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Overview

L1: Machine learning and probability theory
Introduction to pattern recognition, classification, regression,
novelty detection, probability theory, Bayes rule, inference

L2: Density estimation and Parzen windows
Nearest Neighbor, Kernels density estimation, Silverman’s
rule, Watson Nadaraya estimator, crossvalidation

L3: Perceptron and Kernels
Hebb’s rule, perceptron algorithm, convergence, feature
maps, kernels

L4: Support Vector estimation
Geometrical view, dual problem, convex optimization, kernels

L5: Support Vector estimation
Regression, Quantile regression, Novelty detection, ν-trick

L6: Structured Estimation
Sequence annotation, web page ranking, path planning,
implementation and optimization
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L2 Instance Based Methods

Nearest Neighbor Rules
Density estimation

empirical frequency, bin counting
priors and Laplace rule

Parzen windows
Smoothing out the estimates
Examples

Adjusting parameters
Cross validation
Silverman’s rule

Classification and regression with Parzen windows
Watson-Nadaraya estimator
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Binary Classification
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Nearest Neighbor Rule

Goal
Given some data xi , want to classify using class label yi .

Solution
Use the label of the nearest neighbor.

Modified Solution (classification)
Use the label of the majority of the k nearest neighbors.

Modified Solution (regression)
Use the value of the average of the k nearest neighbors.

Key Benefits
Basic algorithm is very simple.
Can use arbitrary similarity measures
Will eventually converge to the best possible result.

Problems
Slow and inefficient when we have lots of data.
Not very smooth estimates.
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Python Pseudocode

Nearest Neighbor Classifier

from pylab import *
from numpy import *

... load data ...

xnorm = sum(x**2)
xtestnorm = sum(xtest**2)

dists = (-2.0*dot(x.transpose(), xtest) + xtestnorm).transpose() + xnorm

labelindex = dists.argmin(axis=1)

k -Nearest Neighbor Classifier

sortargs = dists.argsort(axis=1)
k = 7
ytest = sign(mean(y[sortargs[:,0:k]], axis=1))

Nearest Neighbor Regression
just drop sign(...)
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Nearest Neighbor
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7 Nearest Neighbors
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7 Nearest Neighbors
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Regression Problem
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Nearest Neighbor Regression
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7 Nearest Neighbors Regression
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Mini Summary

Nearest Neighbor Rule
Predict same label as nearest neighbor

k -Nearest Neighbor Rule
Average estimates over k neighbors

Details
Easy to implement
No training required
Slow if lots of training data
Not so great performance
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Tossing a dice (again)
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Priors to the Rescue

Big Problem
Only sampling many times gets the parameters right.

Rule of Thumb
We need at least 10-20 times as many observations.

Conjugate Priors
Often we know what we should expect. Using a conjugate
prior helps. We insert fake additional data which we
assume that it comes from the prior.

Conjugate Prior for Discrete Distributions
Assume we see ui additional observations of class i .

πi =
#occurrences of i + ui

#trials +
∑

j uj
.

Assuming that the dice is even, set ui = m0 for all
1 ≤ i ≤ 6. For ui = 1 this is the Laplace Rule.
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Example: Dice

20 tosses of a dice

Outcome 1 2 3 4 5 6
Counts 3 6 2 1 4 4
MLE 0.15 0.30 0.10 0.05 0.20 0.20
MAP (m0 = 6) 0.25 0.27 0.12 0.08 0.19 0.19
MAP (m0 = 100) 0.16 0.19 0.16 0.15 0.17 0.17

Consequences
Stronger prior brings the estimate closer to uniform
distribution.
More robust against outliers
But: Need more data to detect deviations from prior
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Correct dice
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Tainted dice
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Mini Summary

Maximum Likelihood Solution
Count number of observations per event
Set probability to empirical frequency of occurrence.

Maximum a Posteriori Solution
We have a good guess about solution
Use conjugate prior
Corresponds to inventing extra data
Set probability to take additional observations into
account

Extension
Works also for other estimates, such as means and
covariance matrices.
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Density Estimation

Data
Continuous valued random variables.

Naive Solution
Apply the bin-counting strategy to the continuum. That is, we
discretize the domain into bins.

Problems
We need lots of data to fill the bins
In more than one dimension the number of bins grows
exponentially:
Assume 10 bins per dimension, so we have 10 in R1

100 bins in R2

1010 bins (10 billion bins) in R10 . . .
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Mixture Density
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Sampling from p(x)
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Bin counting
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Parzen Windows

Naive approach
Use the empirical density

pemp(x) =
1
m

m∑
i=1

δ(x , xi).

which has a delta peak for every observation.
Problem

What happens when we see slightly different data?
Idea

Smear out pemp by convolving it with a kernel k(x , x ′). Here
k(x , x ′) satisfies∫

X

k(x , x ′)dx ′ = 1 for all x ∈ X.
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Parzen Windows

Estimation Formula
Smooth out pemp by convolving it with a kernel k(x , x ′).

p(x) =
1
m

m∑
i=1

k(xi , x)

Adjusting the kernel width
Range of data should be adjustable
Use kernel function k(x , x ′) which is a proper kernel.
Scale kernel by radius r . This yields

kr (x , x ′) := r nk(rx , rx ′)

Here n is the dimensionality of x .
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Discrete Density Estimate
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Smoothing Function
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Density Estimate
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Examples of Kernels

Gaussian Kernel

k(x , x ′) =
(
2πσ2) n

2 exp
(
− 1

2σ2‖x − x ′‖2
)

Laplacian Kernel

k(x , x ′) = λn2−n exp (−λ‖x − x ′‖1)

Indicator Kernel

k(x , x ′) = 1[−0.5,0.5](x − x ′)

Important Issue
Width of the kernel is usually much more important than
type.
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Gaussian Kernel
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Laplacian Kernel
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Indicator Kernel
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Gaussian Kernel
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Laplacian Kernel
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Laplacian Kernel
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Selecting the Kernel Width

Goal
We need a method for adjusting the kernel width.

Problem
The likelihood keeps on increasing as we narrow the kernels.

Reason
The likelihood estimate we see is distorted (we are being
overly optimistic through optimizing the parameters).

Possible Solution
Check the performance of the density estimate on an unseen
part of the data. This can be done e.g. by

Leave-one-out crossvalidation
Ten-fold crossvalidation
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Expected log-likelihood

What we really want
A parameter such that in expectation the likelihood of the
data is maximized

pr (X ) =
m∏

i=1

pr (xi)

or equivalently
1
m

log pr (X ) =
1
m

m∑
i=1

log pr (xi).

However, if we optimize r for the seen data, we will
always overestimate the likelihood.

Solution: Crossvalidation
Test on unseen data
Remove a fraction of data from X , say X ′, estimate using
X\X ′ and test on X ′.
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Crossvalidation Details

Basic Idea
Compute p(X ′|θ(X\X ′)) for various subsets of X and
average over the corresponding log-likelihoods.

Practical Implementation
Generate subsets Xi ⊂ X and compute the log-likelihood
estimate

1
n

n∑
i

1
|Xi |

log p(Xi |θ(X |\Xi))

Pick the parameter which maximizes the above estimate.
Special Case: Leave-one-out Crossvalidation

pX\xi (xi) =
m

m − 1
pX (xi)−

1
m − 1

k(xi , xi)
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Cross Validation
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Best Fit (λ = 1.9)
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Mini Summary

Discrete Density
Bin counting
Problems for continuous variables
Really big problems for variables in high dimensions
(curse of dimensionality)

Parzen Windows
Smooth out discrete density estimate.
Smoothing kernel integrates to 1 (allows for similar
observations to have some weight).
Density estimate is average over kernel functions
Scale kernel to accommodate spacing of data

Tuning it
Cross validation
Expected log-likelihood
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Application: Novelty Detection

Goal
Find the least likely observations xi from a dataset X .
Alternatively, identify low-density regions, given X .

Idea
Perform density estimate pX (x) and declare all xi with
pX (xi) < p0 as novel.

Algorithm
Simply compute f (xi) =

∑
j k(xi , xj) for all i and sort

according to their magnitude.
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Applications

Network Intrusion Detection
Detect whether someone is trying to hack the network,
downloading tons of MP3s, or doing anything else unusual
on the network.

Jet Engine Failure Detection
You can’t destroy jet engines just to see how they fail.

Database Cleaning
We want to find out whether someone stored bogus
information in a database (typos, etc.), mislabelled digits,
ugly digits, bad photographs in an electronic album.

Fraud Detection
Credit Cards, Telephone Bills, Medical Records

Self calibrating alarm devices
Car alarms (adjusts itself to where the car is parked), home
alarm (furniture, temperature, windows, etc.)
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Order Statistic of Densities
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Typical Data
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Outliers
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Silverman’s Automatic Adjustment

Problem
One ’width fits all’ does not work well whenever we have
regions of high and of low density.

Idea
Adjust width such that neighbors of a point are included in the
kernel at a point. More specifically, adjust range hi to yield

hi =
r
k

∑
xj∈NN(xi ,k)

‖xj − xi‖

where NN(xi , k) is the set of k nearest neighbors of xi and r
is typically chosen to be 0.5.

Result
State of the art density estimator, regression estimator and
classifier.
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Sampling from p(x)
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Uneven Scales
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Neighborhood Scales
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Adjusted Width
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Watson-Nadaraya Estimator

Goal
Given pairs of observations (xi , yi) with yi ∈ {±1} find
estimator for conditional probability Pr(y |x).

Idea
Use definition p(x , y) = p(y |x)p(x) and estimate both p(x)
and p(x , y) using Parzen windows. Using Bayes rule this
yields

Pr(y = 1|x) =
P(y = 1, x)

P(x)
=

m−1 ∑
yi=1 k(xi , x)

m−1
∑

i k(xi , x)

Bayes optimal decision
We want to classify y = 1 for Pr(y = 1|x) > 0.5. This is
equivalent to checking the sign of

Pr(y = 1|x)− Pr(y = −1|x) ∝
∑

i

yik(xi , x)
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Python Pseudocode

# Kernel function
import elefant.kernels.vector
k = elefant.kernels.vector.CGaussKernel(1)

# Compute difference between densities
ytest = k.Expand(xtest, x, y)

# Compute density estimate (up to scalar)
density = k.Expand(xtest, x, ones(x.shape[0]))
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Parzen Windows Classifier
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Parzen Windows Density Estimate
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Parzen Windows Conditional
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Watson Nadaraya Regression

Decision Boundary
Picking y = 1 or y = −1 depends on the sign of

Pr(y = 1|x)− Pr(y = −1|x) =

∑
i yik(xi , x)∑

i k(xi , x)

Extension to Regression
Use the same equation for regression. This means that

f (x) =

∑
i yik(xi , x)∑

i k(xi , x)

where now yi ∈ R.
We get a locally weighted version of the data
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Regression Problem
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Watson Nadaraya Regression
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Mini Summary

Novelty Detection
Observations in low-density regions are special
(outliers).
Applications to database cleaning, network security, etc.

Adaptive Kernel Width (Silverman’s Trick)
Kernels wide wherever we have low density

Watson Nadaraya Estimator
Conditional density estimate
Difference between class means (in feature space)
Same expression works for regression, too
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Summary

Density estimation
empirical frequency, bin counting
priors and Laplace rule

Parzen windows
Smoothing out the estimates
Examples

Adjusting parameters
Cross validation
Silverman’s rule

Classification and regression with Parzen windows
Watson-Nadaraya estimator
Nearest neighbor classifier
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