## SISE 9128: Introduction to Machine Learning

| Alex Smola, RSISE ANU                                 |
|-------------------------------------------------------|
| Problem Sheet — Week 2                                |
| The due date for these problems is Friday, October 19 |

Problem 10 (Convolutions and Random Variables)

Show that for two random variables  $\xi_1, \xi_2$  with densities  $p_1(\xi_1)$  and  $p_2(\xi_2)$  the density of the random variable  $\xi := \xi_1 + \xi_2$  is given by  $p(\xi) = p_1 \circ p_2(\xi)$ .

## Problem 11 (Kernels, $B_n$ -Splines, and Mercer's Condition)

In this problem we will introduce a new class of kernels. For this purpose denote by  $B_0$  the indicator function on the interval  $\left[-\frac{1}{2}, \frac{1}{2}\right]$ , i.e.

$$B_0(x) = \begin{cases} 1 & \text{if } |x| \le \frac{1}{2} \\ 0 & \text{otherwise} \end{cases}$$

Furthermore we introduce the splines  $B_n$  on  $\mathbb{R}$  via  $B_{n+1} := B_n \circ B_0$ .

- 1. Compute the splines  $B_1$  and  $B_2$  analytically.
- 2. Show that  $B_n$  is a spline of order n, i.e. it is piecewise polynomial up to order n. Hint: use induction, i.e. assume that it is true for  $B_n$  and show that it then holds for  $B_{n+1}$ .
- 3. Compute the Fourier transform of  $B_0$ . Why does it follow from this that  $k(x, x') := B_0(x x')$  is not a valid kernel?
- 4. Show that the Fourier transform of  $B_n$  is given by  $\tilde{B}_n = (2\pi)^{\frac{n}{2}} \left(\tilde{B}_0\right)^n$ . Which  $k(x, x') := B_n(x x')$  is therefore a valid kernel?
- 5. Bonus question (difficult): Show that  $p_n(x) := \frac{n+1}{12} B_n\left(\frac{n+1}{12}x\right)$  converges to a normal distribution with zero mean and unit variance.

**Hint:** Use the result of Problem 10. Next show that  $B_n$  is the density corresponding to a sum of n + 1 random variables uniformly distributed on  $\left[-\frac{1}{2}, \frac{1}{2}\right]$ . Finally, show that  $p_n$  has zero mean and unit variance and apply the central limit theorem (from second week) to prove the claim.

## Problem 12 (Radial Basis Function Kernels)

Denote by  $k(\mathbf{x}, \mathbf{x}') := \kappa(||\mathbf{x} - \mathbf{x}'||)$  a radial basis function kernel.

1. Show that for a strictly monotonically decreasing  $\kappa : [0, \infty) \to \mathbb{R}$  the mapping into a feature space is neighbourhood preserving, i.e. that

$$d(\Phi(\mathbf{x}), \Phi(\mathbf{x}')) \leq d(\Phi(\mathbf{x}), \Phi(\mathbf{x}''))$$
 is equivalent to  $d(\mathbf{x}, \mathbf{x}') \leq d(\mathbf{x}, \mathbf{x}'')$ 

2. Show that for the kernels given below the feature map  $\Phi$  maps all  $\mathbf{x}$  onto the surface of a sphere, and more precisely, into an orthant of 90°.

$$k(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{1}{2\sigma^2} \|\mathbf{x} - \mathbf{x}'\|^2\right)$$
(1)

$$k(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{1}{\sigma} \|\mathbf{x} - \mathbf{x}'\|\right)$$
(2)

Teaching Period October 8-19, 2001