ENGN 4520: Introduction to Machine Learning

Alex Smola, RSISE ANU Problem Sheet — Week 4 The due date for these problems is Monday, May 28 Teaching Period April 30 to June 8, 2001

A Theory

Problem 14 (Convolutions and Random Variables, 4 Points)

Show that for two random variables ξ_1, ξ_2 with densities $p_1(\xi_1)$ and $p_2(\xi_2)$ the density of the random variable $\xi := \xi_1 + \xi_2$ is given by $p(\xi) = p_1 \circ p_2(\xi)$.

Problem 15 (Kernels, B_n -Splines, and Mercer's Condition, 10 Points)

In this problem we will introduce a new class of kernels. For this purpose denote by B_0 the indicator function on the interval $\left[-\frac{1}{2}, \frac{1}{2}\right]$, i.e.

$$B_0(x) = \begin{cases} 1 & if \ |x| \le \frac{1}{2} \\ 0 & otherwise \end{cases}$$

Furthermore we introduce the splines B_n on \mathbb{R} via $B_{n+1} := B_n \circ B_0$.

- 1. Compute the splines B_1 and B_2 analytically.
- 2. Show that B_n is a spline of order n, i.e. it is piecewise polynomial up to order n. Hint: use induction, i.e. assume that it is true for B_n and show that it then holds for B_{n+1} .
- 3. Compute the Fourier transform of B_0 . Why does it follow from this that $k(x, x') := B_0(x x')$ is not a vaild kernel?
- 4. Show that the Fourier transform of B_n is given by $\tilde{B}_n = (2\pi)^{\frac{n}{2}} \left(\tilde{B}_0\right)^n$. Which $k(x, x') := B_n(x x')$ is therefore a valid kernel?
- 5. Bonus question (difficult): Show that $p_n(x) := \frac{n+1}{12} B_n\left(\frac{n+1}{12}x\right)$ converges to a normal distribution with zero mean and unit variance.

Hint: Use the result of Problem 14. Next show that B_n is the density corresponding to a sum of n + 1 random variables uniformly distributed on $\left[-\frac{1}{2}, \frac{1}{2}\right]$. Finally, show that p_n has zero mean and unit variance and apply the central limit theorem (from second week) to prove the claim.

Problem 16 (Radial Basis Function Kernels, 6 Points)

Denote by $k(\mathbf{x}, \mathbf{x}') := \kappa(||\mathbf{x} - \mathbf{x}'||)$ a radial basis function kernel.

1. Show that for a strictly monotonically decreasing $\kappa : [0, \infty) \to \mathbb{R}$ the mapping into a feature space is neighbourhood preserving, i.e. that

$$d(\Phi(\mathbf{x}), \Phi(\mathbf{x}')) \leq d(\Phi(\mathbf{x}), \Phi(\mathbf{x}''))$$
 is equivalent to $d(\mathbf{x}, \mathbf{x}') \leq d(\mathbf{x}, \mathbf{x}'')$

2. Show that for the kernels given below the feature map Φ maps all \mathbf{x} onto the surface of a sphere, and more precisely, into an orthant of 90°.

$$k(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{1}{2\sigma^2} \|\mathbf{x} - \mathbf{x}'\|^2\right)$$
(1)

$$k(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{1}{\sigma} \|\mathbf{x} - \mathbf{x}'\|\right)$$
(2)

ENGN 4520: Introduction to Machine Learning

Alex Smola, RSISE ANU Problem Sheet — Week 4 The due date for these problems is Monday, May 28 Teaching Period April 30 to June 8, 2001

B Programming

Problem 17 (Kernels and Regression, 20 Points) As in previous week's exercise, we assume squared loss and we also keep the regularization terms. However, this time we are going to use kernels. This means that f is given by

$$f(\mathbf{x}) = \sum_{i=1}^{m} \alpha_i k(\mathbf{x}_i, \mathbf{x})$$

where the \mathbf{x}_i are the training points.

1. Implement in MATLAB an algorithm that takes $(\mathbf{x}_1, \ldots, \mathbf{x}_m)$, (y_1, \ldots, y_m) and the kernel object as an input and produces the vector of α_i which minimize the **empirical risk** as an output.

Note: the matrix K may have very small eigenvalues. You can use pinv in MATLAB to deal with the problem.

2. Test your program on data generated by

$$y = f(x) + \xi$$
 where $f(x) = 1 + 2x + 3\exp(-(3-x)^2) + 2\exp(-(5-x)^2)$

More specifically, draw x unformly at random from [0, 10] and let ξ be normally distributed with zero mean and variance σ . Plot the estimate of f(x) on [0, 10] for $(m = 50, \sigma = 0)$ and $(m = 50, \sigma = 0.5)$ with the following kernels

- a Gaussian RBF kernel with kernel width $\omega = 1$ and with $\omega = 0.5$.
- a polynomial kernel $k(\mathbf{x}, \mathbf{x}') = (\langle \mathbf{x}, \mathbf{x}' \rangle + 1)^5)$ and with $(\langle \mathbf{x}, \mathbf{x}' \rangle + 1)^3)$.

3. Now we introduce a quadratic regularization term via

$$\Omega[f] = \frac{1}{2} \|\mathbf{w}\|^2$$

 $to \ minimize$

$$R_{\rm reg}[f] = R_{\rm emp}[f] + \lambda \Omega[f]$$

Modify your MATLAB code from above such that the algorithm takes $(\mathbf{x}_1, \mathbf{x}_m), (y_1, \ldots, y_m)$ and the kernel object as an input and produces the vector of α_i which minimize the **regularized risk** as an output.

- 4. Test your program in the above settings for $\lambda = 1, 0.1, 0.01$ where $(m = 50, \sigma = 0.5)$ and the following kernels
 - a Gaussian RBF kernel with kernel width $\omega = 1$ and with $\omega = 0.5$.
 - a polynomial kernel $k(\mathbf{x}, \mathbf{x}') = (\langle \mathbf{x}, \mathbf{x}' \rangle + 1)^5)$ and with $(\langle \mathbf{x}, \mathbf{x}' \rangle + 1)^3)$.

(m: number of observations, σ : variance of additive noise, ω : width of the Gaussian RBF kernel, λ : regularization constant)

ENGN 4520: Introduction to Machine Learning

Alex Smola, RSISE ANU Problem Sheet — Week 4 The due date for these problems is Monday, May 28 Teaching Period April 30 to June 8, 2001

Instructions for SVLab Toolbox

Download SVLab http://axiom.anu.edu.au/~smola/engn4520/svlab.zip (lite version) and install it on your system. To use it you have to set

```
path('svlab', path);
path('svlab/common', path);
```

It allows you to compute kernel functions efficiently. You need to initialize a kernel object first. This is done via

```
kernel = vanilla_dot; %the normal dot product as a kernel
kernel = rbf_dot; %this creates an RBF kernel
kernel.sigma = 10; %this uses the kernel exp(-sigma ||x-x'||^2)
kernel = poly_dot; %this creates a polynomial kernel
kernel.degree = 5; %polynomial kernel of degree 5
kernel.offset = 2; %and offset 2, i.e. (<x,x'> + 2)^5
```

Among others, the toolbox offers the functions sv_dot and sv_mult. They work as follows

```
%generate 1000 training observations
mtrain = 1000;
mtest = 500;
                           %test set 500
                           %in 100 dimensions
n = 100;
xtrain = randn(n,mtrain);
xtrain = randn(n,mtest);
y = randn(mtrain,1);
                           %labels
alpha = randn(mtrain,1);
                           %weights
k = sv_dot(kernel, xtrain);
%this computes the kernel matrix K_ij = k(x_i, x_j)
f = sv_mult(kernel, xtrain, alpha);
%compute the function values f(x_j) given by sum_i alpha_i k(x_i, x_j)
ktest = sv_dot(kernel, xtrain, xtest);
%this computes the kernel matrix K_ij = k(xtrain_i, xtest_j)
ftest = sv_mult(kernel, xtest, xtrain, alpha);
%compute the function values f(xtest_j) given by sum_i alpha_i k(xtrain_i, xtest_j)
```