MACHINE LEARNING DEPARTMENT

Introduction to Machine Learning

 5. Optimization
Geoff Gordon and Alex Smola Carnegie Mellon University

http://alex.smola.org/teaching/cmu2013-10-701

$$
10-701 x
$$

Class Scoreboard for homework1
10-701 Classification Contest!

0	NICKNAME	VERSION	TIME	CLASSIFICATION
1	Unknown	52	2013-09-28 01:34:34	66.25\%
2	data,data, data	45	2013-09-29 18:47:58	66.75\%
3	ASD	52	2013-09-29 19:24:33	66.75\%
4	fuzzyaxioms	21	2013-09-29 19:38:03	66.5\%
5	skywalker	10	2013-09-29 23:40:02	65.75\%
6		14	2013-09-27 19:04:37	64\%
7	dloates	38	2013-09-29 19:21:05	64\%
8	siyuano	48	2013-09-29 23:46:58	64.25\%
9	Barack Obama	56	2013-09-30 02:19:44	64.25\%
10	shock	40	2013-09-28 15:59:04	63.75\%

Carnegie Mellon University

Optimization

- Basic Techniques
- Gradient descent
- Newton's method
- Constrained Convex Optimization
- Properties
- Lagrange function
- Wolfe dual
- Batch methods
- Distributed subgradient
- Bundle methods
- Online methods
- Unconstrained subgradient
- Gradient projections
- Parallel optimization

Why

Paramełer Estimation

- Maximum a Posteriori with Gaussian Prior

$$
-\log p(\theta \mid X)=\frac{1}{2 \sigma^{2}}\|\theta\|^{2}+\sum_{i=1}^{m} g(\theta)-\left\langle\phi\left(x_{i}\right), \theta\right\rangle+\text { const. }
$$

- We have lots of data
- Does not fit on single machine
- Bandwidth constraints
- May grow in real time
- Regularized Risk Minimization yields similar problems (more on this in a later lecture)

Batch and Online

- Batch
- Very large dataset available
- Require parameter only at the end
- optical character recognition
- speech recognition
- image annotation / categorization
- machine translation
- Online
- Spam filtering
- Computational advertising
- Content recommendation / collaborative filtering

Many parameters

- 100 million to 1 Billion users

Personalized content provision - impossible to adjust all parameters by heuristic/manually

- 1,000-10,000 computers

Cannot exchange all data between machines, Distributed optimization, multicore

- Large networks

Nontrivial parameter dependence structure

Convexity 101

Convexity 101

- Convex set

For $x, x^{\prime} \in X$ it follows that $\lambda x+(1-\lambda) x^{\prime} \in X$ for $\lambda \in[0,1]$

- Convex function

$$
\lambda \lambda f(x)+(1-\lambda) f\left(x^{\prime}\right) \geq f\left(\lambda x+(1-\lambda) x^{\prime}\right) \text { for } \lambda \in[0,1]
$$

Convexity 101

- Below-set of convex function is convex
 hence $\lambda x+(1-\lambda) x^{\prime} \in X$ for $x, x^{\prime} \in X$
- Convex functions don't have local minima Proof by contradiction - linear interpolation breaks local minimum condition

Convexity 101

- Vertex of a convex set Point which cannot be extrapolated within convex set

$$
\lambda x+(1-\lambda) x^{\prime} \notin X \text { for } \lambda>1 \text { for all } x^{\prime} \in X
$$

- Convex hull

$$
\operatorname{co} X:=\left\{\bar{x} \mid \bar{x}=\sum_{i=1}^{n} \alpha_{i} x_{i} \text { where } n \in \mathbb{N}, \alpha_{i} \geq 0 \text { and } \sum_{i=1}^{n} \alpha_{i} \leq 1\right\}
$$

- Convex hull of set is a convex set (proof trivial)

Convexity 101

- Supremum on convex hull

$$
\sup _{x \in X} f(x)=\sup _{x \in \cos X} f(x)
$$

Proof by contradiction

- Maximum over convex function on convex set is obtained on vertex
- Assume that maximum inside line segment
- Then function cannot be convex
- Hence it must be on vertex

Gradient descent

One dimensional problems

Require: a, b, Precision ϵ

$$
\text { Set } A=a, B=b
$$

repeat

$$
\begin{aligned}
& \text { if } f^{\prime}\left(\frac{A+B}{2}\right)>0 \text { then } \\
& B=\frac{A+B}{2} \\
& \text { else } \quad \text { solution on the left }
\end{aligned}
$$

$$
A=\frac{A+B}{2}
$$

end if

$$
\text { until }(B-A) \min _{A+B}\left(\left|f^{\prime}(A)\right|,\left|f^{\prime}(B)\right|\right) \leq \epsilon
$$

- Key Idea
- For differentiable f search for x with $f^{\prime}(x)=0$
- Interval bisection (derivative is monotonic)
- Need $\log (A-B)-\log \varepsilon$ to converge
- Can be extended to nondifferentiable problems (exploit convexity in upper bound and keep 5 points)

Gradient descent

- Key idea
- Gradient points into descent direction
- Locally gradient is good approximation of objective function
- GD with Line Search
- Get descent direction
- Unconstrained line search
- Exponential convergence for strongly convex objective
given a starting point $x \in \operatorname{dom} f$. repeat

1. $\Delta x:=-\nabla f(x)$.
2. Line search. Choose step size t via exact or backtracking line search.
3. Update. $x:=x+t \Delta x$.
until stopping criterion is satisfied.

Convergence Analysis

- Strongly convex function

$$
f(y) \geq f(x)+\left\langle y-x, \partial_{x} f(x)\right\rangle+\frac{m}{2}\|y-x\|^{2}
$$

- Progress guarantees (minimum \mathbf{x}^{*})

$$
f(x)-f\left(x^{*}\right) \geq \frac{m}{2}\left\|x-x^{*}\right\|^{2}
$$

- Lower bound on the minimum (set $\mathbf{y}=\mathbf{x}^{*}$)

$$
\begin{aligned}
f(x)-f\left(x^{*}\right) & \leq\left\langle x-x^{*}, \partial_{x} f(x)\right\rangle-\frac{m}{2}\left\|x^{*}-x\right\|^{2} \\
& \leq \sup _{y}\left\langle x-y, \partial_{x} f(x)\right\rangle-\frac{m}{2}\|y-x\|^{2} \\
& =\frac{1}{2 m}\left\|\partial_{x} f(x)\right\|^{2}
\end{aligned}
$$

Convergence Analysis

- Bounded Hessian

$$
\begin{aligned}
f(y) & \leq f(x)+\left\langle y-x, \partial_{x} f(x)\right\rangle+\frac{M}{2}\|y-x\|^{2} \\
\Longrightarrow f\left(x+t g_{x}\right) & \leq f(x)-t\left\|g_{x}\right\|^{2}+\frac{M}{2} t^{2}\left\|g_{x}\right\|^{2} \\
& \leq f(x)-\frac{1}{2 M}\left\|g_{x}\right\|^{2}
\end{aligned}
$$

Using strong convexity

$$
\begin{aligned}
\Longrightarrow f\left(x+t g_{x}\right)-f\left(x^{*}\right) & \leq f(x)-f\left(x^{*}\right)-\frac{1}{2 M}\left\|g_{x}\right\|^{2} \\
& \leq f(x)-f\left(x^{*}\right)\left[1-\frac{m}{M}\right]
\end{aligned}
$$

- Iteration bound

$$
\frac{M}{m} \log \frac{f(x)-f\left(x^{*}\right)}{\epsilon}
$$

Newton's Method

Isaac Newton

Newton Method

- Convex objective function f
- Nonnegative second derivative

$$
\partial_{x}^{2} f(x) \succeq 0
$$

- Taylor expansion

$$
f(x+\delta)=f(x)+\left\langle\delta, \partial_{x} f(x)\right\rangle+\frac{1}{2} \delta^{\top} \partial_{x}^{2} f(x) \delta+O\left(\delta^{3}\right)
$$

gradient

Hessian

- Minimize approximation \& iterate til converged

$$
x \leftarrow x-\left[\partial_{x}^{2} f(x)\right]^{-1} \partial_{x} f(x)
$$

Convergence Analysis

- There exists a region around optimality where Newton's method converges quadratically if f is twice continuously differentiable
- For some region around x^{*} gradient is well approximated by Taylor expansion

$$
\left\|\partial_{x} f\left(x^{*}\right)-\partial_{x} f(x)-\left\langle x^{*}-x, \partial_{x}^{2} f(x)\right\rangle\right\| \leq \gamma\left\|x^{*}-x\right\|^{2}
$$

- Expand Newton update

$$
\begin{aligned}
\left\|x_{n+1}-x^{*}\right\| & =\left\|x_{n}-x^{*}-\left[\partial_{x}^{2} f\left(x_{n}\right)\right]^{-1}\left[\partial_{x} f\left(x_{n}\right)-\partial_{x} f\left(x^{*}\right)\right]\right\| \\
& =\left\|\left[\partial_{x}^{2} f\left(x_{n}\right)\right]^{-1}\left[\partial_{x}^{f}\left(x_{n}\right)\left[x_{n}-x^{*}\right]-\partial_{x} f\left(x_{n}\right)+\partial_{x} f\left(x^{*}\right)\right]\right\| \\
& \leq \gamma\left\|\left[\partial_{x}^{2} f\left(x_{n}\right)\right]^{-1}\right\|\left\|x_{n}-x^{*}\right\|^{2}
\end{aligned}
$$

Convergence Analysis

- Two convergence regimes
- As slow as gradient descent outside the region where Taylor expansion is good

$$
\left\|\partial_{x} f\left(x^{*}\right)-\partial_{x} f(x)-\left\langle x^{*}-x, \partial_{x}^{2} f(x)\right\rangle\right\| \leq \gamma\left\|x^{*}-x\right\|^{2}
$$

- Quadratic convergence once the bound holds

$$
\left\|x_{n+1}-x^{*}\right\| \leq \gamma\left\|\left[\partial_{x}^{2} f\left(x_{n}\right)\right]^{-1}\right\|\left\|x_{n}-x^{*}\right\|^{2}
$$

- Newton method is affine invariant (proof by chain rule)

Newton method rescales space

Newłon method rescales space

Parallel Newłon Method

- Good rate of convergence
- Few passes through data needed
- Parallel aggregation of gradient and Hessian
- Gradient requires $O(d)$ data
- Hessian requires $O\left(d^{2}\right)$ data
- Update step is $O\left(d^{3}\right)$ \& nontrivial to parallelize
- Use it only for low dimensional problems

BFGS algorithm Broyden-Fletcher-Goldfarb-Shanno

Basic Idea

- Newton-like method to compute descent direction

$$
\delta_{i}=B_{i}^{-1} \partial_{x} f\left(x_{i-1}\right)
$$

- Line search on f in direction

$$
x_{i+1}=x_{i}-\alpha_{i} \delta_{i}
$$

- Update B with rank 2 matrix

$$
B_{i+1}=B_{i}+u_{i} u_{i}^{\top}+v_{i} v_{i}^{\top}
$$

- Require that Quasi-Newton condition holds

$$
\begin{gathered}
B_{i+1}\left(x_{i+1}-x_{i}\right)=\partial_{x} f\left(x_{i+1}\right)-\partial_{x} f\left(x_{i}\right) \\
B_{i+1}=B_{i}+\frac{g_{i} g_{i}^{\top}}{\alpha_{i} \delta_{i}^{\top} g_{i}}-\frac{B_{i} \delta_{i} \delta_{i}^{\top} B_{i}}{\delta_{i}^{\top} B_{i} \delta_{i}}
\end{gathered}
$$

Properties

- Simple rank 2 update for B
- Use matrix inversion lemma to update inverse
- Memory-limited versions L-BFGS
- Use toolbox if possible (TAO, MATLAB) (typically slower if you implement it yourself)
- Works well for nonlinear nonconvex objectives (often even for nonsmooth objectives)

4.2 Constrained Convex Problems

Basic Convexity

Constrained Convex Minimization

- Optimization problem minimize $f(x)$
- Common constraints

Equality is special case

 Why?- linear inequality onstraints

$$
\left\langle w_{i}, x\right\rangle+b_{i} \leq 0
$$

- quadratic cone constraints

$$
x^{\top} Q x+b^{\top} x \leq c \text { with } Q \succeq 0
$$

- semidefinite constraints

$$
M \succeq 0 \text { or } M_{0}+\sum_{i} x_{i} M_{i} \succeq 0
$$

Example - Support Vectors

$\underset{w, b}{\operatorname{minimize}} \frac{1}{2}\|w\|^{2}$ subject to $y_{i}\left[\left\langle w, x_{i}\right\rangle+b\right] \geq 1$

Lagrange Multipliers

- Lagrange function

$$
L(x, \alpha):=f(x)+\sum_{i=1}^{n} \alpha_{i} c_{i}(x) \text { where } \alpha_{i} \geq 0
$$

- Saddlepoint Condition If there are x^{*} and nonnegative α^{*} such that

$$
L\left(x^{*}, \alpha\right) \leq L\left(x^{*}, \alpha^{*}\right) \leq L\left(x, \alpha^{*}\right)
$$

then x^{*} is an optimal solution to the constrained optimization problem

Proof

$$
L\left(x^{*}, \alpha\right) \leq L\left(x^{*}, \alpha^{*}\right) \leq L\left(x, \alpha^{*}\right)
$$

- From first inequality we see that x^{*} is feasible

$$
\left(\alpha_{i}-\alpha_{i}^{*}\right) c_{i}\left(x^{*}\right) \leq 0 \text { for all } \alpha_{i} \geq 0
$$

- Setting some $\alpha_{i}=0$ yields KKT conditions

$$
\alpha_{i}^{*} c_{i}\left(x^{*}\right)=0
$$

- Consequently we have

$$
L\left(x^{*}, \alpha^{*}\right)=f\left(x^{*}\right) \leq L\left(x, \alpha^{*}\right)=f(x)+\sum_{i} \alpha_{i}^{*} c_{i}(x) \leq f(x)
$$

This proves optimality

Constraint gymnastics

(all three conditions are equivalent)

- Slater's condition

There exists some \times such that for all i

$$
c_{i}(x)<0
$$

- Karlin's condition

For all nonnegative α there exists some x such that

$$
\sum_{i} \alpha_{i} c_{i}(x) \leq 0
$$

- Strict constraint qualification

The feasible region contains at least two distinct elements and there exists an x in X such that all $c_{i}(x)$ are strictly convex at x with respect to X

Necessary Kuhn-Tucker Conditions

- Assume optimization problem
- satisfies the constraint qualifications
- has convex differentiable objective + constraints
- Then the KKT conditions are necessary \& sufficient

$$
\begin{aligned}
\partial_{x} L\left(x^{*}, \alpha^{*}\right) & =\partial_{x} f\left(x^{*}\right)+\sum_{i} \alpha_{i}^{*} \partial_{x} c_{i}\left(x^{*}\right) & =0\left(\text { Saddlepoint in } x^{*}\right) \\
\partial_{\alpha_{i}} L\left(x^{*}, \alpha^{*}\right)=c_{i}\left(x^{*}\right) & & \leq 0\left(\text { Saddlepoint in } \alpha^{*}\right) \\
\sum_{i} \alpha_{i}^{*} c_{i}\left(x^{*}\right) & & =0(\text { Vanishing KKT-gap })
\end{aligned}
$$

Yields algorithm for solving optimization problems Solve for saddlepoint and KKT conditions

Proof

$$
\begin{aligned}
f(x)-f\left(x^{*}\right) & \geq\left[\partial_{x} f\left(x^{*}\right)\right]^{\top}\left(x-x^{*}\right) \\
& =-\sum_{i} \alpha_{i}^{*}\left[\partial_{x} c_{i}\left(x^{*}\right)\right]^{\top}\left(x-x^{*}\right) \\
& \geq-\sum_{i} \alpha_{i}^{*}\left(c_{i}(x)-c_{i}\left(x^{*}\right)\right) \\
& =\sum_{i} \alpha_{i}^{*} c_{i}(x) \\
& \geq 0
\end{aligned}
$$

(by convexity)
(by Saddlepoint in x^{*})
(by convexity)
(by vanishing KKT gap)

Linear and Quadratic Programs

Linear Programs

- Objective $\underset{x}{\operatorname{minimize}} c^{\top} x$ subject to $A x+d \leq 0$ X
- Lagrange function

$$
L(x, \alpha)=c^{\top} x+\alpha^{\top}(A x+d)
$$

- Optimality conditions

$$
\begin{aligned}
\partial_{x} L(x, \alpha) & =A^{\top} \alpha+c=0 \quad \text { plug into } L \\
\partial_{\alpha} L(x, \alpha) & =A x+d \leq 0 \\
0 & =\alpha^{\top}(A x+d)
\end{aligned}
$$

- Dual problem
$\underset{i}{\operatorname{maximize}} d^{\top} \alpha$ subject to $A^{\top} \alpha+c=0$ and $\alpha \geq 0$

Linear Programs

- Primal

$$
\underset{x}{\operatorname{minimize}} c^{\top} x \text { subject to } A x+d \leq 0
$$

- Dual

$$
\underset{i}{\operatorname{maximize}} d^{\top} \alpha \text { subject to } A^{\top} \alpha+c=0 \text { and } \alpha \geq 0
$$

- Free variables become equality constraints
- Equality constraints become free variables
- Inequalities become inequalities
- Dual of dual is primal

Quadratic Programs

- Objective

$$
\underset{x}{\operatorname{minimize}} \frac{1}{2} x^{\top} Q x+c^{\top} x \text { subject to } A x+d \leq 0
$$

- Lagrange function

$$
L(x, \alpha)=\frac{1}{2} x^{\top} Q x+c^{\top} x+\alpha^{\top}(A x+d)
$$

- Optimality conditions

$$
\begin{aligned}
\partial_{x} L(x, \alpha) & =Q x+A^{\top} \alpha+c=0 \\
\partial_{\alpha} L(x, \alpha) & =A x+d \leq 0 \\
0 & =\alpha^{\top}(A x+d) \\
0 & \leq \alpha
\end{aligned}
$$

Quadrafic Program

- Eliminating x from the Lagrangian via

$$
Q x+A^{\top} \alpha+c=0
$$

- Lagrange function

$$
\begin{aligned}
L(x, \alpha)= & \frac{1}{2} x^{\top} Q x+c^{\top} x+\alpha^{\top}(A x+d) \\
= & -\frac{1}{2} x^{\top} Q x+\alpha^{\top} d \\
= & -\frac{1}{2}\left(A^{\top} \alpha+c\right)^{\top} Q^{-1}\left(A^{\top} \alpha+c\right)+\alpha^{\top} d \\
= & -\frac{1}{2} \alpha^{\top} A Q^{-1} A^{\top} \alpha+\alpha^{\top}\left[d-A Q^{-1} c\right]-\frac{1}{2} c^{\top} Q^{-1} c \\
& \text { subject to } \alpha \geq 0
\end{aligned}
$$

Quadratic Programs

- Primal

$$
\underset{x}{\operatorname{minimize}} \frac{1}{2} x^{\top} Q x+c^{\top} x \text { subject to } A x+d \leq 0
$$

- Dual

$$
\underset{\alpha}{\operatorname{minimize}} \frac{1}{2} \alpha^{\top} A Q^{-1} A^{\top} \alpha+\alpha^{\top}\left[A Q^{-1} c-d\right] \text { subject to } \alpha \geq 0
$$

- Dual constraints are simpler
- Possibly many fewer variables
- Dual of dual is not (always) primal (e.g. in SVMs x is in a Hilbert Space)

Bundle Methods

simple parallelization

Some optimization problems

- Density estimation

$$
\underset{\theta}{\operatorname{minimize}} \sum_{i=1}^{m}-\log p\left(x_{i} \mid \theta\right)-\log p(\theta)
$$

$$
\text { equivalently } \underset{\theta}{\operatorname{minimize}} \sum_{i=1}^{m}\left[g(\theta)-\left\langle\phi\left(x_{i}\right), \theta\right\rangle\right]+\frac{1}{2 \sigma^{2}}\|\theta\|^{2}
$$

- Penalized regression

$$
\begin{gathered}
\underset{\theta}{\operatorname{minimize}} \sum_{i=\gamma}^{m} l\left(y_{i}-\left\langle\phi\left(x_{i}\right), \theta\right\rangle\right)+\frac{1}{2 \sigma^{2}}\|\theta\|^{2} \\
\text { red loss } \\
\text { regularizer }
\end{gathered}
$$

Basic Idea

- Loss

$$
\underset{\theta}{\operatorname{minimize}} \sum_{i=1}^{m} l_{i}(\theta)+\lambda \Omega[\theta]
$$

- Convex but expensive to compute
- Line search just as expensive as new computation
- Gradient almost free with function value computation
- Easy to compute in parallel
- Regularizer
- Convex and cheap to compute and to optimize
- Strategy
- Compute tangents on loss
- Provides lower bound on objective
- Solve dual optimization problem (fewer parameters)

Bundle Method

Lower bound

Regularized Risk Minimization

$$
\underset{w}{\operatorname{minimize}} R_{\mathrm{emp}}[w]+\lambda \Omega[w]
$$

Taylor Approximation for $R_{\mathrm{emp}}[w]$

$$
R_{\mathrm{emp}}[w] \geq R_{\mathrm{emp}}\left[w_{t}\right]+\left\langle w-w_{t}, \partial_{w} R_{\mathrm{emp}}\left[w_{t}\right]\right\rangle=\left\langle a_{t}, w\right\rangle+b_{t}
$$

where $a_{t}=\partial_{w} R_{\text {emp }}\left[w_{t-1}\right]$ and $b_{t}=R_{\text {emp }}\left[w_{t-1}\right]-\left\langle a_{t}, w_{t-1}\right\rangle$.

Bundle Bound

$$
R_{\mathrm{emp}}[w] \geq R_{t}[w]:=\max _{i \leq t}\left\langle a_{i}, w\right\rangle+b_{i}
$$

Regularizer $\Omega[w]$ solves stability problems.

Pseudocode

Initialize $t=0, w_{0}=0, a_{0}=0, b_{0}=0$

repeat

Find minimizer

$$
w_{t}:=\underset{w}{\operatorname{argmin}} R_{t}(w)+\lambda \Omega[w]
$$

Compute gradient a_{t+1} and offset b_{t+1}. Increment $t \leftarrow t+1$.

until $\epsilon_{t} \leq \epsilon$

Convergence Monitor $R_{t+1}\left[w_{t}\right]-R_{t}\left[w_{t}\right]$
Since $R_{t+1}\left[w_{t}\right]=R_{\mathrm{emp}}\left[w_{t}\right]$ (Taylor approximation) we have

$$
R_{t+1}\left[w_{t}\right]+\lambda \Omega\left[w_{t}\right] \geq \min _{w} R_{\text {emp }}[w]+\lambda \Omega[w] \geq R_{t}\left[w_{t}\right]+\lambda \Omega\left[w_{t}\right]
$$

Dual Problem

Dual optimization for $\Omega[w]=\frac{1}{2}\|w\|_{2}^{2}$ is Quadratic Program regardless of the choice of the empirical risk $R_{\text {emp }}[w]$.

$$
\begin{aligned}
& \underset{\beta}{\operatorname{minimize}} \frac{1}{2 \lambda} \beta^{\top} \boldsymbol{A} \boldsymbol{A}^{\top} \beta-\beta^{\top} \boldsymbol{b} \\
& \text { subject to } \beta_{i} \geq 0 \text { and }\|\beta\|_{1}=1
\end{aligned}
$$

The primal coefficient w is given by $w=-\lambda^{-1} A^{\top} \beta$.
Use Fenchel-Legendre dual of $\Omega[w]$, e.g. $\|\cdot\|_{1} \rightarrow\|\cdot\|_{\infty}$.
Can even use simple line search for update (almost as good).

Properties

Parallelization

- Empirical risk sum of many terms: MapReduce
- Gradient sum of many terms, gather from cluster.
- Possible even for multivariate performance scores.
- Data is local. Combine data from competing entities.

Solver independent of loss
No need to change solver for new loss.
Loss independent of solver/regularizer
Add new regularizer without need to re-implement loss.
Line search variant

- Optimization does not require QP solver at all!
- Update along gradient direction in the dual.
- We only need inner product on gradients!

Implementation

Guarantees

Theorem

The number of iterations to reach ϵ precision is bounded by

$$
n \leq \log _{2} \frac{\lambda R_{\operatorname{emp}}[0]}{G^{2}}+\frac{8 G^{2}}{\lambda \epsilon}-4
$$

steps. If the Hessian of $R_{\text {emp }}[w]$ is bounded, convergence to any $\epsilon \leq \lambda / 2$ takes at most the following number of steps:

$$
n \leq \log _{2} \frac{\lambda R_{\text {emp }}[0]}{4 G^{2}}+\frac{4}{\lambda} \max \left[0,1-8 G^{2} H^{*} / \lambda\right]-\frac{4 H^{*}}{\lambda} \log 2 \epsilon
$$

Advantages

- Linear convergence for smooth loss
- For non-smooth loss almost as good in practice (as long as smooth on a course scale).
- Does not require primal line search.

Proof idea

Duality Argument

- Dual of $R_{i}[w]+\lambda \Omega[w]$ lower bounds minimum of regularized risk $R_{\text {emp }}[w]+\lambda \Omega[w]$.
- $R_{i+1}\left[w_{i}\right]+\lambda \Omega\left[w_{i}\right]$ is upper bound.
- Show that the gap $\gamma_{i}:=R_{i+1}\left[w_{i}\right]-R_{i}\left[w_{i}\right]$ vanishes.

Dual Improvement

- Give lower bound on increase in dual problem in terms of γ_{i} and the subgradient $\partial_{w}\left[R_{\text {emp }}[w]+\lambda \Omega[w]\right]$.
- For unbounded Hessian we have $\delta \gamma=O\left(\gamma^{2}\right)$.
- For bounded Hessian we have $\delta \gamma=O(\gamma)$.

Convergence

- Solve difference equation in γ_{t} to get desired result.
4.3 Online Methods

Stochastic gradient descent

- Empirical risk as expectation

$$
\frac{1}{m} \sum_{i=1}^{m} l\left(y_{i}-\left\langle\phi\left(x_{i}\right), \theta\right\rangle\right)=\mathbf{E}_{i \sim\{1, . . m\}}\left[l\left(y_{i}-\left\langle\phi\left(x_{i}\right), \theta\right\rangle\right)\right]
$$

- Stochastic gradient descent (pick random x, y)

$$
\theta_{t+1} \leftarrow \theta_{t}-\eta_{t} \partial_{\theta}\left(y_{t},\left\langle\phi\left(x_{t}\right), \theta_{t}\right\rangle\right)
$$

- Often we require that parameters are restricted to some convex set X, hence we project on it

$$
\begin{gathered}
\theta_{t+1} \leftarrow \pi_{x}\left[\theta_{t}-\eta_{t} \partial_{\theta}\left(y_{t},\left\langle\phi\left(x_{t}\right), \theta_{t}\right\rangle\right)\right] \\
\text { here } \pi_{X}(\theta)=\underset{x \in X}{\operatorname{argmin}}\|x-\theta\|
\end{gathered}
$$

Convergence in Expectation

initial loss

$$
\mathbf{E}_{\bar{\theta}}[l(\bar{\theta})]-l^{*} \leq \frac{R^{2}+L^{2} \sum_{t=0}^{T-1} \eta_{t}^{2}}{2 \sum_{t=0}^{T-1} \eta_{t}} \text { where }
$$

$$
l(\theta)=\mathbf{E}_{(x, y)}[l(y,\langle\phi(x), \theta\rangle)] \text { and } l^{*}=\inf _{\theta \in X} l(\theta) \text { and } \bar{\theta}=\frac{\sum_{t=0}^{T-1} \theta_{t} \eta_{t}}{\sum_{t=0}^{T-1} \eta_{t}}
$$

expected loss

parameter average

- Proof

Show that parameters converge to minimum

$$
\theta^{*} \in \underset{\theta \in X}{\operatorname{argmin}} l(\theta) \text { and set } r_{t}:=\left\|\theta^{*}-\theta_{t}\right\|
$$

Proof

$$
\begin{aligned}
r_{t+1}^{2} & =\left\|\pi_{X}\left[\theta_{t}-\eta_{t} g_{t}\right]-\theta^{*}\right\|^{2} \\
& \leq\left\|\theta_{t}-\eta_{t} g_{t}-\theta^{*}\right\|^{2} \\
& =r_{t}^{2}+\eta_{t}^{2}\left\|g_{t}\right\|^{2}-2 \eta_{t}\left\langle\theta_{t}-\theta^{*}, g_{t}\right\rangle
\end{aligned}
$$

hence $\begin{aligned} \mathbf{E}\left[r_{t+1}^{2}-r_{t}^{2}\right] & \leq \eta_{t}^{2} L^{2}+2 \eta_{t}\left[l^{*}-\mathbf{E}\left[l\left(\theta_{t}\right)\right]\right] \\ & \leq \eta_{t}^{2} L^{2}+2 \eta_{t}\left[l^{*}-\mathbf{E}[l(\bar{\theta})]\right]\end{aligned} \quad$ by convexity

- Summing over inequality for \dagger proves claim
- This yields randomized algorithm for minimizing objective functions (try log times and pick the best / or average median trick)

Rałes

- Guarantee

$$
\mathbf{E}_{\bar{\theta}}[l(\bar{\theta})]-l^{*} \leq \frac{R^{2}+L^{2} \sum_{t=0}^{T-1} \eta_{t}^{2}}{2 \sum_{t=0}^{T-1} \eta_{t}}
$$

- If we know R, L, T pick constant learning rate

$$
\eta=\frac{R}{L \sqrt{T}} \text { and hence } \mathbf{E}_{\bar{\theta}}[l(\bar{\theta})]-l^{*} \leq \frac{R[1+1 / T] L}{2 \sqrt{T}}<\frac{L R}{\sqrt{T}}
$$

- If we don't know T pick $\eta_{t}=O\left(t^{\frac{-1}{2}}\right)$

This costs us an additional log term

$$
\mathbf{E}_{\bar{\theta}}[l(\bar{\theta})]-l^{*}=O\left(\frac{\log T}{\sqrt{T}}\right)
$$

Strong Convexity

$$
l_{i}\left(\theta^{\prime}\right) \geq l_{i}(\theta)+\left\langle\partial_{\theta} l_{i}(\theta), \theta^{\prime}-\theta\right\rangle+\frac{1}{2} \lambda\left\|\theta-\theta^{\prime}\right\|^{2}
$$

- Use this to bound the expected deviation

$$
\begin{aligned}
r_{t+1}^{2} & \leq r_{t}^{2}+\eta_{t}^{2}\left\|g_{t}\right\|^{2}-2 \eta_{t}\left\langle\theta_{t}-\theta^{*}, g_{t}\right\rangle \\
& \leq r_{t}^{2}+\eta_{t}^{2} L^{2}-2 \eta_{t}\left[l_{t}\left(\theta_{t}\right)-l_{t}\left(\theta^{*}\right)\right]-2 \lambda \eta_{t} r_{k}^{2}
\end{aligned}
$$

hence $\mathbf{E}\left[r_{t+1}^{2}\right] \leq\left(1-\lambda h_{t}\right) \mathbf{E}\left[r_{t}^{2}\right]-2 \eta_{t}\left[\mathbf{E}\left[l\left(\theta_{t}\right)\right]-l^{*}\right]$

- Exponentially decaying averaging

$$
\bar{\theta}=\frac{1-\sigma}{1-\sigma^{T}} \sum_{t=0}^{T-1} \sigma^{T-1-t} \theta_{t}
$$

and plugging this into the discrepancy yields

$$
l(\bar{\theta})-l^{*} \leq \frac{2 L^{2}}{\lambda T} \log \left[1+\frac{\lambda R T^{\frac{1}{2}}}{2 L}\right] \text { for } \eta=\frac{2}{\lambda T} \log \left[1+\frac{\lambda R T^{\frac{1}{2}}}{2 L}\right]
$$

More variants

- Adversarial guarantees

$$
\theta_{t+1} \leftarrow \pi_{x}\left[\theta_{t}-\eta_{t} \partial_{\theta}\left(y_{t},\left\langle\phi\left(x_{t}\right), \theta_{t}\right\rangle\right)\right]
$$

has low regret (average instantaneous cost) for arbitrary orders (useful for game theory)

- Ratliff, Bagnell, Zinkevich
$O\left(t^{-\frac{1}{2}}\right)$ learning rate
- Shalev-Shwartz, Srebro, Singer (Pegasos)
$O\left(t^{-1}\right)$ learning rate (but need constants)
- Bartlett, Rakhlin, Hazan
(add strong convexity penalty)

4.4 Discrete Problems

Integer programming relaxations

- Optimization problem
$\underset{x}{\operatorname{minimize}} c^{\top} x$ subject to $A x \leq b$ and $x \in \mathbb{Z}^{n}$

- Relax to linear program if vertices are integral since LP has vertex solution

Integer programming relaxations

- Totally unimodular constraint matrix A
- Inverse of each submatrix must be integral
- RHS of constraints must be integral
- Many useful sufficient conditions for TU.

Example - Hungarian Marriage

- Optimization Problem
- n Hungarian men
- n Hungarian women
- Compatibility c_{ij} between them

- Find optimal matching
$\underset{\pi}{\operatorname{maximize}} \sum_{i j} \pi_{i j} C_{i j}$
subject to $\pi_{i j} \in\{0,1\}$ and $\sum_{i} \pi_{i j}=1$ and $\sum_{j} \pi_{i j}=1$
- All vertices of the constraint matrix are integral

Randomization

- Maximum finding
- Very large set of instances
- Find approximate maximum

- Draw a random set of n terms
- Take maximum over subset
(59 for 95% with 95% confidence)

$$
\begin{aligned}
\operatorname{Pr}\left\{F\left[\max _{i} x_{i}\right]<\epsilon\right\} & =(1-\epsilon)^{n}=\delta \\
\text { hence } n & =\frac{\log \delta}{\log (1-\epsilon)} \leq \frac{-\log \delta}{\epsilon}
\end{aligned}
$$

Randomization

- Find good solution
- Show that expected value is well behaved
- Show that tails are bounded
- Sufficiently large random draw must contain at least one good element (e.g. CM sketch)
- Find good majority
- Show that majority satisfies condition
- Bound probability of minority being overrepresented (e.g. Mean-Median theorem)
- Much more in these books
- Raghavan \& Motwani (Randomized Algorithms)
- Alon \& Spencer (Probabilistic Method)

Submodular maximization

- Submodular function
- Defined on sets
- Diminishing returns property

$$
f(A \cup C)-f(A) \geq f(B \cup C)-f(B) \text { for } A \subseteq B
$$

- Example

For web search results we might have individually

But if we can show only 4 we should probably pick

Submodular maximization

- Optimization problem

$$
\max _{X \in \mathcal{X}} f(X) \text { subject to }|X| \leq k
$$

Often NP hard even to find tight approximation

- Greedy optimization procedure
- Start with empty set X
- Find \mathbf{x} such that $f(X \cup\{x\})$ is maximized
- Add x to the set and repeat until $|X|=k$
- Guarante of (1-1/e) optimality

Further reading

- Nesterov and Vial (expected convergence) http://dl.acm.org/citation.cfm?id=1377347
- Bartlett, Hazan, Rakhlin (strong convexity SGD) http://books.nips.cc/papers/files/nips20/NIPS2007 0699.pdf
- TAO (toolkit for advanced optimization) http://www.mcs.anl.gov/research/projects/tao/
- Ratliff, Bagnell, Zinkevich http://martin.zinkevich.org/publications/ratliff nathan 2007 3.pdf
- Shalev-Shwartz, Srebro, Singer (Pegasos paper) http://dl.acm.org/citation.cfm?id=1273598
- Langford, Smola, Zinkevich (slow learners are fast) http://arxiv.org/abs/0911.0491
- Hogwild (Recht, Wright, Re)
http://pages.cs.wisc.edu/~brecht/papers/hogwildTR.pdf

