
(Stochastic) Gradient Descent

Empirical Risk Functional Remp[f ] =
1

m

m∑
i=1

c(xi, yi, f(xi)

Idea 1

Minimize Remp[f ] by performing gradient descent. This leads to

f → f − Λ

m

m∑
i=1

∂fc(xi, yi, f(xi)

Problem

This may be expensive. If the observations are similar, this is very wasteful.

Idea 2

Minimize Remp[f ] by performing stochastic gradient descent over the individual

terms under the sum.

Stochastic Gradient f → f − Λ∂fc(xi, yi, f(xi))

Linear Model w→ w − Λxic
′(xi, yi, f(xi))

Alex Smola: ENGN 4520 - Introduction to Machine Learning, Week 3, Lecture 2, http://axiom.anu.edu.au/∼smola/engn4520/week3 l2 4.pdf Page 1



Perceptron Algorithm for Squared Loss

argument: Training sample, {x1, . . . ,xm} ⊂ X, {y1, . . . , ym} ⊂ {±1}, η

returns: Weight vector w and threshold b.

function Perceptron(X, Y, η)

initialize w, b = 0

repeat

for all i from i = 1, . . . ,m

Compute f (xi) =
(〈∑i

l=1 αlΦ(xl),Φ(xi)
〉

+ b
)

Update w, b according to w′ = w + ηαiΦ(xi) and b′ = b + ηαi
where αi = yi − f (xi)

endfor

until for all 1 ≤ i ≤ m we have g(xi) = yi
return f : x 7→ 〈w,Φ(x)〉 + b

end
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Perceptron Algorithm for Huber’s Loss

argument: Training sample, {x1, . . . ,xm} ⊂ X, {y1, . . . , ym} ⊂ {±1}, η

returns: Weight vector w and threshold b.

function Perceptron(X, Y, η)

initialize w, b = 0

repeat

for all i from i = 1, . . . ,m

Compute f (xi) =
(〈∑i

l=1 αlΦ(xl),Φ(xi)
〉

+ b
)

Update w, b according to w′ = w + ηαiΦ(xi) and b′ = b + ηαi

where αi =

{
1
σ(yi − f (xi)) for |yi − f (xi)| ≤ σ

sgn(yi − f (xi)) otherwise
endfor

until for all 1 ≤ i ≤ m we have g(xi) = yi
return f : x 7→ 〈w,Φ(x)〉 + b

end
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Learning Rate
Classification

For classification, the absolute value of f does not matter. So we need not adjust

the learning rate.

Regression

The absolute value of f is crucial, so we have to get η right.

• Large η: we get quick initial convergenceto the target but large fluctuationsremain

(stochastic gradient can be very noisy).

• Small η: slow initial convergenceto the target but we have a much better quality

estimate in the later stages.

Trick

Make η a variable of the time. One can show that η(t) = O(t−1) is optimal in many

cases. This yields quick initial convergence and low fluctuations later.

Warning

If f is fluctuating, choosing η too small will not be useful.
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Maximum Likelihood and Noise Models

Basic Idea

We assume that the observations yi are derived from f (xi) by adding noise, i.e.

yi = f (xi) + ξi where ξi is a random variable with density p(ξi).

This also means that once we know the type of noise we are dealing with, we may

compute conditional densities p(y|x) under the model assumptions.

Likelihood p(Y |f,X) = p((y1 − f (x1)), . . . , (ym, f(xm)))

We make the assumption of iid data (to keep the equations simple). This leads to

the likelihood

L =

m∏
i=1

p(yi − f (xi))

Caveat

The estimates we obtain are only as good as our initial assumptions regarding the

type of function expansion and noise. This means that we may not take p(Y |X) at

book value.
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Log-Likelihood and Loss Function

Idea

Log likelihhood and loss function look suspiciously similar, maybe we can find a link

. . . . For simplicity we assume that the that is generated iid.

Comparison

−L[f ] =

m∑
i=1

log p(yi − f (xi))

Remp[f ] =
1

m

m∑
i=1

c(xi, yi, f(xi))

Idea

The two terms differ only by a scaling constant which is irrelevant for minimization

purposes. So match up the terms.

c(x, y, f(x)) ≡ − log p(yi − f (xi))

p(yi|f (xi) ≡ exp(−c(xi, yi, f(xi))
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Density and Loss

loss function c̃(ξ) density model p(ξ)

ε–insensitive |ξ|ε 1
2(1+ε) exp(−|ξ|ε)

Laplacian |ξ| 1
2 exp(−|ξ|)

Gaussian 1
2ξ

2 1√
2π

exp(−ξ2

2 )

Huber’s

robust loss

{
1

2σ(ξ)2 if |ξ| ≤ σ

|ξ| − σ
2 otherwise

∝

{
exp(− ξ2

2σ) if |ξ| ≤ σ

exp(σ2 − |ξ|) otherwise
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A Worked-Through Example, Part I

Function Expansion

We use a linear model (as in the previous lecture) f1, . . . , fn such that

f (x) =

n∑
i=1

αifi(x)

Additive Noise

Assume Gaussian noise ξ which corrupts the measurements such that we observe y

rather than f (x), i.e. y = f (x) + ξ. We write ξ ∼ N(0, σ) in order to state that

p(ξ) =
1√

2πσ2
e
− 1

2σ2ξ
2

.

Density Model

From above we know that p(y|x, α, σ) is given by

p(y|x, α, σ) =
1√

2πσ2
exp

(
− 1

2σ2
(y − f (x))2

)
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A Worked-Through Example, Part II

Likelihood

Under the assumption of iid data, the likelihood of observing Y = {y1, . . . , ym},
given X = {x1, . . . ,xm} can be found as

p(Y |X,α, σ) =

m∏
i=1

p(yi|xi, α, σ)

Log Likelihood

L =

m∑
i=1

log p(yi|xi, α, σ)

=

m∑
i=1

log
1√

2πσ2
exp

(
− 1

2σ2
(yi − f (xi))

2

)
= −m

2
log(2πσ2)− 1

2σ2

m∑
i=1

(yi − f (xi))
2
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A Worked-Through Example, Part III

Optimality Criterion

We need a maximum with respect to the parameters α, σ. The conditions ∂αL = 0

and ∂σL = 0 are necessary for this purpose.

Optimality in α ∂αL = ∂α
1

2σ2
‖y − Fα‖2 =

1

σ2
(F>Fα− F>y) = 0

Here we defined (as before) Fij = fj(xi). It leads to the standard least mean squares

solution α = (F>F )−1F>y.

Optimality in σ

∂σL =
m

σ
− 1

σ2

m∑
i=1

(yi − f (xi))
2 = 0

Likewise this leads to σ2 =
1

m

m∑
i=1

(yi − f (xi))
2 which is empirical variance given

by the model on the training set.
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When Things go wrong with ML

No fine-grained prior knowledge

All functions we optimize over are treated as equally likely.

Not possible to check assumptions

• Our ML model works if the assumptions are correct. However, it breaks if they

are not all satisfied. And it is hard to test them.

• Difficult to integrate alternative estimates.

• Confidence bounds for estimates.

High dimensional estimates break

• Overly confident estimates

• Overfitting

• Likelihood diverges: assume yi = f (xi). In this case we would estimate σ = 0 as

the empirical variance. This in turn leads to L→∞.
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Regularization

Problem

The space of the solutions for f is too large if we admit all possible solutions in, say,

the span of f1, . . . , fn. Moreover we want to rank the solutions.

Idea

Restrict the possible solutions to the set Ω[f ] ≤ c where Ω[f ] is some convex function

Ω[f ] =

n∑
i=1

|αi| (`1 Regularization)

Ω[f ] =
1

2

n∑
i=1

α2
i (`2 Regularization)

Ω[f ] =
1

2
α>Mα here M is a positive semidefinite matrix
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Regularized Risk Functional

Problem

Restricting f to the subset Ω[f ] ≤ c will solve the problem but the optimization

problems are sometimes rather difficult to solve.

Idea

Trade off the size of Ω[f ] with respect to Remp[f ] and minimize the sum of these two

terms.

Definition

For some λ > 0, also referred to as the regularization constant, the regularized risk

functional is given by

Rreg[f ] = Remp + λΩ[f ] =
1

m

m∑
i=1

c(xi, yi, f(xi)) + λΩ[f ]

This is the central quantity in most learning settings. Note that Rreg[f ] is convex,

provided Remp[f ] and Ω[f ] are.
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Example: Adding to the Diagonal

Quadratic Loss c(x, y, f(x)) =
1

2
(y − f (x))2

Linear Model f (x) =

n∑
i=1

αifi(x)

`2 Regularizer Ω[f ] =

n∑
i=1

α2
i

Regularized Risk Functional

Rreg[f ] =
1

m

m∑
i=1

1

2
(yi − f (xi))

2 +
λ

2

n∑
i=1

α2
i =

1

2m
‖y − Fα‖2 +

λ

2
‖α‖2

Optimality Conditions

∂αRreg[f ] =
1

m
(−F>y+F>Fα)+λα = 0 and therefore α = (F>F + λm1)−1F>y

This is the same as when we added ε to the main diagonal to invert matrices or

improve their condition!
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A Practical Example

• Training Set

• Regression for λ = 0.1

• Regression for λ = 1

• Regression for λ = 10
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