Graphical models

Review

- Graphical models (Bayes nets, Markov random fields, factor graphs)
 - graphical tests for conditional independence (e.g., dseparation for Bayes nets; Markov blanket)
 - format conversions: always possible, may lose info
 - Iearning (fully-observed case)
- Inference
 - variable elimination
 - today: belief propagation

Junction tree (aka clique tree, aka join tree)

- Represents the tables that we build during elimination
 - many JTs for each graphical model
 - many-to-many correspondence w/ elimination orders
- A junction tree for a model is:
 - ▶ a tree
 - whose nodes are sets of variables ("cliques")
 - that contains a node for each of our factors
 - that satisfies running intersection property

Running intersection property

- In variable elimination: once a variable X is added to our current table T, it stays in T until eliminated, then never appears again
- In JT, this means all sets containing X form a connected region of tree
 - true for all X = running intersection property

Incorporating evidence (conditioning)

Contraction of the second of the

• For each factor or CPT:

- fix known/observed arguments
- assign to some clique containing all non-fixed arguments
- drop observed variables from the JT
- No difference from inference w/o evidence
 - we just get a junction tree over fewer variables
 - easy to check that it's still a valid JT

Message passing (aka BP)

- Build a junction tree (started last time)
- Instantiate evidence, pass messages (calibrate), read off answer, eliminate nuisance variables
- Main questions
 - how expensive? (what tables?)
 - what does a message represent?

Example

CEABDF

What if order were FDBAEC?

A Shit was a first of the state of the state

Messages

- Message = smaller tables that we create by summing out some variables from a factor over a clique
 - we later multiply the message into exactly one other clique before summing out that clique
 - ▶ one message per edge (e.g., ABC ABD)
 - arguments of message: intersection of endpoints (AB)
 - called a sepset or separating set
 - message might go in either direction over the edge depending on which side of the JT we sum out first

Belief propagation

- Idea: calculate all messages that could be passed by any elimination order consistent with our JT
- For each edge, need two runs of variable elimination: one using the edge in each direction
- Insight: that's just two runs total

Belief propagation

- Pick a node of JT as root arbitrarily
- Run variable elimination inward toward the root
 - any elimination order is OK as long as we do edges farther from the root first
- Run variable elimination outward from the root
 - for each child X of root R, pick an order: [all other children of R], R, X, [everything on non-root side of X]
 - pick up this run with message $R \rightarrow X$
- Done!

All for the price of two

- Now we can simulate any order of elimination consistent with the tree:
 - orient JT edges in the direction consistent with the elimination order
 - these are the messages that elimination would compute

A-B-C-D(9) (7) Example CD→ CT2 FI D=7 G CD) BC $\begin{pmatrix} z & 1 \\ 1 & 2 \end{pmatrix} \circ \begin{pmatrix} z & 1 \\ 2 & 1 \end{pmatrix} \circ \begin{pmatrix} q & q \\ q & q \end{pmatrix}$ $\begin{pmatrix} z & 1 \\ 1 & 2 \end{pmatrix} \circ \begin{pmatrix} z & 1 \\ 2 & 2 \end{pmatrix} \circ \begin{pmatrix} q & q \\ q & q \end{pmatrix}$ $\binom{3}{5}$ $\begin{pmatrix} \omega & 3 \\ 3 & \omega \end{pmatrix}$ Kschischang Loeliger Frey

Using it

• Want: P(A, B | D=T) • i.e., $\sum \sum \sum p(A B \subseteq EF| D = T)$ • $\sum \sum \sum \sum p(A B \subseteq EF| D = T)$ • $\sum \sum \sum \sum p(A B \subseteq EF| D = T)$ • Variable elimination: $(\sum_{k=0}^{n} p(A B \subseteq EF| D = T))$ • $\sum_{k=0}^{n} \sum_{k=0}^{n} p(A B \subseteq EF| D = T)$ • $\sum_{k=0}^{n} \sum_{k=0}^{n} \sum_{k=0}^{n} \sum_{k=0}^{n} \sum_{k=0}^{n} p(A B \subseteq EF| D = T)$ • $\sum_{k=0}^{n} \sum_{k=0}^{n} \sum_{k=0}^{n} \sum_{k=0}^{n} \sum_{k=0}^{n} p(A B \subseteq EF| D = T)$ • Variable elimination: $(\sum_{k=0}^{n} p(A B \subseteq EF| D = T))$ • $\sum_{k=0}^{n} \sum_{k=0}^{n} \sum_{k=0}^{n} \sum_{k=0}^{n} \sum_{k=0}^{n} \sum_{k=0}^{n} p(A B \subseteq EF| D = T)$ • $\sum_{k=0}^{n} \sum_{k=0}^{n} \sum_{k=0}^{n} \sum_{k=0}^{n} \sum_{k=0}^{n} \sum_{k=0}^{n} \sum_{k=0}^{n} p(A B \subseteq EF| D = T)$ • $\sum_{k=0}^{n} \sum_{k=0}^{n} \sum_{k=0}^{n} \sum_{k=0}^{n} \sum_{k=0}^{n} \sum_{k=0}^{n} p(A B \subseteq EF| D = T)$ • $\sum_{k=0}^{n} \sum_{k=0}^{n} \sum_{k=0}^{n} \sum_{k=0}^{n} \sum_{k=0}^{n} p(A B \subseteq EF| D = T)$ • $\sum_{k=0}^{n} \sum_{k=0}^{n} \sum_{k=0}^{n} \sum_{k=0}^{n} \sum_{k=0}^{n} p(A B \subseteq EF| D = T)$ • $\sum_{k=0}^{n} \sum_{k=0}^{n} \sum_{k=0}^{n} \sum_{k=0}^{n} p(A B \subseteq EF| D = T)$ • $\sum_{k=0}^{n} \sum_{k=0}^{n} \sum_{k=0}^{n} \sum_{k=0}^{n} p(A B \subseteq EF| D = T)$ • $\sum_{k=0}^{n} \sum_{k=0}^{n} \sum_{k=0}^{n} p(A B \subseteq EF| D = T)$ • $\sum_{k=0}^{n} \sum_{k=0}^{n} p(A B \subseteq EF| D = T)$ • $\sum_{k=0}^{n} \sum_{k=0}^{n} p(A B \subseteq EF| D = T)$ • $\sum_{k=0}^{n} \sum_{k=0}^{n} p(A B \subseteq EF| D = T)$ • $\sum_{k=0}^{n} \sum_{k=0}^{n} p(A B \subseteq EF| D = T)$ • $\sum_{k=0}^{n} \sum_{k=0}^{n} p(A B \subseteq EF| D = T)$ • $\sum_{k=0}^{n} \sum_{k=0}^{n} p(A B \subseteq EF| D = T)$ • $\sum_{k=0}^{n} p(A B \subseteq EF| D = T)$ • $\sum_{k=0}^{n} p(A B \subseteq EF| D = T)$ • $\sum_{k=0}^{n} p(A B \subseteq EF| D = T)$ • $\sum_{k=0}^{n} p(A B \subseteq EF| D = T)$ • $\sum_{k=0}^{n} p(A B \subseteq EF| D = T)$ • $\sum_{k=0}^{n} p(A B \subseteq EF| D = T)$ • $\sum_{k=0}^{n} p(A B \subseteq EF| D = T)$ • $\sum_{k=0}^{n} p(A B \subseteq EF| D = T)$ • $\sum_{k=0}^{n} p(A B \subseteq EF| D = T)$ • $\sum_{k=0}^{n} p(A B \subseteq EF| D = T)$ • $\sum_{k=0}^{n} p(A B \subseteq EF| D = T)$ • $\sum_{k=0}^{n} p(A B \subseteq EF| D = T)$ • $\sum_{k=0}^{n} p(A B \subseteq EF| D = T)$ • $\sum_{k=0}^{n} p(A B \subseteq EF| D = T)$ • $\sum_{k=0}^{n} p(A B \subseteq EF| D = T)$ • $\sum_{k=0}^{n} p(A B \subseteq EF| D = T)$

Marginals

• More generally, marginal over any subtree:

- Product of all incoming messages and all local factors
- normalize
- Special case: clique marginals

Read off answer

- Find some subtree that mentions all variables of interest
- Compute distribution over variables mentioned in this subtree
 - product of all messages into subtree and all factors inside subtree / normalizing constant
- Marginalize (sum out) nuisance variables

Inference—recap

- Build junction tree (e.g., by looking at tables built for a particular elimination order)
- Instantiate evidence
- Pass messages
- Pick a subtree containing desired variables, read off its distribution, and sum out nuisance variables

Geoff Gordon—Machine Learning—Fall 2013

Hard v. soft factors

Moralize & triangulate (to build JT)

• Moralize:

- for factor graphs: a clique for every factor
- for Bayes nets: "marry the parents" of each node
- Triangulate: find a chordless 4-or-more-cycle, add a chord, repeat
- Find all maximal cliques
- Connect maximal cliques w/ edges in any way that satisfies RIP

Continuous variables

• Graphical models can have continuous variables too

- ▶ CPTs → conditional probability densities (or measures)
- potential tables \rightarrow potential functions
- message tables \rightarrow message functions
- sums \rightarrow integrals
- Q: how do we represent the functions?
 - ► A: any way we want...
 - mixtures of Gaussians, sets of samples, Gaussian processes
 - In a few minutes: exponential family distributions

Loopy BP

زىل

D

O

Ð

0

5

الما من

Q

0