
Regression

Data

Pairs of observations

(xi, yi) generated from

some P(x, y), e.g.,

(market index, SP100)

(fab parfameters,

yield)

(user profile, price)

Task

Predict y, given x.
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ε-insensitive Linear Regressor

Optimization Problem

Find the “flattest” function f (x) = 〈x,w〉 + b while keeping the approximation

error exceeding ε, i.e. |yi − f (xi)|ε as small as possible. Here

|ξ|ε = max(0, |ξ| − ε) =

{
|ξ| − ε if |ξ| ≥ ε

0 otherwise
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Optimization Problem

Idea

We have to rewite the loss function |ξ|ε as an optimization problem (week 3).

Analog to Soft Margin Classification

minimize
1

2
‖w‖2 + C

m∑
i=1

(ξi + ξ∗i )

subject to (〈w,xi〉 + b) ≥ yi − ε− ξi
(〈w,xi〉 + b) ≤ yi + ε + ξi
ξi, ξi ≥ 0 for all 1 ≤ i ≤ m

Interpretation and Regularized Risk Functional

With the loss function c(x, y, f(x)) := |y − f (x)|ε this is equivalent to minimizing

Rreg[f ] =
1

m

m∑
i=1

|yi − f (xi)|ε +
λ

2
‖w‖2

All we have to do is rescale λ into C = 1
λm.
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Lagrange Function and Constraints

Lagrange Function

We have constraints in ξi and ξ∗i , i.e. from both sides, with corresponding ηi, η
∗
i .

L(w, b, ξ, ξ∗, α, α∗, η, η∗) =
1

2
‖w‖2 + C

m∑
i=1

(ξi + ξ∗i )−
m∑
i=1

(ηiξi + η∗i ξ
∗
i )

+

m∑
i=1

α∗i ((〈w,xi〉 + b)− yi − ε− ξ∗i )

+

m∑
i=1

αi (yi − ε− ξi − (〈w,xi〉 + b))

Saddlepoint in w

∂wL(w, b, ξ, ξ∗, α, α∗, η, η∗) = w +

m∑
i=1

(α∗ixi−αixi) = 0⇐⇒ w =

m∑
i=1

(αi − α∗i )xi
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Lagrange Function and Constraints

Saddlepoint in b

∂bL(w, b, ξ, ξ∗, α, α∗, η, η∗) =

m∑
i=1

α∗i − αi = 0

Saddlepoint in ξi

∂ξiL(w, b, ξ, ξ∗, α, α∗, η, η∗) = C − ηi − αi = 0

Saddlepoint in ξi

∂ξ∗iL(w, b, ξ, ξ∗, α, α∗, η, η∗) = C − η∗i − α∗i = 0

Strategy

Substitute the equations into L to get rid of all primal variables.
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Dual Optimization Problem

Rewriting the Lagrange Function

L =
1

2
‖w‖2 −

m∑
i=1

(αi − α∗i )〈xi,w〉 +

m∑
i=1

(αi − α∗i )yi −
m∑
i=1

(αi + α∗i )ε

m∑
i=1

[ξi(C − ηi − αi) + ξ∗i (C − η∗i − α∗i )] + b

m∑
i=1

(α∗i − αi)

Dual Objective Function

D = −1

2

m∑
i,j=1

(αi − α∗i )(αj − α∗j)〈xi,xj〉 +

m∑
i=1

(αi − α∗i )yi −
m∑
i=1

(αi + α∗i )ε

Dual Constraints w =

m∑
i=1

(αi − α∗i )xi and

m∑
i=1

(αi − α∗i ) = 0

From αi, ηi ≥ 0 and C = αi + ηi we conclude αi ∈ [0, C].
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Interpretation

Solution in w

•w is given by a linear combination of training patterns xi and the solution is

independent of the dimensionality of X.

• The expansion of w depends on the Lagrange multipliers αi and α∗i .

Kuhn-Tucker-Conditions

We know that at the optimal solution

Constraint · Lagrange Multiplier = 0

Only points with |yi − f (xi)| ≥ ε contribute to the solution, since

αi(yi − ε− ξi − (〈w,xi〉 + b)) = 0 and αi((〈w,xi〉 + b)− yi − ε− ξ∗i ) = 0

Moreover, αi = C (and likewise α∗i ) only if |yi − f (xi)| > ε, since also

ηiξi = (C − αi) = 0 and η∗i ξ
∗
i = (C − α∗i ) = 0

Only xi at or beyond the decision boundary can contribute to w.

This also allows us to compute b via b = yi − ε− 〈w,xi〉 for αi ∈ (0, C).
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Kernels

Nonlinearity via Feature Maps

In the linear optimization problem

minimize
1

2

m∑
i,j=1

(αi − α∗i )(αj − α∗j)〈xi,xj〉 −
m∑
i=1

(αi − α∗i )yi +

m∑
i=1

(αi + α∗i )ε

subject to

m∑
i=1

(αi − α∗i ) = 0 and αi, α
∗
i ∈ [0, C] for all 1 ≤ i ≤ m

we replace xi by Φ(xi) to obtain the new objective function

minimize
1

2

m∑
i,j=1

(αi − α∗i )(αj − α∗j)k(xi,xj)−
m∑
i=1

(αi − α∗i )yi +

m∑
i=1

(αi + α∗i )ε

Function Expansion

w =

m∑
i=1

(αi − α∗i )Φ(xi) =⇒ f (x) = 〈w,Φ(x)〉 + b =

m∑
i=1

(αi − α∗i )k(xi,x) + b.
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Examples
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Examples
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Examples
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Novelty Detection

Data

Observations (xi, yi) generated

from some P(x), e.g.,

(network usage patterns)

(handwritten digits)

(alarm sensors)

(factory status)

Task

Find unusual events, clean

database, distinguish typical

examples.
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Maximum Distance Hyperplane

Idea

Find hyperplane that has maximum distance from origin yet is still closer to

the origin than the observations.

Hard Margin

minimize
1

2
‖w‖2

subject to 〈w,xi〉 ≥ 1

Soft Margin

minimize
1

2
‖w‖2 + C

m∑
i=1

ξi

subject to 〈w,xi〉 ≥ 1− ξi
ξi ≥ 0
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Lagrange Function

Primal Problem

minimize
1

2
‖w‖2 + C

m∑
i=1

ξi

subject to 〈w,xi〉 − 1 + ξi ≥ 0 and ξi ≥ 0

Lagrange Function

As before, we add the negative constraints to the objective function and obtain:

L(w, ξ) =
1

2
‖w‖2 + C

m∑
i=1

ξi −
m∑
i=1

αi (〈w, xi〉 − 1 + ξi)−
m∑
i=1

ηiξi where αi, ηi ≥ 0

For optimality we have to compute the partial derivatives of L with respect to w

and ξ and eliminate the primal variables.

Note that we have no constant offset b here.
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The Dual Optimization Problem

Optimality Conditions

∂wL = w −
m∑
i=1

αixi = 0 =⇒ w =

m∑
i=1

αixi

∂ξiL = C − αi − ηi = 0 =⇒ αi ∈ [0, C]

Now we substitute the two optimality conditions back into L.

Dual Problem

minimize
1

2

m∑
i=1

αiαj〈xi,xj〉 −
m∑
i=1

αi

subject to αi ∈ [0, C]

With Kernels

minimize
1

2

m∑
i=1

αiαjk(xi,xj)−
m∑
i=1

αi

subject to αi ∈ [0, C]
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