been shown that the information contained in fine-grained searcher interactions, such as
mouse movements and scrolling, can be useful for predicting user intent, for automatic search evaluation,
and for clickthrough prediction. However, representing the searcher behavior and interaction data is a
challenging task. This talk will describe our recent experiments on representing and exploiting searcher
interaction data for predicting user intent and ad clickthrough behavior.

44

