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Review

Graphical models (Bayes nets, Markov random 
fields, factor graphs)!
‣ graphical tests for conditional independence (e.g., d-

separation for Bayes nets; Markov blanket)!

‣ format conversions: always possible, may lose info!

‣ learning (fully-observed case)!

Inference!
‣ variable elimination!

‣ today: belief propagation
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Junction tree 
(aka clique tree, aka join tree)

Represents the tables that we build during 
elimination!
‣ many JTs for each graphical model!

‣ many-to-many correspondence w/ elimination orders!

A junction tree for a model is:!
‣ a tree!

‣ whose nodes are sets of variables (“cliques”)!

‣ that contains a node for each of our factors!

‣ that satisfies running intersection property
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Running intersection property

In variable elimination: once a variable X is added 
to our current table T, it stays in T until eliminated, 
then never appears again!

In JT, this means all sets containing X form a 
connected region of tree!
‣ true for all X = running intersection property
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Incorporating evidence (conditioning)

For each factor or CPT:!
‣ fix known/observed arguments!

‣ assign to some clique containing all non-fixed arguments!

‣ drop observed variables from the JT!

No difference from inference w/o evidence!
‣ we just get a junction tree over fewer variables!

‣ easy to check that it’s still a valid JT
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Message passing (aka BP)

Build a junction tree (started last time)!

Instantiate evidence, pass messages (calibrate), 
read off answer, eliminate nuisance variables!

Main questions!
‣ how expensive? (what tables?)!

‣ what does a message represent?
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Example
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Example
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What if order were FDBAEC?
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Messages

Message = smaller tables that we create by 
summing out some variables from a factor over a 
clique!
‣ we later multiply the message into exactly one other 

clique before summing out that clique!

‣ one message per edge (e.g.,  ABC — ABD)!

‣ arguments of message: intersection of endpoints (AB)!

‣ called a sepset or separating set!

‣ message might go in either direction over the edge 
depending on which side of the JT we sum out first
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Belief propagation

Idea: calculate all messages that could be passed by 
any elimination order consistent with our JT!

For each edge, need two runs of variable 
elimination: one using the edge in each direction!

Insight: that’s just two runs total
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Belief propagation

Pick a node of JT as root arbitrarily!

Run variable elimination inward toward the root!
‣ any elimination order is OK as long as we do edges 

farther from the root first!

Run variable elimination outward from the root!
‣ for each child X of root R, pick an order: [all other 

children of R], R, X, [everything on non-root side of X]!

‣ pick up this run with message R→X!

Done!
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All for the price of two

Now we can simulate any order of elimination 
consistent with the tree:!
‣ orient JT edges in the direction consistent with the 

elimination order!

‣ these are the messages that elimination would compute
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Example
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Using it

Want: P(A, B | D=T)!
‣ i.e., !

!

Variable elimination:
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Marginals

More generally, marginal over any subtree:!
‣ product of all incoming messages and all local factors!

‣ normalize!

Special case: clique marginals
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Read off answer

Find some subtree that mentions all variables of 
interest!

Compute distribution over variables mentioned in 
this subtree!
‣ product of all messages into subtree and all factors inside 

subtree / normalizing constant!

Marginalize (sum out) nuisance variables
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Inference—recap

Build junction tree (e.g., by looking at tables built 
for a particular elimination order)!

Instantiate evidence!

Pass messages!

Pick a subtree containing desired variables, read 
off its distribution, and sum out nuisance variables
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Calibration

After BP, easy to get all clique marginals!
‣ also all sepset marginals (sum out from clique on either side)!

Bayes rule: P(clique \ sepset | sepset) =!

!

So, joint P(clique1 ⋃ clique2) = !

!

Continue over entire tree: P(everything) =
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Hard v. soft factors
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Moralize & triangulate (to build JT)

Moralize:!
‣ for factor graphs: a clique for every factor!

‣ for Bayes nets: “marry the parents” of each node!

Triangulate: find a chordless 4-or-more-cycle, add a 
chord, repeat!

Find all maximal cliques!

Connect maximal cliques w/ edges in any way that 
satisfies RIP
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Continuous variables

Graphical models can have continuous variables too!
‣ CPTs → conditional probability densities (or measures)!

‣ potential tables → potential functions!

‣ message tables → message functions!

‣ sums → integrals!

Q: how do we represent the functions?!
‣ A: any way we want…!

‣ mixtures of Gaussians, sets of samples, Gaussian processes!

‣ and in a few minutes: exponential family distributions
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Loopy BP
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Plate models
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