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Overview

L1: Machine learning and probability theory
Introduction to pattern recognition, classification, regression,
novelty detection, probability theory, Bayes rule, inference

L2: Density estimation and Parzen windows
Nearest Neighbor, Kernels density estimation, Silverman’s
rule, Watson Nadaraya estimator, crossvalidation

L3: Perceptron and Kernels
Hebb’s rule, perceptron algorithm, convergence, kernels

L4: Support Vector estimation
Geometrical view, dual problem, convex optimization, kernels

L5: Support Vector estimation
Regression, Novelty detection

L6: Structured Estimation
Sequence annotation, web page ranking, path planning,
implementation and optimization
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L5 Novelty Detection and Regression

Novelty Detection
Basic idea
Optimization problem
Stochastic Approximation
Examples

Regression
Additive noise
Regularization
Examples
SVM Regression
Quantile Regression
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Novelty Detection

Data
Observations (xi)
generated from some
P(x), e.g.,

network usage
patterns
handwritten digits
alarm sensors
factory status

Task
Find unusual events,
clean database,
distinguish typical
examples.
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Applications

Network Intrusion Detection
Detect whether someone is trying to hack the network,
downloading tons of MP3s, or doing anything else unusual
on the network.

Jet Engine Failure Detection
You can’t destroy jet engines just to see how they fail.

Database Cleaning
We want to find out whether someone stored bogus
information in a database (typos, etc.), mislabelled digits,
ugly digits, bad photographs in an electronic album.

Fraud Detection
Credit Cards, Telephone Bills, Medical Records

Self calibrating alarm devices
Car alarms (adjusts itself to where the car is parked), home
alarm (furniture, temperature, windows, etc.)
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Novelty Detection via Densities

Key Idea
Novel data is one that we don’t see frequently.
It must lie in low density regions.

Step 1: Estimate density
Observations x1, . . . , xm

Density estimate via Parzen windows
Step 2: Thresholding the density

Sort data according to density and use it for rejection
Practical implementation: compute

p(xi) =
1
m

∑
j

k(xi , xj) for all i

and sort according to magnitude.
Pick smallest p(xi) as novel points.
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Typical Data
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Outliers
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A better way . . .
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A better way . . .

Problems
We do not care about estimating the density properly in
regions of high density (waste of capacity).
We only care about the relative density for thresholding
purposes.
We want to eliminate a certain fraction of observations
and tune our estimator specifically for this fraction.

Solution
Areas of low density can be approximated as the level
set of an auxiliary function. No need to estimate p(x)
directly — use proxy of p(x).
Specifically: find f (x) such that x is novel if f (x) ≤ c
where c is some constant, i.e. f (x) describes the amount
of novelty.
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Maximum Distance Hyperplane

Idea Find hyperplane, given by f (x) = 〈w , x〉+ b = 0 that has
maximum distance from origin yet is still closer to the
origin than the observations.

Hard Margin

minimize
1
2
‖w‖2

subject to 〈w , xi〉 ≥ 1

Soft Margin

minimize
1
2
‖w‖2 + C

m∑
i=1

ξi

subject to 〈w , xi〉 ≥ 1− ξi

ξi ≥ 0
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The ν-Trick

Problem
Depending on C, the number of novel points will vary.
We would like to specify the fraction ν beforehand.

Solution
Use hyperplane separating data from the origin

H := {x |〈w , x〉 = ρ}

where the threshold ρ is adaptive.
Intuition

Let the hyperplane shift by shifting ρ
Adjust it such that the ’right’ number of observations is
considered novel.
Do this automatically
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The ν-Trick

Primal Problem

minimize
1
2
‖w‖2 +

m∑
i=1

ξi −mνρ

where 〈w , xi〉 − ρ + ξi ≥ 0
ξi ≥ 0

Dual Problem

minimize
1
2

m∑
i=1

αiαj〈xi , xj〉

where αi ∈ [0, 1] and
m∑

i=1

αi = νm.

Similar to SV classification problem, use standard optimizer
for it.
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USPS Digits

Better estimates since we only optimize in low density
regions.
Specifically tuned for small number of outliers.
Only estimates of a level-set.
For ν = 1 we get the Parzen-windows estimator back.
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A Simple Online Algorithm

Objective Function

1
2
‖w‖2 +

1
m

m∑
i=1

max(0, ρ− 〈w , φ(xi)〉)− νρ

Stochastic Approximation

1
2
‖w‖2 max(0, ρ− 〈w , φ(xi)〉)− νρ

Gradient

∂w [. . .] =

{
w − φ(xi) if 〈w , φ(xi)〉 < ρ
w otherwise

∂ρ[. . .] =

{
(1− ν) if 〈w , φ(xi)〉 < ρ
−ν otherwise
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Practical Implementation

Update in coefficients

αj ←(1− η)αj for j 6= i

αi ←
{

ηi if
∑i−1

j=1 αik(xi , xj) < ρ

0 otherwise

ρ =

{
ρ + η(ν − 1) if

∑i−1
j=1 αik(xi , xj) < ρ

ρ + ην otherwise

Using learning rate η.
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Online Training Run
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Worst Training Examples
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Worst Test Examples
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Mini Summary

Novelty Detection via Density Estimation
Estimate density e.g. via Parzen windows
Threshold it at level and pick low-density regions as
novel

Novelty Detection via SVM
Find halfspace bounding data
Quadratic programming solution
Use existing tools

Online Version
Stochastic gradient descent
Simple update rule: keep data if novel, but only with
fraction ν and adjust threshold.
Easy to implement
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A simple problem
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Inference

p(weight|height) =
p(height, weight)

p(height)
∝ p(height, weight)
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Bayesian Inference HOWTO

Joint Probability
We have distribution over y and y ′, given training and test
data x , x ′.

Bayes Rule
This gives us the conditional probability via

p(y , y ′|x , x ′) = p(y ′|y , x , x ′)p(y |x) and hence
p(y ′|y)∝ p(y , y ′|x , x ′) for fixed y .

Alexander J. Smola: An Introduction to Machine Learning 23 / 40



Normal Distribution in Rn

Normal Distribution in R

p(x) =
1√

2πσ2
exp

(
− 1

2σ2 (x − µ)2
)

Normal Distribution in Rn

p(x) =
1√

(2π)n det Σ
exp

(
−1

2
(x − µ)>Σ−1(x − µ)

)
Parameters

µ ∈ Rn is the mean.
Σ ∈ Rn×n is the covariance matrix.
Σ has only nonnegative eigenvalues:
The variance is of a random variable is never negative.
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Gaussian Process Inference

Our Model
We assume that all yi are related, as given by some
covariance matrix K . More specifically, we assume that
Cov(yi , yj) is given by two terms:

A general correlation term, parameterized by k(xi , xj)
An additive noise term, parameterized by δijσ

2.
Practical Solution

Since y ′|y ∼ N(µ̃, K̃ ), we only need to collect all terms in
p(t , t ′) depending on t ′ by matrix inversion, hence

K̃ = Ky ′y ′ − K>
yy ′K−1

yy Kyy ′ and µ̃ = µ′ + K>
yy ′

[
K−1

yy (y − µ)
]︸ ︷︷ ︸

independent of y ′

Key Insight
We can use this for regression of y ′ given y .
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Some Covariance Functions

Observation
Any function k leading to a symmetric matrix with
nonnegative eigenvalues is a valid covariance function.

Necessary and sufficient condition (Mercer’s Theorem)
k needs to be a nonnegative integral kernel.

Examples of kernels k(x , x ′)

Linear 〈x , x ′〉
Laplacian RBF exp (−λ‖x − x ′‖)
Gaussian RBF exp

(
−λ‖x − x ′‖2)

Polynomial (〈x , x ′〉+ c〉)d
, c ≥ 0, d ∈ N

B-Spline B2n+1(x − x ′)
Cond. Expectation Ec[p(x |c)p(x ′|c)]
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Linear Covariance
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Laplacian Covariance
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Gaussian Covariance
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Polynomial (Order 3)
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B3-Spline Covariance
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Gaussian Processes and Kernels

Covariance Function
Function of two arguments
Leads to matrix with nonnegative eigenvalues
Describes correlation between pairs of observations

Kernel
Function of two arguments
Leads to matrix with nonnegative eigenvalues
Similarity measure between pairs of observations

Lucky Guess
We suspect that kernels and covariance functions are
the same . . .
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Training Data
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Mean ~k>(x)(K + σ21)−1y
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Variance k(x , x) + σ2− ~k>(x)(K + σ21)−1~k(x)
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Putting everything together . . .
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Another Example
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The ugly details

Covariance Matrices
Additive noise

K = Kkernel + σ21

Predictive mean and variance

K̃ = Ky ′y ′ − K>
yy ′K−1

yy Kyy ′ and µ̃ = K>
yy ′K−1

yy y

Pointwise prediction

Kyy = K + σ21

Ky ′y ′ = k(x , x) + σ2

Kyy ′ = (k(x1, x), . . . , k(xm, x))

Plug this into the mean and covariance equations.
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Mini Summary

Gaussian Process
Like function, just random
Mean and covariance determine the process
Can use it for estimation

Regression
Jointly normal model
Additive noise to deal with error in measurements
Estimate for mean and uncertainty
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Support Vector Regression

Loss Function
Given y , find f (x) such that the loss l(y , f (x)) is minimized.

Squared loss (y − f (x))2.
Absolute loss |y − f (x)|.
ε-insensitive loss max(0, |y − f (x)| − ε).
Quantile regression loss
max(τ(y − f (x)), (1− τ)(f (x)− y)).

Expansion
f (x) = 〈φ(x), w〉+ b

Optimization Problem

minimize
w

m∑
i=1

l(yi , f (xi)) +
λ

2
‖w‖2
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Regression loss functions
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Summary

Novelty Detection
Basic idea
Optimization problem
Stochastic Approximation
Examples

LMS Regression
Additive noise
Regularization
Examples
SVM Regression
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