Graphical models

Review

- Graphical models (Bayes nets, Markov random fields, factor graphs)
- graphical tests for conditional independence (e.g., dseparation for Bayes nets; Markov blanket)
- format conversions: always possible, may lose info
- learning (fully-observed case)
o Inference
- variable elimination
- today: belief propagation
- Represents the tables that we build during elimination
- many JTs for each graphical model
- many-to-many correspondence w/ elimination orders
- A junction tree for a model is:
- a tree
- whose nodes are sets of variables ("cliques")
- that contains a node for each of our factors
- that satisfies running intersection property
these are the tables we build

Running intersection property

- In variable elimination: once a variable X is added to our current table T , it stays in T until eliminated, then never appears again
- In JT, this means all sets containing X form a connected region of tree
- true for all $\mathrm{X}=$ running intersection property

Incorporating evidence (conditioning)

- For each factor or CPT:
- fix known arguments
- assign to some clique containing all non-fixed arguments
- drop observed variables from the JT
- No difference from inference w/o evidence
- we just get a junction tree over fewer variables
- easy to check that it's still a valid JT

Message passing (aka BP)

- Build a junction tree (started last time)
- Instantiate evidence, pass messages (calibrate), read off answer, eliminate nuisance variables
- Main questions
- how expensive? (what tables?)
- what does a message represent?

Example

elimination order turns first expression into 2 nd parens around inner 3 sums: these represent small tables that we compute and later multiply into some larger table - "messages" one for each local min of $S: A B, A B, B D$ (none for $D F$ since F and null set immediately follow and are subsets) - psi_1(AB), psi_2(AB), psi_3(BD) or we could re-parenthesize: psi_1 could be either inside sum over E or (since E is not an argument) it can be factored out difference between multiplying psi_1 into phi_2 or phi_3 - slightly different junction trees

What if order were FDBAEC?

Geoff Gordon—Machine Learning_Fall 2013
would still create cliques $B D F, A B D, A B E, A B C$ (same but in reverse order)
would still get same junction tree(s), but now messages pass in reverse direction - e.g., summing D out of $A B D$ gives a message over $A B$ that we later multiply into ABC
in general, many elimination orders can lead to same junction tree; messages could pass in either direction over an edge depending which side of the edge gets summed out first.

Messages

- Message = smaller tables that we create by summing out some variables from a clique
- we later multiply the message into exactly one other clique before summing out that clique
- one message per edge (e.g., ABC — ABD)
- arguments of message: intersection of endpoints (AB)
- called a sepset or separating set
- message might go in either direction over the edge depending on which side of the JT we sum out first
to see why: we've eliminated all variables that appear only on one side of the tree, and none that appear on the other side, so the order eliminations didn't matter

Belief propagation

- Idea: calculate all messages that could be passed by any elimination order consistent with our JT
- For each edge, need two runs of variable elimination: one using the edge in each direction
- Insight: that's just two runs total

Belief propagation

- Pick a node of JT as root arbitrarily
o Run variable elimination outward from the root
- any order is OK as long as we do edges closer to the root first
- Run variable elimination inward toward the root
o Done!
- passed one message in each direction over each edge

All for the price of two

- Now we can simulate any order of elimination consistent with the tree:
- orient JT edges in the direction consistent with the elimination order
- these are the messages that elimination would compute

Example

Tree: $A B-B C-C D, B C-C E-E F$
Potentials: all [2 1112 2] for [TT TF FT FF]
Observe: $\mathrm{D}=$ true (so CD potential becomes [2 1])
pick $A B$ as root
messages root -> leaves
AB -> BC: B, [3 3]
$\mathrm{BC}->\mathrm{C}: \mathrm{C},[9$ 9]
BC $->$ CE: C, [9 9]
CE -> EF: E, [27 27]
messages leaves -> root
C -> BC: C, [2 1]
$\mathrm{EF} \rightarrow \mathrm{CE}: \mathrm{E},[3$ 3]
$\mathrm{CE} \rightarrow \mathrm{BC}: \mathrm{C}$, [9 9]
$B C->A B$:
$9 *\left[\begin{array}{llll}2 & 1 & 1 & 2\end{array}\right] . *\left[\begin{array}{llll}2 & 1 & 2 & 1\end{array}\right]=9 *\left[\begin{array}{llll}4 & 1 & 2 & 2\end{array}\right]=>\left[\begin{array}{ll}45 & 36\end{array}\right]$

Using it

- Want: $P(B, C \mid D=T)$
- i.e.,
- Variable elimination:
i.e., two runs of variable elimination: one to eliminate $A E$, one to eliminate everything
to elim AE : we use messages in from AB (const 3) and CE (const 27), potential at BC ([2112]), and trivial message from CD ([21]) mult all together: 81 * [$\left.\begin{array}{lll}4 & 1 & 2\end{array}\right]$ norm: [4 112 2]/9

Marginals

- More generally, marginal over any subtree:
- product of all incoming messages and all local factors
- normalize
- Special case: clique marginals

Read off answer

o Find some subtree that mentions all variables of interest

- Compute distribution over variables mentioned in this subtree
- product of all messages into subtree and all factors inside subtree / normalizing constant
- Marginalize (sum out) nuisance variables

Inference-recap

- Build junction tree (e.g., by looking at tables built for a particular elimination order)
- Instantiate evidence
- Pass messages
- Pick a subtree containing desired variables, read off its distribution, and sum out nuisance variables

Calibration

- After BP, easy to get all clique marginals
- also all sepset marginals (sum out from clique on either side)
- Bayes rule: P (clique \backslash sepset | sepset) $=$
- So, joint $\mathrm{P}\left(\right.$ clique \cup clique $\left._{2}\right)=$
- Continue over entire tree: P (everything) $=$

```
Bayes: .. = P(clique) / P(sepset)
joint: P(c1) P(c2 | c1) = P(c1) P(c2 | sepset)
= P(c1) P(c2) / P(sepset)
P(everything) = prod P(clique_i) / prod P(sepset_j)
calibrated JT: one where we know all clique and sepset marginals
```


Hard v. soft factors

Geoff Gordon—Machine Learning—Fall 2013
number = degree to which event is more or less likely must be nonnegative
$0=$ hard constraint
can combine hard \& soft (some numbers zero, others positive and varying)
hard factors can lead to complications (e.g., impossible to satisfy all constraints; e.g., Koller ex 4.4 (may not be able to factor according to a graph that matches our actua set of independences, i.e., failure of Hammersley-Clifford))
we'll mostly be using soft factors

Moralize \& triangulate (to build JT)

- Moralize:
- for factor graphs: a clique for every factor
- for Bayes nets:"marry the parents" of each node
- Triangulate: find a chordless 4-or-more-cycle, add a chord, repeat
- Find all maximal cliques
- Connect maximal cliques w/ edges in any way that satisfies RIP

Plate models

you've seen one already: naive Bayes
a typical example: LDA
other macro languages: MLNs, ICL

