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Regression

Data

Observations {(x1, y1), . . . , (xm, ym)} ⊂ X × Y drawn from some underlying prob-

ability distribution Pr(x, y).

Goal

We want to find a function f : X→ R which will tell us the value of f at x.

The aim is to predict f (x) at a new location x.

Usual Assumption

No time correlation or order between observations.

Warning: this is not true for many cases. For instance, stock market, body height

(people get taller over the ages), process control in factories (parameter drift and

device degradation), meteorology (global warming).
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Loss

Cost for Misprediction

• The cost for mispredicting the value of a stock (we invest and speculate that the

shares will be worth y$ at day x).

• Penalty that a power company pays for misprediction of the power consumption

the next day (they have to decide whether to turn on an extra power plant and

whether to buy power from other companies)

• Friction of a manufactured device (excess of tolerances).

• Yield of a wafer fab.

• Quality of recommendation based on the prediction (social sciences).

• Efficiency of subsidies (e.g. we want to increase public spending and try to find a

model for the expected spending spree before we commit the money).
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Flashback: Risk

Loss Function

A mapping c from X× Y× Y into R with the property that for all x, y, f(x)

1. c(x, y, f(x)) ≥ 0 (we can’t win by getting things right)

2. c(x, y, y) = 0 (we don’t lose if we get it exactly right)

Empirical Risk

The average loss we incur on the training data

Remp[f ] :=
1

m

m∑
i=1

c(xi, yi, f(xi))

Expected Risk

The average loss we incur on new (unseen) data

R[f ] := E [c(x, y, f(x)] =

∫
X×Y

c(x, y, f(x))dPr(x, y)
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Quadratic Loss

Loss

c(x, y, f(x)) =
1

2
(y − f (x))2 This is the most commonly used loss function.

Optimization Problem minimize
f

Remp[f ] = minimize
f

1

2m

m∑
i=1

(yi − f (xi))
2

Linear Model

We assume f (x) = 〈w,x〉. Hence we have to minimize

Remp[f ] =
1

2m

m∑
i=1

(yi − f (xi))
2 =

1

2m

m∑
i=1

(yi − 〈w,xi〉)2 =
1

2m
‖y −Xw‖2

where X = (x1, . . . ,xm) ∈ Xm and y is the matrix of all yi. This means

∂wRemp[f ] = ∂w

[
1

2m
‖y −Xw‖2

]
= ∂w

[
1

2m

(
y>y − 2y>Xw + w>X>Xw

)]
= 0.

This is satisfied for w = (X>X)−1X>y.
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Example

• Quadratic loss

• Data in 1 dimension

• Linear approximation

f (x) = 〈w,x〉

• Linear and constant

approximation

f (x) = 〈w,x〉 + b
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Pseudo Inverse

Problem

What happens if (X>X) is not invertible?

Idea

After all, we only have to find w such that X> = (X>X)w, so we have to invert

X>X only in the image of x under X.

Pseudo Inverse (also Moore-Penrose inverse)

Given M ∈ Rm×n the pseudo inverse M ∗ of M has to satisfy

MM ∗Mx = Mx for all x.

Flashback: Inverse

Recall that for the inverse matrix we have

M−1Mx = x for all x.

Note that for matrices of full rank the two definitions are equivalent.
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How to Compute the Pseudo Inverse

Singular Value Decomposition

We decompose M ∈ Rm×n with m ≥ n into UΛV where U ∈ Rm×n and V ∈ Rn×n

have orthogonal rows / columns and Λ is diagonal. Then M ∗ is given by

M ∗ = V >Λ∗U> where Λ−1 = diag(λ∗1, . . . , λ
∗
n)

where λ∗ = λ−1 for λ 6= 0 and λ∗ = 0 otherwise.

Proof MM ∗Mx = UΛV V >Λ∗U>UΛV x = UΛΛ∗ΛV x = UΛV x = Mx

Skinny Matrices

We assume that M has rank n (recall m ≥ n). Consequently M>M has full rank

and therefore it can be inverted. Now we may compute M ∗ via

M ∗ = (M>M)−1M>

Proof MM ∗Mx = M(M>M)−1M>Mx = Mx.
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Regression, Interpolation, Pseudo Inverse

Linear Model

We expand f into a set of basis functions fi : X→ R where i ∈ [n], hence

f (x) =

n∑
i=1

αifi(x) and on training data f = Fα where Fij = fj(xi)

Interpolation

Find function f for which f (xi) = yi for all i. This implies in general that n = m

and we obtain α via α = F−1y.

Regression

Find function f for which f (x) ≈ y for all x, y drawn from Pr(x, y). For mean

squared loss this implies that we obtain α by minimizing

1

m

m∑
i=1

1

2
(f (xi)− yi)2 =

1

2m
‖y − Fα‖2

The minimum is obtained for α = (F>F )−1F>y. Typically rankF < m.
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Example

• Basis functions

• Noisy data and under-

lying function

• Interpolation with cor-

rect basis

• Regression with the

first six terms of the

basis
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Problems with Squared Loss

Robustness

Single outliers (e.g., measurement errors) may destroy the estimate.

Linear regression with quadratic loss.

Squared loss may not be what we want

• linear cost of errors

• minimum error bounds (corridor estimator)
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Linear Loss (L1-loss)

Loss Function

c(x, y, f(x)) = |y − f (x)|
This means that large losses are much les penalized than with squared loss. The

estimator focuses more on the close by observations.

Optimization Problem

The loss function is not everywhere differentiable and we will obtain a linear program

(see more on next slide)

minimize
f

1

m

m∑
i=1

|yi − f (xi)|

Linear Model

f (x) = 〈w,x〉 where x,w ∈ Rn.

Remp =
1

m

m∑
i=1

|yi − 〈w,xi〉|
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How to Solve It

Idea

Transform into linear optimization problem with constraints and feed into off-the-

shelf optimizer.

Trick

Transform the absolute |y| into two variables plus a constraint (this trick is quite

useful for other problems, too).

|y| ⇐⇒


minimize ξ + ξ∗

subject to y ≤ ξ

−y ≤ ξ∗


Linear Program

minimize
1

m

m∑
i=1

ξi + ξ∗i

subject to yi − f (xi) ≤ ξi
yi − f (xi) ≥ −ξ∗i

Optionally substitute f (xi)

with 〈w,xi〉.
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Robustness of L1-loss

Optimal Solution

At the solution the lhs and rhs derivatives of Remp[f ] with respect to the parameters

(of f ) must satisfy

∂wi |0−0Remp[f ] ≤ 0 and ∂wi |0+0Remp[f ] ≥ 0

Derivative for L1 Loss

The derivative only depends on the sign of yi − f (xi). Therefore changing a point

via yi → yi + ∆ will not change the optimality of a solution unless the sign changes.

Properties of the Optimal Solution

An equal number of points will have yi − f (xi) > 0 and yi − f (xi) < 0.
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Problems with Linear Loss

Problems

• Larger variance than with `2 loss

• Symmetric loss but median rather than mean

•More difficult to compute

• Quite often not exactly what we want

Improved Choices

• Combine properties of both loss functions (quadratic and linear) to obtain a robust

and good regressor (Huber’s Loss).

•We want some tolerance (ε-insensitive Loss)

c(x, y, f(x)) = max(0, |y − f (x)| − ε)
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More Losses

• Quadratic Loss

c(x,y, f(x)) =
1

2
(y − f (x))

• Linear Loss

c(x,y, f(x)) = |y − f (x)|

• Huber’s Robust Loss

c(x,y, f(x))

=

{
1

2σ(y − f (x))2 for |y − f (x)| ≤ σ

|y − f (x)| + σ
2 otherwise

• ε-insensitive Loss

c(x, y, f(x)) = max(0, |y − f (x)| − ε)
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