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Optimization



Why



Parameter Estimation
• Maximum a Posteriori with Gaussian Prior

• We have lots of data
• Does not fit on single machine
• Bandwidth constraints
• May grow in real time

• Regularized Risk Minimization yields similar problems
(more on this in a later lecture)
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Batch and Online
• Batch

• Very large dataset available
• Require parameter only at the end

• optical character recognition
• speech recognition
• image annotation / categorization
• machine translation

• Online
• Spam filtering
• Computational advertising
• Content recommendation / collaborative filtering



Many parameters

• 100 million to 1 Billion users
Personalized content provision - impossible to 
adjust all parameters by heuristic/manually

• 1,000-10,000 computers
Cannot exchange all data between machines,
Distributed optimization, multicore

• Large networks
Nontrivial parameter dependence structure



4.1 Unconstrained Problems



Convexity 101
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6.1 Convex Optimization 157

There exist several ways to define convex sets. A convenient method is to define
them via below sets of convex functions, such as the sets for which f(x) ≤ c, for
instance.

Lemma 6.3 (Convex Sets as Below-Sets) Denote by f : X → R a convex
function on a convex set X. Then the set

X := {x|x ∈ X and f(x) ≤ c}, for some c ∈ R, (6.3)

is convex.

Proof We must show condition (6.1). For any x, x′ ∈ X, we have f(x), f(x′) ≤ c.
Moreover, since f is convex, we also have

f(λx+ (1− λ)x′) ≤ λf(x) + (1− λ)f(x′) ≤ c for all λ ∈ [0, 1]. (6.4)

Hence, for all λ ∈ [0, 1], we have (λx + (1 − λ)x′) ∈ X, which proves the claim.
Figure 6.1 depicts this situation graphically.
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Figure 6.1 Left: Convex Function in two variables. Right: the corresponding convex
level sets {x|f(x) ≤ c}, for different values of c.

Lemma 6.4 (Intersection of Convex Sets) Denote by X,X ′ ⊂ X two convex
sets. Then X ∩X ′ is also a convex set.

Intersections

Proof Given any x, x′ ∈ X ∩ X ′, then for any λ ∈ [0, 1], the point xλ :=
λx+ (1− λ)x′ satisfies xλ ∈ X and xλ ∈ X ′, hence also xλ ∈ X ∩X ′.

See also Figure 6.2. Now we have the tools to prove the central theorem of this
section.

Theorem 6.5 (Minima on Convex Sets) If the convex function f : X→ R has
a minimum on a convex set X ⊂ X, then its arguments x ∈ X, for which the
minimum value is attained, form a convex set. Moreover, if f is strictly convex,
then this set will contain only one element.

Convexity 101

• Convex set

• Convex function
For x, x

0 2 X it follows that �x+ (1� �)x

0 2 X for � 2 [0, 1]

��f(x) + (1� �)f(x

0
) � f(�x+ (1� �)x

0
) for � 2 [0, 1]



Convexity 101
• Below-set of convex function is convex

• Convex functions don’t have local minima
Proof by contradiction - linear interpolation 
breaks local minimum condition

f(�x+ (1� �)x

0
)  �f(x) + (1� �)f(x

0
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0 2 X for x, x
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Theorem 6.11 (Convex Sets and Vertices) A compact convex set is the con-
vex hull of its vertices.

Reconstructing
Convex Sets from
Vertices

The proof is slightly technical, and not central to the understanding of kernel
methods. See Rockafellar [419, Chapter 18] for details, along with further theorems
on convex functions. We now proceed to the second key theorem in this section.

Theorem 6.12 (Maxima of Convex Functions on Convex Compact Sets)
Denote by X a compact convex set in X, by |X the vertices of X, and by f a convex
function on X. Then

sup{f(x)|x ∈ X} = sup{f(x)|x ∈ |X}. (6.10)

Proof Application of Theorem 6.10 and Theorem 6.11 proves the claim, since
under the assumptions made on X, we have X = co (|X). Figure 6.4 depicts the
situation graphically.

Figure 6.4 A convex func-
tion on a convex polyhedral set.
Note that the minimum of this
function is unique, and that the
maximum can be found at one
of the vertices of the constrain-
ing domain.

6.2 Unconstrained Problems

After the characterization and uniqueness results (Theorem 6.5, Corollary 6.6, and
Lemma 6.7) of the previous section, we will now study numerical techniques to
obtain minima (or maxima) of convex optimization problems. While the choice of
algorithms is motivated by applicability to kernel methods, the presentation here is
not problem specific. For details on implementation, and descriptions of applications
to learning problems, see Chapter 10.

6.2.1 Functions of One Variable

We begin with the easiest case, in which f depends on only one variable. Some of
the concepts explained here, such as the interval cutting algorithm and Newton’s
method, can be extended to the multivariate setting (see Problem 6.5). For the sake
of simplicity, however, we limit ourselves to the univariate case.

• Vertex of a convex set
Point which cannot
be extrapolated
within convex set

• Convex hull

• Convex hull of set is a convex set (proof trivial)

Convexity 101

�x+ (1� �)x

0 62 X for � > 1 for all x

0 2 X
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Lemma 6.7 (Convex Maximization on an Interval) Denote by f a convex
function on [a, b] ∈ R. Then the problem of maximizing f on [a, b] has f(a) and
f(b) as the only possible solutions.

Maxima on
Extreme Points

Proof Any x ∈ [a, b] can be written as b−x
b−aa+

(

1− b−x
b−a

)

b, and hence

f(x) ≤ b− x

b− a
f(a) +

(

1− b− x

b− a

)

f(b) ≤ max(f(a), f(b)). (6.7)

Therefore the maximum of f on [a, b] is obtained on one of the points a, b.

We will next show that the problem of convex maximization on a convex set is
typically a hard problem, in the sense that the maximum can only be found at one
of the extreme points of the constraining set. We must first introduce the notion of
vertices of a set.

Definition 6.8 (Vertex of a Set) A point x ∈ X is a vertex of X if, for all
x′ ∈ X with x′ $= x, and for all λ < 0, the point λx+ (1− λ)x′ $∈ X.

This definition implies, for instance, that in the case of X being an "2 ball, the
vertices of X make up its surface. In the case of an "∞ ball, we have 2n vertices in
n dimensions, and for an "1 ball, we have only 2n of them. These differences will
guide us in the choice of admissible sets of parameters for optimization problems
(see, e.g., Section 14.4). In particular, there exists a connection between suprema
on sets and their convex hulls. To state this link, however, we need to define the
latter.

Definition 6.9 (Convex Hull) Denote by X a set in a vector space. Then the
convex hull coX is defined as

coX :=

{

x̄

∣
∣
∣
∣
∣
x̄ =

n
∑

i=1

αixi where n ∈ N,αi ≥ 0 and
n
∑

i=1

αi ≤ 1

}

. (6.8)

Theorem 6.10 (Suprema on Sets and their Convex Hulls) Denote by X a
set and by coX its convex hull. Then for a convex function f

sup{f(x)|x ∈ X} = sup{f(x)|x ∈ coX}. (6.9)
Evaluating
Convex Sets on
Extreme Points

Proof Recall that the below set of convex functions is convex (Lemma 6.3), and
that the below set of f with respect to c = sup{f(x)|x ∈ X} is by definition a
superset of X. Moreover, due to its convexity, it is also a superset of coX.

This theorem can be used to replace search operations over sets X by subsets
X ′ ⊂ X, which are considerably smaller, if the convex hull of the latter generates
X. In particular, the vertices of convex sets are sufficient to reconstruct the whole
set.
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tion on a convex polyhedral set.
Note that the minimum of this
function is unique, and that the
maximum can be found at one
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ing domain.

6.2 Unconstrained Problems

After the characterization and uniqueness results (Theorem 6.5, Corollary 6.6, and
Lemma 6.7) of the previous section, we will now study numerical techniques to
obtain minima (or maxima) of convex optimization problems. While the choice of
algorithms is motivated by applicability to kernel methods, the presentation here is
not problem specific. For details on implementation, and descriptions of applications
to learning problems, see Chapter 10.

6.2.1 Functions of One Variable

We begin with the easiest case, in which f depends on only one variable. Some of
the concepts explained here, such as the interval cutting algorithm and Newton’s
method, can be extended to the multivariate setting (see Problem 6.5). For the sake
of simplicity, however, we limit ourselves to the univariate case.

Convexity 101

sup
x2X

f(x) = sup
x2coX

f(x)

• Supremum on convex hull

Proof by contradiction
• Maximum over convex function

on convex set is obtained on vertex
• Assume that maximum inside line segment
• Then function cannot be convex
• Hence it must be on vertex



Gradient descent



One dimensional problems

• Key Idea
• For differentiable f search for x with f’(x) = 0
• Interval bisection (derivative is monotonic)
• Need log (A-B) - log ε to converge

• Can be extended to nondifferentiable problems
(exploit convexity in upper bound and keep 5 points)
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Assume we want to minimize f : R → R on the interval [a, b] ⊂ R. If we cannot
make any further assumptions regarding f , then this problem, as simple as it may
seem, cannot be solved numerically.

731 2456
Figure 6.5 Interval Cutting Algorithm. The selection of points is ordered according to
the numbers beneath (points 1 and 2 are the initial endpoints of the interval).

If f is differentiable, the problem can be reduced to finding f ′(x) = 0 (seeContinuous
Differentiable
Functions

Problem 6.4 for the general case). If in addition to the previous assumptions, f is
convex, then f ′ is monotonic, and we can find a fast, simple algorithm (Algorithm
6.1) to solve our problem (see Figure 6.5).

Algorithm 6.1 Interval Cutting

Require: a, b, Precision ε
Set A = a,B = b
repeat

if f ′ (A+B
2

)

> 0 then
B = A+B

2
else

A = A+B
2

end if
until (B −A)min(|f ′(A)|, |f ′(B)|) ≤ ε

Output: x = A+B
2

Interval Cutting
This technique works by halving the size of the interval that contains the

minimum x∗ of f , since it is always guaranteed by the selection criteria for B
and A that x∗ ∈ [A,B]. We use the following Taylor series expansion to determine
the stopping criterion.

Theorem 6.13 (Taylor Series) Denote by f : R → R a function that is d times
differentiable. Then for any x, x′ ∈ R, there exists a ξ with |ξ| ≤ |x− x′|, such that

f(x′) =
d−1
∑

i=0

1

i!
f (i)(x)(x′ − x)i +

ξd

d!
f (d)(x+ ξ). (6.11)

Now we may apply (6.11) to the stopping criterion of Algorithm 6.1. We denoteProof of Linear
Convergence
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solution on the left



• Key idea
• Gradient points into descent direction
• Locally gradient is good 

approximation of objective function
• GD with Line Search

• Get descent direction
• Unconstrained line search
• Exponential convergence for strongly 

convex objective

Gradient descent
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As usual ‖·‖ is the Euclidean norm. For small γ the linear contribution in the Taylor
expansion will be dominant, hence for some γ > 0 we have f(xn − γgn) < f(xn).
It can be shown (see e.g. [315]) that after a (possibly infinite) number of steps,
gradient descent (see Algorithm 6.3) will converge.

Algorithm 6.3 Gradient Descent

Require: x0, Precision ε
n = 0
repeat

Compute g = f ′(xn)
Perform line search on f(xn − γg) for optimal γ.
xn+1 = xn − γg
n = n+ 1

until ‖f ′(xn)‖ ≤ ε
Output: xn

Problems of
Convergence In spite of this, the performance of gradient descent is far from optimal. Depend-

ing on the shape of the landscape of values of f , gradient descent may take a long
time to converge. Figure 6.6 shows two examples of possible convergence behavior
of the gradient descent algorithm.

Figure 6.6 Left: Gradient descent takes a long time to converge, since the landscape
of values of f forms a long and narrow valley, causing the algorithm to zig-zag along the
walls of the valley. Right: due to the homogeneous structure of the minimum, the algorithm
converges after very few iterations. Note that in both cases, the next direction of descent
is orthogonal to the previous one, since line search provides the optimal step length.

6.2.3 Convergence Properties of Gradient Descent

Let us analyze the convergence properties of Algorithm 6.3 in more detail. To keep
matters simple, we assume that f is a quadratic function, i.e.

f(x) =
1

2
(x− x∗)"K(x− x∗) + c0, (6.18)

466 9 Unconstrained minimization

then we start to check whether the inequality f(x + t∆x) ≤ f(x) + αt∇f(x)T ∆x
holds.

The parameter α is typically chosen between 0.01 and 0.3, meaning that we
accept a decrease in f between 1% and 30% of the prediction based on the linear
extrapolation. The parameter β is often chosen to be between 0.1 (which corre-
sponds to a very crude search) and 0.8 (which corresponds to a less crude search).

9.3 Gradient descent method

A natural choice for the search direction is the negative gradient ∆x = −∇f(x).
The resulting algorithm is called the gradient algorithm or gradient descent method.

Algorithm 9.3 Gradient descent method.

given a starting point x ∈ dom f .

repeat

1. ∆x := −∇f(x).
2. Line search. Choose step size t via exact or backtracking line search.
3. Update. x := x + t∆x.

until stopping criterion is satisfied.

The stopping criterion is usually of the form ‖∇f(x)‖2 ≤ η, where η is small and
positive. In most implementations, this condition is checked after step 1, rather
than after the update.

9.3.1 Convergence analysis

In this section we present a simple convergence analysis for the gradient method,
using the lighter notation x+ = x+ t∆x for x(k+1) = x(k) + t(k)∆x(k), where ∆x =
−∇f(x). We assume f is strongly convex on S, so there are positive constants m
and M such that mI % ∇2f(x) % MI for all x ∈ S. Define the function f̃ : R → R
by f̃(t) = f(x − t∇f(x)), i.e., f as a function of the step length t in the negative
gradient direction. In the following discussion we will only consider t for which
x − t∇f(x) ∈ S. From the inequality (9.13), with y = x − t∇f(x), we obtain a
quadratic upper bound on f̃ :

f̃(t) ≤ f(x) − t‖∇f(x)‖2
2 +

Mt2

2
‖∇f(x)‖2

2. (9.17)

Analysis for exact line search

We now assume that an exact line search is used, and minimize over t both sides
of the inequality (9.17). On the lefthand side we get f̃(texact), where texact is the
step length that minimizes f̃ . The righthand side is a simple quadratic, which



Convergence Analysis
• Strongly convex function

• Progress guarantees (minimum x*)

• Lower bound on the minimum (set y= x*)
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Convergence Analysis
• Bounded Hessian

Using strong convexity

• Iteration bound

f(y)  f(x) + hy � x, @

x

f(x)i+ M

2
ky � xk2

=) f(x+ tg

x

)  f(x)� t kg
x

k2 + M

2
t

2 kg
x

k2

 f(x)� 1

2M
kg

x

k2

=) f(x+ tg

x

)� f(x⇤)  f(x)� f(x⇤)� 1

2M
kg

x

k2

 f(x)� f(x⇤)
h
1� m

M

i

M

m

log

f(x)� f(x

⇤
)

✏



Newton’s Method

Isaac Newton



Newton Method
• Convex objective function f
• Nonnegative second derivative

• Taylor expansion

• Minimize approximation & iterate til converged
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Convergence Analysis
• There exists a region around optimality where 

Newton’s method converges quadratically if f is 
twice continuously differentiable

• For some region around x* gradient is well 
approximated by Taylor expansion

• Expand Newton update
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Convergence Analysis
• Two convergence regimes

• As slow as gradient descent outside the 
region where Taylor expansion is good

• Quadratic convergence once the bound holds

• Newton method is affine invariant
(proof by chain rule)
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See Boyd and Vandenberghe, Chapter 9.5 for much more



Newton method rescales space
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Newton method rescales space

from Boyd & Vandenberghe

9.5 Newton’s method 485
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x + ∆xnt
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Figure 9.17 The dashed lines are level curves of a convex function. The
ellipsoid shown (with solid line) is {x + v | vT∇2f(x)v ≤ 1}. The arrow
shows −∇f(x), the gradient descent direction. The Newton step ∆xnt is
the steepest descent direction in the norm ‖ · ‖∇2f(x). The figure also shows
∆xnsd, the normalized steepest descent direction for the same norm.

Steepest descent direction in Hessian norm

The Newton step is also the steepest descent direction at x, for the quadratic norm
defined by the Hessian ∇2f(x), i.e.,

‖u‖∇2f(x) = (uT∇2f(x)u)1/2.

This gives another insight into why the Newton step should be a good search
direction, and a very good search direction when x is near x!.

Recall from our discussion above that steepest descent, with quadratic norm
‖ · ‖P , converges very rapidly when the Hessian, after the associated change of
coordinates, has small condition number. In particular, near x!, a very good choice
is P = ∇2f(x!). When x is near x!, we have ∇2f(x) ≈ ∇2f(x!), which explains
why the Newton step is a very good choice of search direction. This is illustrated
in figure 9.17.

Solution of linearized optimality condition

If we linearize the optimality condition ∇f(x!) = 0 near x we obtain

∇f(x + v) ≈ ∇f(x) + ∇2f(x)v = 0,

which is a linear equation in v, with solution v = ∆xnt. So the Newton step ∆xnt is
what must be added to x so that the linearized optimality condition holds. Again,
this suggests that when x is near x! (so the optimality conditions almost hold),
the update x + ∆xnt should be a very good approximation of x!.

When n = 1, i.e., f : R → R, this interpretation is particularly simple. The
solution x! of the minimization problem is characterized by f ′(x!) = 0, i.e., it is

locally adaptive 
metric



Parallel Newton Method

• Good rate of convergence
• Few passes through data needed
• Parallel aggregation of gradient and Hessian
• Gradient requires O(d) data
• Hessian requires O(d2) data
• Update step is O(d3) & nontrivial to parallelize
• Use it only for low dimensional problems



BFGS algorithm
Broyden-Fletcher-Goldfarb-Shanno



Basic Idea
• Newton-like method to compute descent direction

• Line search on f in direction

• Update B with rank 2 matrix

• Require that Quasi-Newton condition holds
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Properties

• Simple rank 2 update for B
• Use matrix inversion lemma to update inverse
• Memory-limited versions L-BFGS
• Use toolbox if possible (TAO, MATLAB)

(typically slower if you implement it yourself)
• Works well for nonlinear nonconvex objectives

(often even for nonsmooth objectives)



4.2 Constrained Convex Problems



Basic Convexity



• Optimization problem

• Common constraints
• linear inequality constraints

• quadratic cone constraints

• semidefinite constraints
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Theorem 6.11 (Convex Sets and Vertices) A compact convex set is the con-
vex hull of its vertices.

Reconstructing
Convex Sets from
Vertices

The proof is slightly technical, and not central to the understanding of kernel
methods. See Rockafellar [419, Chapter 18] for details, along with further theorems
on convex functions. We now proceed to the second key theorem in this section.

Theorem 6.12 (Maxima of Convex Functions on Convex Compact Sets)
Denote by X a compact convex set in X, by |X the vertices of X, and by f a convex
function on X. Then

sup{f(x)|x ∈ X} = sup{f(x)|x ∈ |X}. (6.10)

Proof Application of Theorem 6.10 and Theorem 6.11 proves the claim, since
under the assumptions made on X, we have X = co (|X). Figure 6.4 depicts the
situation graphically.

Figure 6.4 A convex func-
tion on a convex polyhedral set.
Note that the minimum of this
function is unique, and that the
maximum can be found at one
of the vertices of the constrain-
ing domain.

6.2 Unconstrained Problems

After the characterization and uniqueness results (Theorem 6.5, Corollary 6.6, and
Lemma 6.7) of the previous section, we will now study numerical techniques to
obtain minima (or maxima) of convex optimization problems. While the choice of
algorithms is motivated by applicability to kernel methods, the presentation here is
not problem specific. For details on implementation, and descriptions of applications
to learning problems, see Chapter 10.

6.2.1 Functions of One Variable

We begin with the easiest case, in which f depends on only one variable. Some of
the concepts explained here, such as the interval cutting algorithm and Newton’s
method, can be extended to the multivariate setting (see Problem 6.5). For the sake
of simplicity, however, we limit ourselves to the univariate case.

Constrained Convex Minimization

minimize

x

f(x)

subject to c

i

(x)  0 for all i

hwi, xi+ bi  0

x

>
Qx+ b

>
x  c with Q ⌫ 0

M ⌫ 0 or M0 +

X

i

xiMi ⌫ 0

Equality is special case 
Why?



Example - Support Vectors
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,
w

{x | <w  x> + b = 0},

{x | <w  x> + b = −1},
{x | <w  x> + b = +1},

x2
x1

Note:
<w  x1> + b = +1
<w  x2> + b = −1

=>       <w  (x1−x2)> =   2

=> (x1−x2)   =w
||w||< >

,
,

,

, 2
||w||

yi = −1

yi = +1❍
❍

❍

❍
❍

◆

◆

◆

◆

Figure 1.5 A binary classification toy problem: separate balls from diamonds. The
optimal hyperplane (1.24) is shown as a solid line. The problem being separable, there
exists a weight vector w and a threshold b such that yi(〈w,xi〉 + b) > 0 (i = 1, . . . ,m).
Rescaling w and b such that the point(s) closest to the hyperplane satisfy | 〈w,xi〉+b| = 1,
we obtain a canonical form (w, b) of the hyperplane, satisfying yi(〈w,xi〉 + b) ≥ 1. Note
that in this case, the margin, measured perpendicularly to the hyperplane, equals 2/‖w‖.
This can be seen by considering two points x1,x2 on opposite sides of the margin, that is,
〈w,x1〉+ b = 1, 〈w,x2〉+ b = −1, and projecting them onto the hyperplane normal vector
w/‖w‖.

of w, as in (1.25). If ‖w‖ were 1, then the left hand side of (1.26) would equal
the distance from xi to the hyperplane (cf. (1.24)). In general, we have to divide
yi(〈w,xi〉 + b) by ‖w‖ to transform it into this distance. Hence, if we can satisfy
(1.26) for all i = 1, . . . ,m with an w of minimal length, then the overall margin
will be maximized.

A more detailed explanation of why this leads to the maximummargin hyperplane
will be given in Chapter 7. A short summary of the argument is also given in
Figure 1.5.

The function τ in (1.25) is called the objective function, while (1.26) are called
inequality constraints. Together, they form a so-called constrained optimization
problem. Problems of this kind are dealt with by introducing Lagrange multipliers
αi ≥ 0 and a Lagrangian7Lagrangian

L(w, b,α) =
1

2
‖w‖2 −

m
∑

i=1

αi (yi(〈xi,w〉+ b)− 1) . (1.27)

The Lagrangian L has to be minimized with respect to the primal variables w and
b and maximized with respect to the dual variables αi (in other words, a saddle
point has to be found). Note that the constraint has been incorporated into the
second term of the Lagrangian; it is not necessary to enforce it explicitly.

7. Henceforth, we use boldface Greek letters as a shorthand for corresponding vectors
α = (α1, . . . ,αm).

minimize

w,b

1

2

kwk2 subject to yi [hw, xii+ b] � 1

hw, x1i+ b = 1

hw, x2i+ b = �1

hence hw, x1 � x2i+ b = 2

hence

⌧
w

kwk , x1 � x2

�
=

2

kwk

margin



Lagrange Multipliers
• Lagrange function

• Saddlepoint Condition
If there are x* and nonnegative α* such that 

then x* is an optimal solution to the 
constrained optimization problem

L(x,↵) := f(x) +
nX

i=1

↵ici(x) where ↵i � 0

L(x⇤
,↵)  L(x⇤

,↵

⇤)  L(x,↵⇤)



Proof

• From first inequality we see that x* is feasible

• Setting some         yields KKT conditions

• Consequently we have

This proves optimality 

L(x⇤
,↵)  L(x⇤

,↵

⇤)  L(x,↵⇤)

(↵i � ↵

⇤
i )ci(x

⇤
)  0 for all ↵i � 0

↵i = 0

↵

⇤
i ci(x

⇤) = 0

L(x⇤
,↵

⇤) = f(x⇤)  L(x,↵⇤) = f(x) +
X

i

↵

⇤
i ci(x)  f(x)



Constraint gymnastics
(all three conditions are equivalent)

• Slater’s condition
There exists some x such that for all i

• Karlin’s condition
For all nonnegative α there exists some x such that

• Strict constraint qualification
The feasible region contains at least two distinct 
elements and there exists an x in X such that all 
ci(x) are strictly convex at x with respect to X

ci(x) < 0

X

i

↵ici(x)  0



Necessary Kuhn-Tucker Conditions
• Assume optimization problem

• satisfies the constraint qualifications
• has convex differentiable objective + constraints

• Then the KKT conditions are necessary & sufficient

@

x

L(x

⇤
,↵

⇤
) = @

x

f(x

⇤
) +

X

i

↵

⇤
i

@

x

c

i

(x

⇤
) = 0 (Saddlepoint in x

⇤
)

@

↵iL(x
⇤
,↵

⇤
) = c

i

(x

⇤
)  0 (Saddlepoint in ↵

⇤
)

X

i

↵

⇤
i

c

i

(x

⇤
) = 0 (Vanishing KKT-gap)

Yields algorithm for solving optimization problems
Solve for saddlepoint and KKT conditions



Proof

f(x)� f(x

⇤
) � [@

x

f(x

⇤
)]

>
(x� x

⇤
) (by convexity)

= �
X

i

↵

⇤
i

[@

x

c

i

(x

⇤
)]

>
(x� x

⇤
) (by Saddlepoint in x

⇤
)

� �
X

i

↵

⇤
i

(c

i

(x)� c

i

(x

⇤
)) (by convexity)

=

X

i

↵

⇤
i

c

i

(x) (by vanishing KKT gap)

� 0



Linear and Quadratic Programs



Linear Programs
• Objective

• Lagrange function

• Optimality conditions

• Dual problem

minimize

x

c

>
x subject to Ax+ d  0

L(x,↵) = c

>
x+ ↵

>(Ax+ d)

@

x

L(x,↵) = A

>
↵+ c = 0

@

↵

L(x,↵) = Ax+ d  0

0 = ↵

>(Ax+ d)

0  ↵

maximize

i
d>↵ subject to A>↵+ c = 0 and ↵ � 0

plug into Lplug into L



Linear Programs
• Primal

• Dual

• Free variables become equality constraints
• Equality constraints become free variables
• Inequalities become inequalities
• Dual of dual is primal

minimize

x

c

>
x subject to Ax+ d  0

maximize

i
d>↵ subject to A>↵+ c = 0 and ↵ � 0



• Objective

• Lagrange function

• Optimality conditions

Quadratic Programs

plug into L

minimize

x

1

2

x

>
Qx+ c

>
x subject to Ax+ d  0

L(x,↵) =
1

2
x

>
Qx+ c

>
x+ ↵

>(Ax+ d)

@

x

L(x,↵) = Qx+A

>
↵+ c = 0

@

↵

L(x,↵) = Ax+ d  0

0 = ↵

>(Ax+ d)

0  ↵



dual

Quadratic Program
• Eliminating x from the Lagrangian via

• Lagrange function
Qx+A

>
↵+ c = 0

L(x,↵) =
1

2
x

>
Qx+ c

>
x+ ↵

>(Ax+ d)

= �1

2
x

>
Qx+ ↵

>
d

= �1

2
(A>

↵+ c)>Q�1(A>
↵+ c) + ↵

>
d

= �1

2
↵

>
AQ

�1
A

>
↵+ ↵

> ⇥
d�AQ

�1
c

⇤
� 1

2
c

>
Q

�1
c

subject to ↵ � 0



• Primal

• Dual

• Dual constraints are simpler
• Possibly many fewer variables
• Dual of dual is not (always) primal

(e.g. in SVMs x is in a Hilbert Space)

Quadratic Programs

minimize

x

1

2

x

>
Qx+ c

>
x subject to Ax+ d  0

minimize

↵

1

2

↵>AQ�1A>↵+ ↵> ⇥
AQ�1c� d

⇤
subject to ↵ � 0



Bundle Methods
simple parallelization



Some optimization problems
• Density estimation

• Penalized regression

minimize

✓

mX

i=1

� log p(xi|✓)� log p(✓)

equivalently minimize

✓

mX

i=1

[g(✓)� h�(xi), ✓i] +
1

2�

2
k✓k2

minimize
✓

mX

i=1

l (yi � h�(xi), ✓i) +
1

2�2
k✓k2

e.g. squared loss regularizer



Basic Idea

• Loss
• Convex but expensive to compute 
• Line search just as expensive as new computation
• Gradient almost free with function value computation
• Easy to compute in parallel

• Regularizer
• Convex and cheap to compute and to optimize

• Strategy
• Compute tangents on loss
• Provides lower bound on objective
• Solve dual optimization problem (fewer parameters)

minimize
✓

mX

i=1

li(✓) + �⌦[✓]



Bundle MethodBundle Approximation

Alexander J. Smola: Bundle Methods for Machine Learning 18 / 36

empirical risk



Lower Bound

Regularized Risk Minimization

minimize
w

R
emp

[w ] + �⌦[w ]

Taylor Approximation for R
emp

[w ]

R
emp

[w ] � R
emp

[wt ] + hw � wt , @wR
emp

[wt ]i = hat , wi+ bt

where at = @wR
emp

[wt�1] and bt = R
emp

[wt�1]� hat , wt�1i.
Bundle Bound

R
emp

[w ] � Rt [w ] := max
it

hai , wi+ bi

Regularizer ⌦[w ] solves stability problems.

Alexander J. Smola: Bundle Methods for Machine Learning 19 / 36

Lower bound



PseudocodeAlgorithm
Pseudocode

Initialize t = 0, w0 = 0, a0 = 0, b0 = 0
repeat

Find minimizer

wt := argmin
w

Rt(w) + �⌦[w ]

Compute gradient at+1 and offset bt+1.
Increment t  t + 1.

until ✏t  ✏
Convergence Monitor Rt+1[wt ]� Rt [wt ]

Since Rt+1[wt ] = R
emp

[wt ] (Taylor approximation) we have

Rt+1[wt ] + �⌦[wt ] � min
w

R
emp

[w ] + �⌦[w ] � Rt [wt ] + �⌦[wt ]

Alexander J. Smola: Bundle Methods for Machine Learning 20 / 36



Dual ProblemD u a l P r o b l e m

G o o d N e w s
Dual optimization for ⌦[w ] = 1

2 kwk
2
2 is Quadratic Program

regardless of the choice of the empirical risk R
emp

[w ].
D e t a i l s

minimize
�

1
2��>AA>� � �>b

subject to �i � 0 and k�k1 = 1

The primal coefficient w is given by w = ���1A>�.
G e n e r a l R e s u l t

Use Fenchel-Legendre dual of ⌦[w ], e.g. k·k1 ! k·k1.
V e r y C h e a p V a r i a n t

Can even use simple line search for update (almost as good).

A l e x a n d e r J . S m o l a : B u n d l e M e t h o d s f o r M a c h i n e L e a r n i n g 2 1 / 3 6



PropertiesFeatures

Parallelization
Empirical risk sum of many terms: MapReduce
Gradient sum of many terms, gather from cluster.
Possible even for multivariate performance scores.
Data is local. Combine data from competing entities.

Solver independent of loss
No need to change solver for new loss.

Loss independent of solver/regularizer
Add new regularizer without need to re-implement loss.

Line search variant
Optimization does not require QP solver at all!
Update along gradient direction in the dual.
We only need inner product on gradients!

http://users.rsise.anu.edu.au/~chteo/BMRM.html

Alexander J. Smola: Bundle Methods for Machine Learning 22 / 36



Implementation
empirical

risk
empirical

risk
empirical

risk
empirical

risk

reducers

bundle
solver



GuaranteesConvergence
Theorem

The number of iterations to reach ✏ precision is bounded by

n  log2
�R

emp

[0]

G2 +
8G2

�✏
� 4

steps. If the Hessian of R
emp

[w ] is bounded, convergence to
any ✏  �/2 takes at most the following number of steps:

n  log2
�R

emp

[0]

4G2 +
4
�

max
⇥
0, 1� 8G2H⇤/�

⇤
� 4H⇤

�
log 2✏

Advantages
Linear convergence for smooth loss
For non-smooth loss almost as good in practice (as long
as smooth on a course scale).
Does not require primal line search.

Alexander J. Smola: Bundle Methods for Machine Learning 25 / 36



Proof ideaProof Idea

Duality Argument
Dual of Ri [w ] + �⌦[w ] lower bounds minimum of
regularized risk R

emp

[w ] + �⌦[w ].
Ri+1[wi ] + �⌦[wi ] is upper bound.
Show that the gap �i := Ri+1[wi ]� Ri [wi ] vanishes.

Dual Improvement
Give lower bound on increase in dual problem
in terms of �i and the subgradient @w [R

emp

[w ] + �⌦[w ]].
For unbounded Hessian we have �� = O(�2).
For bounded Hessian we have �� = O(�).

Convergence
Solve difference equation in �t to get desired result.

Alexander J. Smola: Bundle Methods for Machine Learning 26 / 36



4.3 Online Methods



Stochastic gradient descent
• Empirical risk as expectation

• Stochastic gradient descent (pick random x,y)

• Often we require that parameters are restricted 
to some convex set X, hence we project on it

1

m

mX

i=1

l (yi � h�(xi), ✓i) = Ei⇠{1,..m} [l (yi � h�(xi), ✓i)]

here ⇡

X

(✓) = argmin
x2X

kx� ✓k

✓t+1  ✓t � ⌘t@✓ (yt, h�(xt), ✓ti)

✓

t+1  ⇡

x

[✓
t

� ⌘

t

@

✓

(y
t

, h�(x
t

), ✓
t

i)]



Convergence in Expectation

• Proof
Show that parameters converge to minimum

E
✓̄

⇥
l(✓̄)

⇤
� l

⇤ 
R

2 + L

2
P

T�1
t=0 ⌘

2
t

2
P

T�1
t=0 ⌘

t

where

l(✓) = E(x,y) [l(y, h�(x), ✓i)] and l

⇤ = inf
✓2X

l(✓) and ✓̄ =

P
T�1
t=0 ✓

t

⌘

tP
T�1
t=0 ⌘

t

expected loss parameter average

✓⇤ 2 argmin
✓2X

l(✓) and set rt := k✓⇤ � ✓tk

from Nesterov and Vial

initial loss



Proof

• Summing over inequality for t proves claim
• This yields randomized algorithm for 

minimizing objective functions (try log times 
and pick the best / or average median trick)

r2t+1 = k⇡X [✓t � ⌘tgt]� ✓⇤k2

 k✓t � ⌘tgt � ✓⇤k2

= r2t + ⌘2t kgtk
2 � 2⌘t h✓t � ✓⇤, gti

hence E
⇥
r2t+1 � r2t

⇤
 ⌘2tL

2 + 2⌘t [l
⇤ �E[l(✓t)]]

 ⌘2tL
2 + 2⌘t

⇥
l⇤ �E[l(✓̄)]

⇤ by convexityby convexity



Rates
• Guarantee

• If we know R, L, T pick constant learning rate

• If we don’t know T pick 
This costs us an additional log term

E✓̄

⇥
l(✓̄)

⇤
� l⇤ 

R2 + L2
PT�1

t=0 ⌘2t
2
PT�1

t=0 ⌘t

⌘ =
R

L
p
T

and hence E✓̄[l(✓̄)]� l⇤  R[1 + 1/T ]L

2
p
T

<
LRp
T

⌘t = O(t�
1
2 )

E✓̄[l(
¯✓)]� l⇤ = O

✓
log Tp

T

◆



Strong Convexity

• Use this to bound the expected deviation

• Exponentially decaying averaging

and plugging this into the discrepancy yields

li(✓
0) � li(✓) + h@✓li(✓), ✓0 � ✓i+ 1

2
� k✓ � ✓0k2

r2t+1  r2t + ⌘2t kgtk
2 � 2⌘t h✓t � ✓⇤, gti

 r2t + ⌘2tL
2 � 2⌘t [lt(✓t)� lt(✓

⇤)]� 2�⌘tr
2
k

hence E[r2t+1]  (1� �ht)E[r2t ]� 2⌘t [E [l(✓t)]� l⇤]

✓̄ =
1� �

1� �T

T�1X

t=0

�T�1�t✓t

l(¯✓)� l⇤  2L2

�T
log

"
1 +

�RT
1
2

2L

#
for ⌘ =

2

�T
log

"
1 +

�RT
1
2

2L

#



More variants
• Adversarial guarantees

has low regret (average instantaneous cost) for 
arbitrary orders (useful for game theory)
• Ratliff, Bagnell, Zinkevich          

         learning rate
• Shalev-Shwartz, Srebro, Singer (Pegasos)

         learning rate (but need constants)
• Bartlett, Rakhlin, Hazan

(add strong convexity penalty)

✓

t+1  ⇡

x

[✓
t

� ⌘

t

@

✓

(y
t

, h�(x
t

), ✓
t

i)]

O(t�
1
2 )

O(t�1)



4.4 Discrete Problems



Integer programming relaxations
• Optimization problem

• Relax to linear program if vertices are integral 
since LP has vertex solution

minimize

x

c

>
x subject to Ax  b and x 2 Zn



Integer programming relaxations
• Totally unimodular constraint matrix A

• Inverse of each submatrix must be integral
• RHS of constraints must be integral
• Many useful sufficient conditions for TU.



Example - Hungarian Marriage
• Optimization Problem

• n Hungarian men
• n Hungarian women
• Compatibility cij between them

• Find optimal matching

• All vertices of the constraint matrix are integral

maximize

⇡

X

ij

⇡ijCij

subject to ⇡ij 2 {0, 1} and

X

i

⇡ij = 1 and

X

j

⇡ij = 1



Randomization
• Maximum finding

• Very large set of instances
• Find approximate maximum

• Draw a random set of n terms
• Take maximum over subset 

(59 for 95% with 95% confidence)

x x x x xx x

Pr

n

F [max

i
xi] < ✏

o

= (1� ✏)

n
= �

hence n =

log �

log(1� ✏)

 � log �

✏



Randomization
• Find good solution

• Show that expected value is well behaved
• Show that tails are bounded
• Sufficiently large random draw must contain at least one 

good element (e.g. CM sketch)
• Find good majority

• Show that majority satisfies condition
• Bound probability of minority being overrepresented (e.g. 

Mean-Median theorem)
• Much more in these books

• Raghavan & Motwani (Randomized Algorithms)
• Alon & Spencer (Probabilistic Method)



+ + +

> > > > >

Submodular maximization
• Submodular function

• Defined on sets
• Diminishing returns property

• Example
For web search results we might have individually

But if we can show only 4 we should probably pick

f(A [ C)� f(A) � f(B [ C)� f(B) for A ✓ B



Submodular maximization
• Optimization problem

Often NP hard even to find tight approximation

• Greedy optimization procedure

• Start with empty set X

• Find x such that               is maximized

• Add x to the set and repeat until |X|=k

• Guarante of (1 - 1/e) optimality

max

X2X
f(X) subject to |X|  k

f(X [ {x})



Further reading
• Nesterov and Vial (expected convergence)

http://dl.acm.org/citation.cfm?id=1377347
• Bartlett, Hazan, Rakhlin (strong convexity SGD)

http://books.nips.cc/papers/files/nips20/NIPS2007_0699.pdf
• TAO (toolkit for advanced optimization)

http://www.mcs.anl.gov/research/projects/tao/
• Ratliff, Bagnell, Zinkevich

http://martin.zinkevich.org/publications/ratliff_nathan_2007_3.pdf
• Shalev-Shwartz, Srebro, Singer (Pegasos paper)

http://dl.acm.org/citation.cfm?id=1273598
• Langford, Smola, Zinkevich (slow learners are fast)

http://arxiv.org/abs/0911.0491
• Hogwild (Recht, Wright, Re)

http://pages.cs.wisc.edu/~brecht/papers/hogwildTR.pdf
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