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Review

Graphical models (Bayes nets, Markov random 
fields, factor graphs)	


‣ graphical tests for conditional independence (e.g., d-

separation for Bayes nets; Markov blanket)	



‣ format conversions: always possible, may lose info	



‣ learning (fully-observed case)	



Inference	


‣ variable elimination	



‣ today: belief propagation
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Junction tree 
(aka clique tree, aka join tree)

Represents the tables that we build during 
elimination	


‣ many JTs for each graphical model	



‣ many-to-many correspondence w/ elimination orders	



A junction tree for a model is:	


‣ a tree	



‣ whose nodes are sets of variables (“cliques”)	



‣ that contains a node for each of our factors	



‣ that satisfies running intersection property
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nodes are cliques:


 these are the tables we build
!
a node for each factor: 


 factor is a subset of that node’s clique
!!
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Running intersection property

In variable elimination: once a variable X is added 
to our current table T, it stays in T until eliminated, 
then never appears again	



In JT, this means all sets containing X form a 
connected region of tree	


‣ true for all X = running intersection property
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!
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Incorporating evidence (conditioning)

For each factor or CPT:	


‣ fix known arguments	



‣ assign to some clique containing all non-fixed arguments	



‣ drop observed variables from the JT	



No difference from inference w/o evidence	


‣ we just get a junction tree over fewer variables	



‣ easy to check that it’s still a valid JT
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Message passing (aka BP)

Build a junction tree (started last time)	



Instantiate evidence, pass messages (calibrate), 
read off answer, eliminate nuisance variables	



Main questions	


‣ how expensive? (what tables?)	



‣ what does a message represent?
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what does a message represent?


 all of the information from a region of the junction tree: a single small potential that serves as a surrogate for a larger portion of tree


 the result of variable elimination: if we marginalized away all variables in part of the tree,  and if the only potentials were the ones that have just 
these variables as arguments, message would be the resulting marginal
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Example
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CEABDF
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Example

"30

CEABDF

elimination order turns first expression into 2nd
!
parens around inner 3 sums: these represent small tables that we compute and later multiply into some larger table — “messages”
!
one for each local min of S: AB, AB, BD (none for DF since F and null set immediately follow and are subsets) — psi_1(AB), psi_2(AB), psi_3(BD)
!
or we could re-parenthesize: psi_1 could be either inside sum over E or (since E is not an argument) it can be factored out
!
difference between multiplying psi_1 into phi_2 or phi_3 — slightly different junction trees
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What if order were FDBAEC?
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would still create cliques BDF, ABD, ABE, ABC (same but in reverse order)
!
would still get same junction tree(s), but now messages pass in reverse direction — e.g., summing D out of ABD gives a message over AB that we later 
multiply into ABC
!
in general, many elimination orders can lead to same junction tree; messages could pass in either direction over an edge depending which side of the edge 
gets summed out first.
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Messages

Message = smaller tables that we create by 
summing out some variables from a clique	


‣ we later multiply the message into exactly one other 

clique before summing out that clique	



‣ one message per edge (e.g.,  ABC — ABD)	



‣ arguments of message: intersection of endpoints (AB)	



‣ called a sepset or separating set	



‣ message might go in either direction over the edge 
depending on which side of the JT we sum out first
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Interesting fact: fix an edge in the JT and a direction; then no matter how we order the eliminations (consistent with this JT and edge direction), the 
message over this edge will be the same
!
to see why: we’ve eliminated all variables that appear only on one side of the tree, and none that appear on the other side, so the order of eliminations 
didn’t matter
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Belief propagation

Idea: calculate all messages that could be passed by 
any elimination order consistent with our JT	



For each edge, need two runs of variable 
elimination: one using the edge in each direction	



Insight: that’s just two runs total
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Belief propagation

Pick a node of JT as root arbitrarily	



Run variable elimination outward from the root	


‣ any order is OK as long as we do edges closer to the 

root first	



Run variable elimination inward toward the root	



Done!	


‣ passed one message in each direction over each edge
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All for the price of two

Now we can simulate any order of elimination 
consistent with the tree:	


‣ orient JT edges in the direction consistent with the 

elimination order	



‣ these are the messages that elimination would compute
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!
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Example
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Tree: AB — BC — CD,  BC — CE — EF

Potentials: all [2 1 1 2] for [TT TF FT FF]

Observe: D = true (so CD potential becomes [2 1])

pick AB as root

messages root -> leaves

AB -> BC: B, [3 3]

BC -> C: C, [9 9]

BC -> CE: C, [9 9]

CE -> EF: E, [27 27]

messages leaves -> root

C -> BC: C, [2 1]

EF -> CE: E, [3 3]

CE -> BC: C, [9 9]

BC -> AB:

9 * [2 1 1 2] .* [2 1 2 1] = 9*[4 1 2 2] => [45 36]
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Using it

Want: P(B, C | D=T)	


‣ i.e., 	



!

Variable elimination:
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sum_A sum_E P(ABCE | D=T)

sum_A sum_E ~P(ABCE | D=T) / 

   sum_ABCE ~P(ABCE | D=T)
!
where ~P is unnormalized probability (product of all potentials)
!
i.e., two runs of variable elimination: one to eliminate AE, one to eliminate everything
!
to elim AE: we use messages in from AB (const 3) and CE (const 27), potential at BC ([2 1 1 2]), and trivial message from CD ([2 1])

mult all together: 81 * [4 1 2 2]

norm: [4 1 2 2]/9
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Marginals

More generally, marginal over any subtree:	


‣ product of all incoming messages and all local factors	



‣ normalize	



Special case: clique marginals
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!!
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Read off answer

Find some subtree that mentions all variables of 
interest	



Compute distribution over variables mentioned in 
this subtree	


‣ product of all messages into subtree and all factors inside 

subtree / normalizing constant	



Marginalize (sum out) nuisance variables
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depending on query and JT, might have a lot of nuisance variables
!
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Inference—recap

Build junction tree (e.g., by looking at tables built 
for a particular elimination order)	



Instantiate evidence	



Pass messages	



Pick a subtree containing desired variables, read 
off its distribution, and sum out nuisance variables
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Calibration

After BP, easy to get all clique marginals	


‣ also all sepset marginals (sum out from clique on either side)	



Bayes rule: P(clique \ sepset | sepset) =	



!

So, joint P(clique1 ⋃ clique2) = 	



!

Continue over entire tree: P(everything) =
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Bayes: … = P(clique) / P(sepset)

joint: P(c1) P(c2 | c1) = P(c1) P(c2 | sepset)

 = P(c1) P(c2) / P(sepset)
!
P(everything) = prod P(clique_i) / prod P(sepset_j)
!
calibrated JT: one where we know all clique and sepset marginals
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Hard v. soft factors

0 1 2

0 1 1 1

1 1 1 3

2 1 3 3

X

Y

0 1 2

0 0 0 0

1 0 0 1

2 0 1 1

X

Y

Hard Soft
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number = degree to which event is more or less likely


 must be nonnegative
!
0 = hard constraint
!
can combine hard & soft (some numbers zero, others positive and varying)
!
hard factors can lead to complications (e.g., impossible to satisfy all constraints; e.g., Koller ex 4.4 (may not be able to factor according to a graph that matches our actual 
set of independences, i.e., failure of Hammersley-Clifford))
!
we’ll mostly be using soft factors
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Moralize & triangulate (to build JT)

Moralize:	


‣ for factor graphs: a clique for every factor	



‣ for Bayes nets: “marry the parents” of each node	



Triangulate: find a chordless 4-or-more-cycle, add a 
chord, repeat	



Find all maximal cliques	



Connect maximal cliques w/ edges in any way that 
satisfies RIP
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Connect maximal cliques w/ edges in any way that satisfies RIP (NP-hard to find best way, but any elimination order yields one)
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Loopy BP
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Plate models
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you’ve seen one already: naive Bayes
!
a typical example: LDA
!
other macro languages: MLNs, ICL


