
Introduction to Machine Learning

What you can use it for

• pattern recognition (faces, digits, speech),

• bioinformatics (gene finding, introns)

• internet (spam filtering, search engines)

• prediction (stock market)

What you get

• skills in programming, numerical analysis, optimization

• practical experience with data

• easy do-it-yourself algorithms

http://axiom.anu.edu.au/∼smola/sise9128/
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Overview

Week 1

Linear Algebra, Hilbert Spaces, Numerical Mathematics,

Learning Theory, Statistics, Risk Functional, Common Distributions, Perceptron

Week 2

Regression, Squared Loss, Noise Models and Loss, Regularization

Kernels, Kernel Perceptron, Kernel Regression
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Practical Issues

Scoring

This is a 3 credit point unit. Exercises and programming each count 1
4, the final exam

counts 1
2.

Problem Sheets

Due Monday at 10am in the mailbox. Late submissions cost 20% a day.

You are expected to work together in groups of 3 and submit one solution sheet per

group. If you copy from other groups you will not get points for these solutions.

Tutorials

Ben O’Loghlin (ben@syseng.anu.edu.au) will hold the tutorials (Thursday 2-5pm)

which include solutions of the exercise sheets and some programming practice with the

SVLab toolbox.

Final Exam

Probably Monday, June 18 (slides, personal notes, calculator and tables are OK).
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A Crash-Course in Math

Topics

• Vector spaces, Hilbert and Banach Spaces, Metrics and Norms

•Matrices, Eigenvalues, Orthogonal Transformations, Singular Values

• Operators, Operator Norms, Function Spaces revisited

Rationale

•We need this toolbox to describe the functions we will be dealing with and to set up

the optimization/learning problems.

Alex Smola: SISE 9128 - Introduction to Machine Learning, Lecture 1, http://axiom.anu.edu.au/∼smola/engn4520/lecture1.pdf Page 4



Metric

Definition 1 (Metric)

Denote by X a space. Then d : X× X→ R
+
0 is a metric on X if for all x,y, z ∈ X

1. d(x,y) = 0 is equivalent to x = y

2. d(x,y) = d(y,x)

3. d(x, z) ≤ d(x,y) + d(y, z) (Triangle Inequality)

Example 1 (Trivial Metric)

For arbitrary X define d(x,y) = 1 if x 6= y and d(x,y) = 0 if x = y.

Example 2 (Manhattan Distance)

For X = Rn define d(x,y) :=

n∑
i=1

|xi − yi|.
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Vector Spaces

Definition 2 (Vector Space)

A space X on which for all x,y ∈ X and for all α ∈ R the following operations are

defined:

1. x + y ∈ X (Addition)

2. αx ∈ X (Multiplication)

Definition 3 (Cauchy Series)

Given a space X, a series xi ∈ X with i ∈ N is a Cauchy series if for any ε there exists

an n0 such that for all m,n ≥ n0 we have d(xm,xn) ≤ ε.

Definition 4 (Completeness)

A space X is complete if the limits of every Cauchy series are elements of X.

We call X̄ the completion of X, i.e. the union of X and all its limits of Cauchy series.
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Vector Spaces: Examples

Rational Numbers

Addition and multiplication are obviously OK. However, the space is not complete.

For instance, we can find a Caucy series of xi ∈ Q converging to
√

2.

Real Numbers

Addition and multiplication are obviously OK. The same holds for limits (recall algebra

lectures).

R
n

Prototypical example of a vector space. addition, multiplication, and limits are obviously

OK, e.g., take X = R5 and x = (2, 33.4, 4.2, 2.999, 6).

Polynomials

Functions such as f (x) := a + bx + cx2 + dx3 obviously form a vector space. For

polynomials of finite order n we can even find a mapping between X and Rn.
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Vector Spaces: Examples

Series

series (ai) of numbers with ai ∈ R and i ∈ N are clearly vector spaces.

Fourier Expansions

expansions via the discrete Fourier transform form a vector space where

f (x) =

n∑
j=1

sj sin(jx) + cj cos(jx)

Functions

many classes of functions, e.g., f : [0, 1]→ R.

Counterexamples

• f : [0, 1]→ [0, 1] does not form a vector space!

• Z is not a vector space, unless we only allow multiplications by integers.

• The alphabet {a, . . . , z} is not a vectorspace (still it can be an interesting mathematical

object, e.g. when determining similarity of documents).
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Banach Spaces

Definition 5 (Norm)

Given a vector space X, a mapping ‖ · ‖ : X→ R
+
0 is called a norm if for all x,y ∈ X

and all α ∈ R it satisfies

1. ‖x‖ = 0 if and only if x = 0

2. ‖αx‖ = |α|‖x‖ (scaling)

3. ‖x + y‖ ≤ ‖x‖ + ‖y‖ (triangle inequality)

A mapping ‖ · ‖ not satisfying (1) is called pseudo norm.

Note that a norm also introduces a metric via d(x,y) := ‖x− y‖.

Definition 6 (Banach Space)

A complete vector space X together with a norm ‖ · ‖.
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Banach Spaces: Examples

`mp Spaces

Take the Rm endowed with the norm ‖x‖ :=

(
m∑
i=1

|xi|p
)1

p

where p > 0. Note that in

R
m all norms are equivalent, i.e. there exist c, C ∈ R+ such that

c‖x‖a ≤ ‖x‖b ≤ C‖x‖a for all x ∈ X and likewise
1

C
‖x‖b ≤ ‖x‖a ≤

1

c
‖x‖b

`p Spaces

These are subspaces of RN with ‖x‖ :=

( ∞∑
i=1

|xi|p
)1

p

.

Not for all series xi the sum converges, e.g., xi = 1
i is in `2 but not in `1.

Function Spaces Lp(X)

We replace sums by integrals over X and obtain ‖f‖ :=

(∫
X

|f (x)|pdx
)1

p

. Again, not

for all f this integral is defined, i.e. they are not elements of the corresponding Lp(X).
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Hilbert Spaces

Definition 7 (Dot Product)

Given a vector space X, a mapping 〈·, ·〉 with X × X → R which for all α ∈ R and

x,y, z ∈ X satisfies

1. 〈x,y〉 = 〈y,x〉 (symmetry)

2. 〈x, αy〉 = α〈x,y〉 (linearity)

3. 〈x,y + z〉 = 〈x,y〉 + 〈x, z〉 (additivity)

Definition 8 (Hilbert Space)

A complete vector space X, endowed with a dot product 〈·, ·〉.
The dot product automatically generates a norm (and a metric) by
‖x‖ :=

√
〈x,x〉. Thus Hilbert spaces are special case of a Banach space.

These are the spaces we will work with in this lecture.
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Hilbert Spaces: Examples

Euclidean Spaces Use standard dot product for x,y ∈ Rm given by 〈x,y〉 :=

m∑
i=1

xiyi

Function Spaces (L2(X)) Functions on X with f : X → C for all f ∈ F. Here we can

define the dot product for f, g ∈ F by 〈f, g〉 :=

∫
X

f (x)g(x)dx Note that we take the

complex conjugate of f . Also note that all we did was to replace the sum by an integral.

`2 (Infinite) series of real numbers, `2 ⊂ R
N. We define a dot product for x,y ∈ `2 by

〈x,y〉 =

∞∑
i=1

xiyi

Polarization Inequality We can recover the dot product from the norm ‖x‖ by comput-

ing ‖x + y‖2 − ‖x‖2 − ‖y‖2 = 2〈x,y〉.
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Matrices

In the following we assume that a matrix M ∈ Rm×n corresponds to a linear map from R
m

to Rn and is given by its entries Mij ∈ R.

Symmetry

A symmetric matrix M ∈ Rm×m satisfies Mij = Mji.

Antisymmetry

An antisymmetric matrix M ∈ Rm×m satisfies Mij = −Mji.

Rank

Denote by I the image of Rm under M ∈ Rm×n. Since M is a linear map, we can find

a I as a linear combination of vectors. rank(M) is the smallest number of such vectors

that span I .

Orthogonality

A matrix M ∈ Rm×m with M>M = 1 is called an orthogonal matrix (if M ∈ Cm×m it

is called unitary). This means M> = M−1.
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Matrices, Part II

Orthogonality, Part II

It consists of mutually orthogonal rows and columns. The corresponding matrix group is

often denoted by O(m) (the orthogonal group). If it is only a rotation, it is called SO(m)

(special orthogonal group).

Note that from M>M = 1 it also follows that MM> = 1 since M>M = 1 ⇒
(MM>)M = M (and all matrices have full rank).

Example

Rotation matrices in R2 are given by

M =

[
cosφ sinφ

− sinφ cosφ

]
here detM = 1.

Mirror matrices are

M =

[
1 0

0 −1

]
and M =

[
−1 0

0 1

]
here detM = 1.
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Matrix Invariants

Trace:

trM :=

m∑
i=1

Mii One can show tr(AB) = tr(BA)and thus for symmetric matrices

trM = tr(O>ΛO) = tr(ΛOO>) = trΛ =

m∑
i=1

λi

Determinant:

Antisymmetric multinear form, i.e. swapping columns or rows changes the sign, adding

elements in rows and columns is linear. Useful form

detM =

m∏
i=1

λi

Both trace and determinant are invariant under orthogonal transformations M → O>MO
where O ∈ SO(m) for of the matrix.
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Matrix Norms

Operator Norm

The norm of a linear operator A between two Banach spaces X and Y is defined as

‖A‖ := max
x∈X

‖Ax‖
‖x‖

This clearly satisfies all conditions of a norm:

• ‖αA‖ = maxx∈X
‖αAx‖
‖x‖ = |α|‖A‖.

• ‖A + B‖ = maxx∈X
‖(A+B)x‖
‖x‖ ≤ maxx∈X

‖Ax‖
‖x‖ + maxx∈X

‖Bx‖
‖x‖ = ‖A‖ + ‖B‖

• ‖A‖ = 0 implies maxx∈X
‖Ax‖
‖x‖ = 0 and thus Ax = 0 for all x. This means that A = 0.

Frobenius Norm

For a matrix M ∈ Rm×n we can define a norm in analogy to the vector norm by

‖M‖2
Frob =

m∑
i=1

n∑
j=1

M 2
ij
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Eigensystems

Definition 9 (Eigenvalues, Eigenvectors)

Denote by M ∈ Rm×m matrix, then an eigenvalue λ ∈ R and eigenvector x ∈ Rm

satisfy

Mx = λx

Ananlogously for operators A : X→ X we have Ax = λx.

Caveat

We cannot always find a complete eigensystem. Example:

[
1 2

0 1

]
Symmetric Matrices

All eigenvalues of symmetric matrices are real and symmetric matrices are fully diagonal-

izable, i.e. we can find m eigenvectors.
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Eigensystems

Orthogonality:

All eigenvectors of symmetric matrices M with different eigenvalues are mutually orthog-

onal. Proof: for two eigenvectors x and x′ with eigenalues λ, λ′ use

λx>x′ = (Mx)>x = x>(M>x′) = x>(Mx′) = λ′x>x′ hence λ′ = λ or x>x′ = 0.

Matrix Decomposition:

We can decompose symmetric M ∈ Rm×m into O>ΛO where O ∈ SO(n) and Λ =

diag(λ1, . . . , λm).

Example:

M =

[
1 2

2 1

]
has eigenvalues (−1, 3) and eigenvectors v1 =

[
− 1√

2
1√
2

]
, v2 =

[
1√
2

1√
2

]
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Matrix Norms Revisited

Operator Norm: Using M ∈ Rm×m we have

‖M‖2 = max
x∈Rm

‖Mx‖2

‖x‖2

= max
x∈Rm and ‖x‖=1

‖Mx‖2

= max
x∈Rm and ‖x‖=1

x>M>Mx

= max
x∈Rm and ‖x‖=1

x>OΛO>OΛOx

= max
x′∈Rm and ‖x′‖=1

x′
>

Λ2x′

= max
i∈[m]

λ2
i .

Frobenius Norm: Likewise we obtain

‖M‖2
Frob = tr(MM>) = trOΛO>OΛO> = trΛO>OΛO>O = trΛ2 =

m∑
i=1

λ2
i
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Positive Matrices

Positive Definite Matrix:

A matrix M ∈ Rm×m for which for all x ∈ Rm we have

x>Mx ≥ 0 if x 6= 0

This matrix has only positive eigenvalues since for all eigenvectors x we have x>Mx =

λx>x = λ‖x‖2 > 0 and thus λ > 0.

Induced Norms and Metrices:

Every positive definite matrix induces a norm via

‖x‖2
M := x>Mx

• Linearity is obvious, so is uniqueness

• The triangle inequality can be seen by writing

‖x + x′‖2
M = (x + x′)>M

1
2M

1
2(x + x′) = ‖M

1
2(x + x′)‖2

and using the triangle inequality for M
1
2x and M

1
2x′.
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Singular Value Decompositions

Idea:

Can we find something similar to the eigenvalue / eigenvector decomposition for arbitrary

matrices?

Decomposition:

Without loss of generality assume m ≥ n For M ∈ Rm×n we may write M as UΛO

where U ∈ Rm×n, O ∈ Rn×n, and Λ = diag(λ1, . . . , λn).

Furthermore O>O = OO> = U>U = 1.

Useful Trick:

Nonzero eigenvalues of M>M and MM> are the same. This is so since

M>Mx = λx and hence (MM>)Mx = λMx or equivalently (MM>)x′ = λx′.
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