ENGN 4520: Introduction to Machine Learning

Alex Smola, RSISE ANU Problem Sheet — Week 5 **The due date for these problems is Thursday, June 7**

Teaching Period April 30 to June 8, 2001

A Theory

Problem 18 (Scale Invariance for Classification, 6 Points)

Show that for classification using the ν -trick, the following two optimization problems are equivalent:

minimize
$$\frac{1}{2} \|\mathbf{w}\|^2 + \sum_{i=1}^m (\xi_i - \nu \rho)$$

subject to $y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + b) \ge \rho - \xi_i \text{ and } \xi_i \ge 0$

and

minimize
$$\frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^m (\xi_i - \nu \rho)$$

subject to $y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + b) \ge \rho - \xi_i \text{ and } \xi_i \ge 0$

In other words, show that one can transform the solution (\mathbf{w}, b) of the first problem into one of the second (\mathbf{w}', b') by linear scaling.

Problem 19 (Stochastic Gradient Descent with ν , 7 Points)

Denote by $R_{\text{reg}}[f]$ the regularized risk functional for a linear model $f(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} \rangle + b$ with

$$R_{\text{reg}}[f] = \frac{1}{m} \sum_{i=1}^{m} \max(0, \rho - y_i f(\mathbf{x}_i)) + \varepsilon \nu + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

in a classification setting $(y_i \in \{-1, 1\})$.

- 1. Derive a stochastic gradient descent algorithm in \mathbf{w}, b .
- 2. Rewrite the algorithm using feature space methods, i.e. $\mathbf{x} \to \Phi(\mathbf{x})$ and kernels.
- 3. Give a kernel expansion for f.

Problem 20 (Adaptive Margin Width in Regression, 7 Points)

Assume that we want to perform regression on $(\mathbf{x}_1, y_1), \ldots, (\mathbf{x}_m, y_m)$ with the ε -insensitive loss function

$$c(\mathbf{x}, y, f(\mathbf{x})) = |y - f(\mathbf{x})|_{\varepsilon}$$

- 1. Set up the equations for the regularized risk functional using c as a loss function.
- 2. Modify the regularized risk functional such that for each observation (\mathbf{x}_i, y_i) we may use a different width ε_i .
- 3. Rewrite the regularized risk functional as a constrained quadratic optimization problem.
- 4. Compute the dual optimization problem.

ENGN 4520: Introduction to Machine Learning

Alex Smola, RSISE ANU Problem Sheet — Week 5 **The due date for these problems is Thursday, June 7** Teaching Period April 30 to June 8, 2001

B Programming

Problem 21 (Ugly Digits, 20 Points)

The goal is to use the novelty detection algorithm with ν , as describes in the lecture, to find badly written digits in a database with handwritten digits. You need a computer with **64MB memory** and a new version of SVLab for this problem.

- 1. Download the dataset from http://axiom.anu.edu.au/~smola/engn4520/usps.zip, unzip it and load it into MATLAB. It contains a training set (2000 examples) and a test set (6000 examples).
- 2. Describe (on paper) the variable assignment for a quadratic optimizer of your choice.
- 3. Implement in MATLAB an algorithm that takes $(\mathbf{x}_1, \ldots, \mathbf{x}_m)$, ν , and the kernel as an input and outputs α_i and ρ , which solves the novelty detection problem.
- 4. Rank your training set according the function values $f(\mathbf{x}_i)$, i.e. worst examples first for a Gaussian RBF kernel

$$k(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{1}{2\sigma^2} \|\mathbf{x} - \mathbf{x}'\|^2\right)$$

with the following values for σ^2 : $\sigma^2 = 0.2d, \sigma^2 = 0.5d, \sigma^2 = d$ where d = 256 and $\nu = 0.01$ and $\nu = 0.1$ for the current dataset.

5. Rank your test set according to the same criterion. Plot the images of the so-chosen samples. Hint: you can reshape the vector \mathbf{x}_i into a 16×16 matrix with the reshape command in MATLAB.

More Instructions for SVLab Toolbox

Download the new version of SVLab http://axiom.anu.edu.au/~smola/engn4520/svlab.zip and install it on your system. In addition to the functions of previous week you will need to use the intpoint_pr object which is a quadratic optimizer (you can also use the built-in qp routine of MATLAB if your computer has the license). It is used as follows

optimizer = intpoint_pr; %creates optimizer object (intpoint_re is for regression)
optimizer.verbose = 2; %makes the output verbose (recommended)

[primal, dual, how] = optimize(optimizer, c, H, A, b, l, u); %calls the optimizer with quadratic matrix \$H\$, linear term \$c\$, constraint %matrix \$A\$, lower bound \$l\$, and uppper bound \$u\$

This solves the following optimization problem:

minimize $c^{\top}x + \frac{1}{2}x^{\top}Hx$ subject to $l_i \leq x_i \leq u_i$ and Ax = b