
Problems in Novelty Detection

Problem

Depending on how we choose C, the number of points selected as lying on the

“wrong” side of the hyperplane H := {x|〈w,x〉 = 1} will vary.

But we would like to specify a certain fraction ν beforehand.

Example

In an alarm device, we want to make sure that it goes off at most, say, once a month

without reason. So only one of all the measurements on average should be considered

unusual.

Idea

If we could adjust the threshold, i.e. f (x) ≥ ρ rather than f (x) ≥ 1, we might be

able to choose the fraction of points adaptively.
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Adaptive Threshold

Goal

We want to solve the original optimization problem (the one in the w and ξi) as well

as possible and at the same time achieve a large margin ρ such that

f (xi) ≥ ρ− ξi for all 1 ≤ i ≤ m

Idea

Simply subtract ρ (with an additional scaling factor) from the original objective

function. We obtain

minimize
1

2
‖w‖2 + C

m∑
i=1

(ξi − νρ)

subject to 〈w,xi〉 ≥ ρ− ξi
ξi ≥ 0
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Eliminating C

Problem

We now have two parameters C and ν to adjust. This is rather messy. Let’s get rid

of one of them.

Theorem

Denote by w, ρ the solution of

minimize
1

2
‖w‖2 +

m∑
i=1

(ξi − νρ)

subject to 〈w,xi〉 ≥ ρ− ξi and ξi ≥ 0

and by wC, ρC the solution

minimize
1

2
‖w‖2 + C

m∑
i=1

(ξi − νρ)

subject to 〈w,xi〉 ≥ ρ− ξi and ξi ≥ 0

Then wC = Cw and ρC = Cρ.
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Proof

Intuitive Reasoning

In the objective function the derivative with respect to w leaves the first term

identical and the second term (specifying the kernel expansion) is multiplied by

C. Moreover, the constraints can just be rescaled.

Formal Proof

We compute the Lagrangian.

L(w, ρ, ξ) =
1

2
‖w‖2 + C

m∑
i=1

(ξi − νρ) +

m∑
i=1

αi(ρ− ξi − 〈w,xi〉)−
m∑
i=1

ηiξi

This leads to the optimality conditions in w, ρ, ξ as follows

∂wL = w −
m∑
i=1

αixi = 0, ∂ρL =

m∑
i=1

(−Cν + αi) = 0, ∂ξiL = C − αi − ηi

Now assume we have a solution for C0 = 1. Then clearly rescaling all variables by

C will lead to a feasible solution for C 6= 1. So, without loss of generality we always

set C = 1.
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Optimization Problem for Novelty Detection

Rewriting the Lagrangian

Sorting out all the dependencies in w, ρ, and ξi we obtain

L(w, ρ, ξ) =
1

2
‖w‖2 −

m∑
i=1

αi〈w,xi〉 − ρ
m∑
i=1

(ν − αi) +

m∑
i=1

ξi(1− αi − ηi)

with the saddle point conditions

∂wL = w −
m∑
i=1

αixi = 0, ∂ρL =

m∑
i=1

(−ν + αi) = 0, ∂ξiL = 1− αi − ηi

Eliminating Primal Variables

The green and blue terms vanish and we obtain (after a sign change)

minimize
1

2

m∑
i,j=1

αiαj〈xi,xj〉

subject to

m∑
i=1

αi = mν and αi ∈ [0, 1]
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Proof of ν-Property

Theorem

• At least a fraction of ν points will lie on the “wrong” side of the hyperplane, i.e.

〈w,xi〉 ≤ ρ.

• At least a fraction of 1− ν points will satisfy 〈w,xi〉 ≥ ρ.

Proof

All we have to do is check the constraints

m∑
i=1

αi = mν and αi ∈ [0, 1].

• Since only Support Vectors, i.e. points with f (xi) ≤ ρ have nonzero αi and

simultaneously αi ∈ [0, 1], we need at least dνme points to satisfy
∑

i αi = νm.

This proves the first part.

• Since only for those points where f (xi) < ρ the Lagrange multipliers αi = 1, we

cannot have more than bνmc of them. This shows the second part.
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Classification

Idea

We make the width of the margin which we so far set to 1 a variable of the opti-

mization problem, i.e.

yif (xi) ≥ ρ instead of yif (xi) ≥ 1

Primal Objective Function

Now we have to make ρ part of the optimization problem. Since we want a large

margin we have to subtract it from the original objective function and we obtain

minimize
1

2
‖w‖2 +

m∑
i=1

(ξi−νρ)

subject to yi(〈w, xi〉 + b)− ρ + ξi ≥ 0 for all 1 ≤ i ≤ m

As in novelty detection we may eliminate C (see problem sheet).
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Dual Problem

Lagrange Function

L(w, b, ξ, ρ, α, η) =
1

2
‖w‖2+

m∑
i=1

(ξi−νρ)+

m∑
i=1

αi (ρ− ξi − yi(〈w,xi〉 + b))−
m∑
i=1

ηiξi

Saddle Point Conditions

∂wL = w −
m∑
i=1

αiyixi = 0 ⇐⇒ w =

m∑
i=1

αiyixi

∂bL =

m∑
i=1

−αiyi = 0 ⇐⇒
m∑
i=1

αiyi = 0

∂ξiL = 1− αi − ηi = 0 ⇐⇒ αi ∈ [0, 1] with ηi = 1− αi

∂ρL =

m∑
i=1

(αi − ν) = 0 ⇐⇒
m∑
i=1

αi = mν

Dual Problem minimize
1

2

m∑
i,j=1

αiαjyiyjk(xi,xj)

subject to αi ∈ [0, 1],
∑m

i=1 αiyi = 0 and
∑m

i=1 αi = νm
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Interpretation

ν-Property

As in novelty detection, the ν-property holds, i.e. we have at least νm points on or

beyond the margin and at most (1− ν)m points on the “right” side of the margin.

This follows directly from the summation constraint on αi.

Advantage

Now we can specify the training error beforehand (or at least the margin error). This

should be in the order of the error we can already expect (e.g. human error rate on

OCR, previous results that other algorithms got, etc.).

This is much easier than using the C parameter.

Additional Constraint

The price we pay is an additional summation constraint. Furthermore, to obtain b, ρ

we have to use two observations and solve a linear system.

Practical Trick — we can get b, ρ directly from a quadratic optimizer as the dual

variables to the constraints (dual dual = primal).
Alex Smola: ENGN 4520 - Introduction to Machine Learning, Week 5, Lecture 3, http://axiom.anu.edu.au/∼smola/engn4520/week5 l3 4.pdf Page 9



Regression

Problem

The precision ε has to be specified beforehand. This is rather tricky, since we usually

do not know the noise within the yi.

Idea

We make the width of the ε-insensitive tube a variable of the optimization problem

and try to minimize ε along with the other variables.

Primal Objective Function

Since we want a small tube we have to add ε to the original objective function

minimize
1

2
‖w‖2 + C

m∑
i=1

(ξi + ξ∗i + νε)

subject to (〈w,xi〉 + b) ≥ yi − ε− ξi
(〈w,xi〉 + b) ≤ yi + ε + ξi
ξi, ξi ≥ 0 for all 1 ≤ i ≤ m

Unllike in novelty detection we cannot eliminate C: yi breaks the scaling freedom.
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Lagrange Function + Saddle Point

Lagrange Function

L(w, b, ε, ξ, ξ∗, α, α∗, η, η∗) =
1

2
‖w‖2 + C

m∑
i=1

(ξi + ξ∗i + νε)−
m∑
i=1

(ηiξi + η∗i ξ
∗
i )

+

m∑
i=1

α∗i ((〈w,xi〉 + b)− yi − ε− ξ∗i )

+

m∑
i=1

αi (yi − ε− ξi − (〈w,xi〉 + b))

Saddle Point Conditions

The partial derivatives of L with respect to w, b, ε, ξ, ξ∗ have to vanish. This leads

to the usual results, plus

∂εL = Cmν −
m∑
i=1

α∗i + αi = 0.

This translates into one more equality constraint of the dual optimization problem.
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Dual Problem

Quadratic Program

minimize
1

2

m∑
i,j=1

(αi − α∗i )(αj − α∗j)k(xi,xj) +

m∑
i=1

(αi − α∗i )yi

subject to

m∑
i=1

(αi + α∗i ) = Cνm

m∑
i=1

(αi − α∗i ) = 0

αi, α
∗
i ∈ [0, C]

Interpretation

We have one term less in the objective function and one more summation constraint

in the optimization problem.

Again, the ν-property holds, i.e. only a fraction of at most νm points lies outside

the ε-insensitive tube, and a fraction of at most (1− ν)m points inside.
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Using a QP Optimizer

Typical QP Optimizer

It solves a quadratic program of the following type

minimize c>x +
1

2
x>Qx

subject to li ≤ xi ≤ ui and Ax + b = 0

Rewriting the SV Optimization Problem

We explain the case of classification. There we had

minimize
1

2

m∑
i,j=1

αiαjyiyjk(xi,xj)

subject to αi ∈ [0, 1],
∑m

i=1 αiyi = 0 and
∑m

i=1 αi = νm

We identify the terms: setQij := yiyjk(xi,xj) withQ ∈ Rm×m, ci = 0 with c ∈ Rm,

li = 0, ui = 1 with l, u ∈ Rm. For the constraints use

Ai1 = yi and Ai2 = 1 where A ∈ Rm×2 and b = (0,−νm)
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