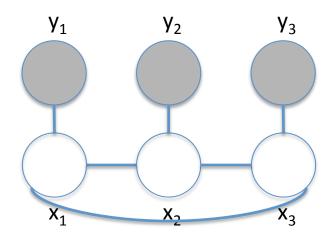
10-701 Recitation 10: Graphical Models

Dougal Sutherland

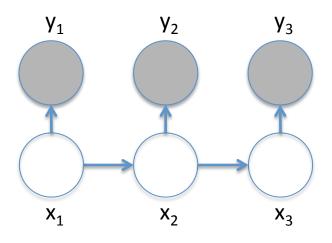
Graphical models

- Way to write a probability distribution
 - Exploit conditional independences to avoid writing out exponentially big tables
- Advantages over traditional ML methods:
 - Reason about the interactions of lots of complex things with one declarative model
 - Modular
 - Incorporate prior information really easily

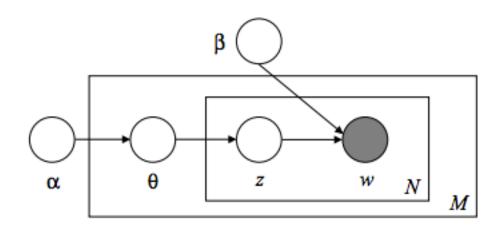
Undirected graphical models



Directed graphical models

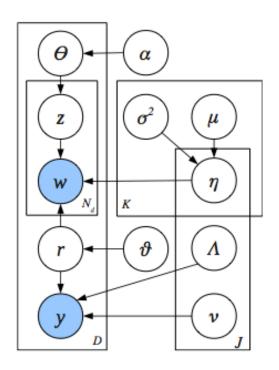


Latent Dirichlet Allocation



Blei, Ng, and Jordan, JMLR 2003

More complicated topic models



\log of base topic k 's distribution over word types
variance parameter for regional variants of topic k
region j's variant of base topic μ_k
author d's topic proportions
author d's latent region
author d's observed GPS location
region j's spatial center
region j's spatial precision
token n 's topic assignment
token n 's observed word type
global prior over author-topic proportions
global prior over region classes

Figure 1: Plate diagram for the geographic topic model, with a table of all random variables. Priors (besides α) are omitted for clarity, and the document indices on z and w are implicit.

Eisenstein, O'Connor, Smith, and Xing, EMNLP 2010

More complicated topic models

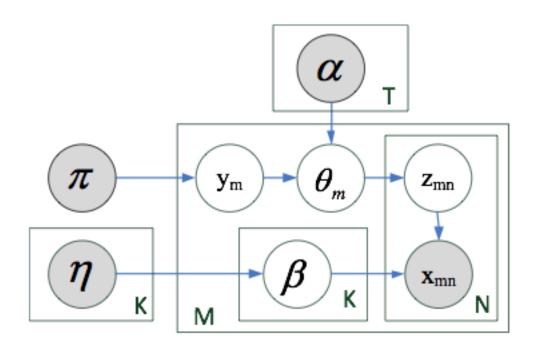
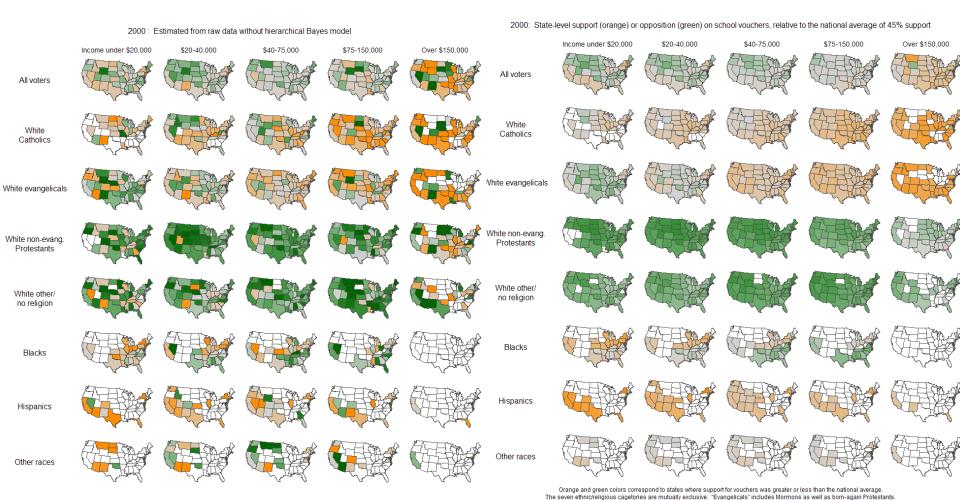


Figure 1: The Flexible Genre Model (FGM).

Xiong, Póczos, and Schneider, NIPS 2011

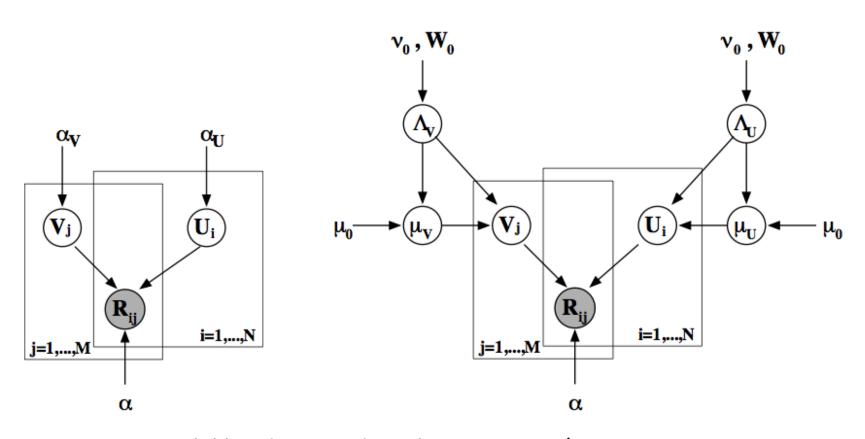
Hierarchical statistical models



where a category represents less than 1% of the voters of a state, the patterns.

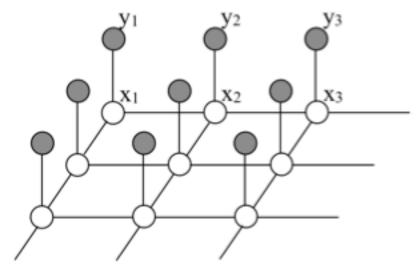
Where a category represents less than 1% of the voters of a state, the patterns.

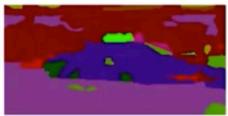
Probabilistic Matrix Factorization

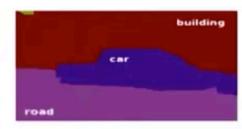


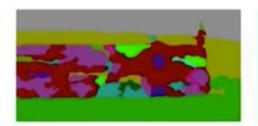
Salakhutdinov and Mnih, NIPS 2007 / ICML 2008

Image segmentation











Inference

Asking probability questions about the model

- Exact methods:
 - Message passing (with junction tree)
 - Combinatorial graph-based methods
- Approximate methods:
 - Loopy belief propagation
 - Variational approximations
 - Sampling (via MCMC)

Inference: loopy belief propagation

- Just apply belief propagation to general graph
 - Without doing junction tree
- Approximate
 - Doesn't always converge
 - Sometimes converges to wrong answers
 - Often works pretty well and fast

Inference: variational approximations

- Choose a family where inference is easy
 - Parameters are jointly normal
 - Fully-factorized: all params are independent
- Find the closest member of that family:
 - Call real model p; we're finding an approximation q
 - Minimize KL(q||p)

Inference: sampling via MCMC

- Get approximate samples from the model
 - Probabilistic questions => frequency questions
- Importance sampling:
 - Sample from marginals on hidden variables
 - Weight samples by their likelihood
- Metropolis-Hastings:
 - From the current point, propose a new point
 - Accept with probability based on relative likelihoods
- Gibbs:
 - Change one variable based on its conditional given all the others

Learning

- How do we choose the model parameters?
- Fully observed:
 - Directed models:
 - For each node X, fit the distribution conditional on its parents from the given samples
 - MAP is max P(X | par(X)) P(X)
 - Undirected models:
 - Maximum likelihood over full model is convex
 - Requires inference step at each iteration

Learning with hidden variables

- Expectation maximization:
 - E step: impute hidden variables with current model
 - Inference problem
 - M step: update the fully-observed model
 - Learning problem with techniques we just talked about
- Converges to a local optimum

Structure learning

- What if we don't want to specify the relationships ourselves?
- Could maximize likelihood over model structure
 - Problem: there are a lot of models
 - With 10 variables, ~ a quintillion possible DAGs
 - Need to do local search over structures
 - Problem: guaranteed to overfit
 - Making model more complex can only increase likelihood
 - Need to penalize model complexity