Graphical
models




Review
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O Graphical models (Bayes nets, Markov random
fields, factor graphs)

» graphical tests for conditional independence (e.g., d-
separation for Bayes nets; Markov blanket)

» format conversions: always possible, may lose info

» learning (fully-observed case)

O Inference
» variable elimination

» today: belief propagation
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Junction tree

(aka cllque tree, aka join tree)
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O Represents the tables that we build during
elimination

» many JTs for each graphical model

» many-to-many correspondence w/ elimination orders

O A junction tree for a model is:
» a tree
» whose nodes are sets of variables (“cliques”™)

» that contains a node for each of our factors

» that satisfies running intersection property
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Running mtersectlon property
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O |n variable elimination: once a variable X is added
to our current table T, it stays in T until eliminated,
then never appears again

O In JT, this means all sets containing X form a
connected region of tree

» true for all X = running intersection property

Geoff Gordon—Machine Learning—#Fall 2013




Incorporating ewdence (cond:t:onmg)
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O For each factor or CPT:

» fix known/observed arguments
» assign to some clique containing all non-fixed arguments

» drop observed variables from the |T

O No difference from inference w/o evidence
» we just get a junction tree over fewer variables

» easy to check that it’s still a valid JT
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Message passing (aka BP)
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O Build a junction tree (started last time)

O Instantiate evidence, pass messages (calibrate),
read off answer, eliminate nuisance variables

O Main questions
» how expensive! (what tables?)

» what does a message represent!
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What if order were FDBAEC?
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Messages
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O Message = smaller tables that we create by
summing out some variables from a factor over a
clique

» we later multiply the message into exactly one other
clique before summing out that clique

» one message per edge (e.g., ABC —ABD)
» arguments of message: intersection of endpoints (AB)
» called a sepset or separating set

» message might go in either direction over the edge
depending on which side of the JT we sum out first
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Belief propagation
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O |dea: calculate all messages that could be passed by
any elimination order consistent with our |T

O For each edge, need two runs of variable
elimination: one using the edge in each direction

O Insight: that’s just two runs total
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Belief propagation
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O Pick a node of T as root arbitrarily

O Run variable elimination inward toward the root

» any elimination order is OK as long as we do edges
farther from the root first

O Run variable elimination outward from the root

» for each child X of root R, pick an order: [all other
children of R], R, X, [everything on non-root side of X]

» pick up this run with message R—X
O Done!

Geoff Gordon—Machine Learning—Fall 2013



All for the price of two
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O Now we can simulate any order of elimination
consistent with the tree:

» orient |T edges in the direction consistent with the
elimination order

» these are the messages that elimination would compute
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Using it

O Want: P(A,B | D=T)
»i.e, Z‘Zp(hﬁcc—\:l D:=T)
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O Variable elimination:
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Marginals
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O More generally, marginal over any subtree:
» product of all incoming messages and all local factors

» normalize

O Special case: clique marginals
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Read off answer
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O Find some subtree that mentions all variables of
Interest

o0 Compute distribution over variables mentioned in
this subtree

» product of all messages into subtree and all factors inside
subtree / normalizing constant

O Marginalize (sum out) nuisance variables
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Inference—recap
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O Build junction tree (e.g., by looking at tables built
for a particular elimination order)

O |nstantiate evidence

O Pass messages

O Pick a subtree containing desired variables, read
off its distribution, and sum out nuisance variables
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O After BP easy to get all clique marginals

» also all sepset marginals (sum out from clique on either side)

O Bayes rule: P(clique \ sepset | sepset) =
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O So, joint P(clique| U cliquey) = P(c

C\

O Continue over entire tree;: P(everythlng) =

P(C )/ L‘!’QJ
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Hard v. soft factors
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Moralize & tr:angulate (to bu:ld _IT)
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O Moralize:
» for factor graphs: a clique for every factor

» for Bayes nets:“marry the parents” of each node

O Triangulate: find a chordless 4-or-more-cycle, add a
chord, repeat

O Find all maximal cliques

O Connect maximal cliques w/ edges in any way that
satisfies RIP
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Continuous varlables
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O Graphical models can have continuous variables too
» CPTs — conditional probability densities (or measures)
» potential tables — potential functions
» message tables = message functions

» sums — integrals

0 Q:how do we represent the functions!?
» A:any way we want...
» mixtures of Gaussians, sets of samples, Gaussian processes

» and in a few minutes: exponential family distributions
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Loopy BP
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Plate models
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