
Graphical
models

Geoff Gordon—Machine Learning—Fall 2013

Review

Graphical models (Bayes nets, Markov random
fields, factor graphs)	

‣ graphical tests for conditional independence (e.g., d-

separation for Bayes nets; Markov blanket)	

‣ format conversions: always possible, may lose info	

‣ learning (fully-observed case)	

Inference	

‣ variable elimination	

‣ today: belief propagation

���2

Geoff Gordon—Machine Learning—Fall 2013

Junction tree
(aka clique tree, aka join tree)

Represents the tables that we build during
elimination	

‣ many JTs for each graphical model	

‣ many-to-many correspondence w/ elimination orders	

A junction tree for a model is:	

‣ a tree	

‣ whose nodes are sets of variables (“cliques”)	

‣ that contains a node for each of our factors	

‣ that satisfies running intersection property

���3

nodes are cliques:

 these are the tables we build
!
a node for each factor:

 factor is a subset of that node’s clique
!!

Geoff Gordon—Machine Learning—Fall 2013

Running intersection property

In variable elimination: once a variable X is added
to our current table T, it stays in T until eliminated,
then never appears again	

In JT, this means all sets containing X form a
connected region of tree	

‣ true for all X = running intersection property

���4

!

Geoff Gordon—Machine Learning—Fall 2013

Incorporating evidence (conditioning)

For each factor or CPT:	

‣ fix known arguments	

‣ assign to some clique containing all non-fixed arguments	

‣ drop observed variables from the JT	

No difference from inference w/o evidence	

‣ we just get a junction tree over fewer variables	

‣ easy to check that it’s still a valid JT

���5

Geoff Gordon—Machine Learning—Fall 2013

Message passing (aka BP)

Build a junction tree (started last time)	

Instantiate evidence, pass messages (calibrate),
read off answer, eliminate nuisance variables	

Main questions	

‣ how expensive? (what tables?)	

‣ what does a message represent?

���6

what does a message represent?

 all of the information from a region of the junction tree: a single small potential that serves as a surrogate for a larger portion of tree

 the result of variable elimination: if we marginalized away all variables in part of the tree, and if the only potentials were the ones that have just
these variables as arguments, message would be the resulting marginal

Geoff Gordon—Machine Learning—Fall 2013

Example

���7

CEABDF

Geoff Gordon—Machine Learning—Fall 2013

Example

"30

CEABDF

elimination order turns first expression into 2nd
!
parens around inner 3 sums: these represent small tables that we compute and later multiply into some larger table — “messages”
!
one for each local min of S: AB, AB, BD (none for DF since F and null set immediately follow and are subsets) — psi_1(AB), psi_2(AB), psi_3(BD)
!
or we could re-parenthesize: psi_1 could be either inside sum over E or (since E is not an argument) it can be factored out
!
difference between multiplying psi_1 into phi_2 or phi_3 — slightly different junction trees

Geoff Gordon—Machine Learning—Fall 2013

What if order were FDBAEC?

���8

would still create cliques BDF, ABD, ABE, ABC (same but in reverse order)
!
would still get same junction tree(s), but now messages pass in reverse direction — e.g., summing D out of ABD gives a message over AB that we later
multiply into ABC
!
in general, many elimination orders can lead to same junction tree; messages could pass in either direction over an edge depending which side of the edge
gets summed out first.

Geoff Gordon—Machine Learning—Fall 2013

Messages

Message = smaller tables that we create by
summing out some variables from a clique	

‣ we later multiply the message into exactly one other

clique before summing out that clique	

‣ one message per edge (e.g., ABC — ABD)	

‣ arguments of message: intersection of endpoints (AB)	

‣ called a sepset or separating set	

‣ message might go in either direction over the edge
depending on which side of the JT we sum out first

���9

Interesting fact: fix an edge in the JT and a direction; then no matter how we order the eliminations (consistent with this JT and edge direction), the
message over this edge will be the same
!
to see why: we’ve eliminated all variables that appear only on one side of the tree, and none that appear on the other side, so the order of eliminations
didn’t matter

Geoff Gordon—Machine Learning—Fall 2013

Belief propagation

Idea: calculate all messages that could be passed by
any elimination order consistent with our JT	

For each edge, need two runs of variable
elimination: one using the edge in each direction	

Insight: that’s just two runs total

���10

Geoff Gordon—Machine Learning—Fall 2013

Belief propagation

Pick a node of JT as root arbitrarily	

Run variable elimination outward from the root	

‣ any order is OK as long as we do edges closer to the

root first	

Run variable elimination inward toward the root	

Done!	

‣ passed one message in each direction over each edge

���11

Geoff Gordon—Machine Learning—Fall 2013

All for the price of two

Now we can simulate any order of elimination
consistent with the tree:	

‣ orient JT edges in the direction consistent with the

elimination order	

‣ these are the messages that elimination would compute

���12

!

Geoff Gordon—Machine Learning—Fall 2013

Example

���13

Tree: AB — BC — CD, BC — CE — EF

Potentials: all [2 1 1 2] for [TT TF FT FF]

Observe: D = true (so CD potential becomes [2 1])

pick AB as root

messages root -> leaves

AB -> BC: B, [3 3]

BC -> C: C, [9 9]

BC -> CE: C, [9 9]

CE -> EF: E, [27 27]

messages leaves -> root

C -> BC: C, [2 1]

EF -> CE: E, [3 3]

CE -> BC: C, [9 9]

BC -> AB:

9 * [2 1 1 2] .* [2 1 2 1] = 9*[4 1 2 2] => [45 36]

Geoff Gordon—Machine Learning—Fall 2013

Using it

Want: P(B, C | D=T)	

‣ i.e., 	

!

Variable elimination:

���14

sum_A sum_E P(ABCE | D=T)

sum_A sum_E ~P(ABCE | D=T) /

 sum_ABCE ~P(ABCE | D=T)
!
where ~P is unnormalized probability (product of all potentials)
!
i.e., two runs of variable elimination: one to eliminate AE, one to eliminate everything
!
to elim AE: we use messages in from AB (const 3) and CE (const 27), potential at BC ([2 1 1 2]), and trivial message from CD ([2 1])

mult all together: 81 * [4 1 2 2]

norm: [4 1 2 2]/9

Geoff Gordon—Machine Learning—Fall 2013

Marginals

More generally, marginal over any subtree:	

‣ product of all incoming messages and all local factors	

‣ normalize	

Special case: clique marginals

���15

!!

Geoff Gordon—Machine Learning—Fall 2013

Read off answer

Find some subtree that mentions all variables of
interest	

Compute distribution over variables mentioned in
this subtree	

‣ product of all messages into subtree and all factors inside

subtree / normalizing constant	

Marginalize (sum out) nuisance variables

���16

depending on query and JT, might have a lot of nuisance variables
!

Geoff Gordon—Machine Learning—Fall 2013

Inference—recap

Build junction tree (e.g., by looking at tables built
for a particular elimination order)	

Instantiate evidence	

Pass messages	

Pick a subtree containing desired variables, read
off its distribution, and sum out nuisance variables

���17

Geoff Gordon—Machine Learning—Fall 2013

Calibration

After BP, easy to get all clique marginals	

‣ also all sepset marginals (sum out from clique on either side)	

Bayes rule: P(clique \ sepset | sepset) =	

!

So, joint P(clique1 ⋃ clique2) = 	

!

Continue over entire tree: P(everything) =

���18

Bayes: … = P(clique) / P(sepset)

joint: P(c1) P(c2 | c1) = P(c1) P(c2 | sepset)

 = P(c1) P(c2) / P(sepset)
!
P(everything) = prod P(clique_i) / prod P(sepset_j)
!
calibrated JT: one where we know all clique and sepset marginals

Geoff Gordon—Machine Learning—Fall 2013

Hard v. soft factors

0 1 2

0 1 1 1

1 1 1 3

2 1 3 3

X

Y

0 1 2

0 0 0 0

1 0 0 1

2 0 1 1

X

Y

Hard Soft

���19

number = degree to which event is more or less likely

 must be nonnegative
!
0 = hard constraint
!
can combine hard & soft (some numbers zero, others positive and varying)
!
hard factors can lead to complications (e.g., impossible to satisfy all constraints; e.g., Koller ex 4.4 (may not be able to factor according to a graph that matches our actual
set of independences, i.e., failure of Hammersley-Clifford))
!
we’ll mostly be using soft factors

Geoff Gordon—Machine Learning—Fall 2013

Moralize & triangulate (to build JT)

Moralize:	

‣ for factor graphs: a clique for every factor	

‣ for Bayes nets: “marry the parents” of each node	

Triangulate: find a chordless 4-or-more-cycle, add a
chord, repeat	

Find all maximal cliques	

Connect maximal cliques w/ edges in any way that
satisfies RIP

���20

Connect maximal cliques w/ edges in any way that satisfies RIP (NP-hard to find best way, but any elimination order yields one)

Geoff Gordon—Machine Learning—Fall 2013

Loopy BP

���21

Geoff Gordon—Machine Learning—Fall 2013

Plate models

���22

you’ve seen one already: naive Bayes
!
a typical example: LDA
!
other macro languages: MLNs, ICL

