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models
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Review

Dynamic programming on graphs	

‣ variable elimination example	


Graphical model = graph + model	

‣ e.g., Bayes net: DAG + CPTs	


‣ e.g., rusty robot	


Benefits: 	

‣ fewer parameters, faster inference	


‣ some properties (e.g., some conditional 
independences) depend only on graph
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P[(x _ y _ z̄) ^ (ȳ _ ū) ^ (z _ w) ^ (z _ u _ v)]
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Review

Blocking	


!

!

Explaining away
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Rains --> Wet --> Rusty 
vs Rains --> Wet (shaded) --> Rusty!
Rains --> Wet <-- Outside 
vs Rains --> Wet (shaded)  <-- Outside!
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d-separation

General graphical test: “d-separation”	

‣ d = dependence	


X ⊥ Y | Z when there are no active paths between 
X and Y given Z	

‣ activity of path depends on conditioning variable/set Z	


Active paths of length 3 (W ∉ conditioning set):
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active paths
 X --> W --> Y
 X <-- W <-- Y
 X <-- W --> Y
 X --> Z <-- Y
 X --> W <-- Y  *if*  W --> ... --> Z!
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Longer paths

Node X is active (wrt path P) if:	


!

!

and inactive o/w	


(Undirected) path is active if all intermediate 
nodes are active
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active if
 unshaded and path arrows are >>, <<, or <>
 shaded (or descendant shaded) and arrows >< (collider)!
longer paths: 
 active when *all* intermediate nodes are active!
example: shade Rusty; are M and O indep?
 no: active path thru Ru and W



Geoff Gordon—Machine Learning—Fall 2013

Algorithm: X ⊥ Y | {Z1, Z2, …}?

For each Zi:	

‣ mark self and ancestors by traversing parent links	


Breadth-first search starting from X	

‣ traverse edges only if they can be part of an active path	


‣ use “ancestor of shaded” marks to test activity	


‣ prune when we visit a node for the second time from 
the same direction (from children or from parents)	


If we reach Y, then X and Y are dependent given 
{Z1, Z2, …} — else, conditionally independent
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test activity:
 e.g., coming in from child; if node is marked, can’t leave by parents
 e.g., coming in from parent; if node is unmarked, can’t leave by parent
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Markov blanket

Markov blanket of 
C = minimal set of 
obs’ns to make C 
independent of rest 
of graph
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MB(C) = A..G
 = parents, children, co-parents
 = enough to ensure no active paths to C
AB block from above; DE block to below; conditioning on DE makes C depend on FG, so need them too
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Learning fully-observed Bayes nets

M Ra O W Ru

T F T T F

T T T T T

F T T F F

T F F F T

F F T F T

P(Ra) =

P(M) =

P(O) =

P(W | Ra, O) =

P(Ru | M, W) =
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P(M) = 3/5
P(Ra) = 2/5
P(O) = 4/5
P(W|Ra, O):
 TT: 1/2 TF: 0/0 !
 FT: 1/2  FF: 1/1 ?
P(Ru|M, W):
 TT: 1/2 TF: 1/1 ?
 FT: 0/0 ! FF: 1/2!
note division by zero, extreme probabilities --> Laplace smoothing
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Limitations of counting

Works only when all variables are observed in all 
examples	


If there are hidden or latent variables, more 
complicated algorithm (expectation-maximization 
or spectral)	

‣ or use a toolbox!
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EM: alternately infer distribution for latent nodes, maximize likelihood given that distribution!
we’ll discuss later in course



Geoff Gordon—Machine Learning—Fall 2013

Factor graphs

Another common type of graphical model	


Undirected, bipartite graph instead of DAG	


Like Bayes net:	

‣ can represent any distribution	


‣ can infer conditional independences from graph 
structure	


‣ but some distributions have more faithful 
representations in one formalism or the other
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more faithful: more of the conditional independences follow from graph structure!
more faithful as Bayes net: e.g., rusty robot
more faithful as factor graph: 
 e.g., node with a lot of neighbors, but simple (factored) structure of joint potential
 e.g., any graph with only pairwise potentials but bigger cliques
 e.g., cycles (ring in factor graph -> chorded ring -> chain junction tree of treewidth 2)



Geoff Gordon—Machine Learning—Fall 2013

Rusty robot: factor graph

P(M) P(Ra) P(O) P(W|Ra,O) P(Ru|M,W)
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node = RV
draw squares for factors (also “potentials”)
 phi_{M, Ra, O, W, Ru}
draw arcs: factor mentions variable
defn: neighbor set
 nbr(phi_W) = {W, Ra, O}
 nbr(W) = {phi_W, phi_Ru}
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Conventions

Don’t need to show unary factors—why?	

‣ can usually be collapsed into other factors	


‣ don’t affect structure of dynamic programming	


Show factors as cliques
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Markov random field

another convention: instead of a factor, draw a clique
 e.g.: binary factors are just edges (no little square)!
MRFs: lose some information relative to factor graphs
 e.g., distinction between A — B — C — A and a factor on ABC
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Non-CPT factors

Just saw: easy to convert Bayes net → factor graph	


In general, factors need not be CPTs: any 
nonnegative #s allowed	

‣ higher # → this combination more likely	


In general, P(A, B, …) =	


!

Z = 
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normalizing constant: to compensate for sum of P-tilde not being 1
P = (1/Z) P-tilde(A, B, …)
P-tilde = prod_{i in factor nodes} phi_i(nbr(i))
Z = sum_A sum_B ... P-tilde(A, B, ...)
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Independence

Just like Bayes nets, there are graphical tests for 
independence and conditional independence	


Simpler, though:	

‣ Cover up all observed nodes	


‣ Look for a path
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Independence example
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Are M and O dependent?  (y)
 given Ru?  (y)
 given W?  (n)!
Note: some answers different than we got from Bayes net representation!  Fewer conditional independences: e.g., in Bayes net, M ⊥ O
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What gives?

Take a Bayes net, list (conditional) independences	


Convert to a factor graph, list (conditional) 
independences	


Are they the same list?	


What happened?
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same list?  No!  Fewer CIs in factor graph
 e.g., M&O dep in factor graph, but not in BNet!
went away?  No, since it’s the same distribution
instead, turned into “accidental” CIs
 factor graph doesn’t force factors to be CPTs
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Inference: same kind of DP as before

Typical Q: given Ra=F, 
Ru=T, what is P(W)?
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label: evidence, query (evidence is shaded)
everything else: nuisance!
we will go through these steps: instantiate evidence, eliminate nuisance nodes, normalize, answer query!
P(Metal) = 0.9
P(Rains) = 0.7
P(Outside) = 0.2
P(Wet | Rains, Outside)
 TT: 0.9TF: 0.1
 FT: 0.1 FF: 0.1
P(Rusty | Metal, Wet) =
 TT: 0.8TF: 0.1
 FT: 0 FF: 0
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Incorporate evidence

Condition on Ra=F, Ru=T
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note: Z = 1 before evidence (since we converted from Bayes net) but evidence will change Z
 can’t answer *any* questions w/o Z
 new Z will be a result of inference
 (goal: get it w/ less than exponential work)!
change LHS to P(M, O, W | Ra=T, Ru=F)
cross out Ra = T in Phi2, Phi4
cross out Ru = F in Phi5
cross out Ra as arg in Phi2, Phi4
cross out Ru as arg in Phi5
note: changed 3-arg to 2-arg potentials
cross out Phi2 (incorporate into Z)!
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Eliminate nuisance nodes

Remaining nodes: M, O, W	


Query: P(W)	


So, O&M are nuisance—marginalize away	


Marginal = 
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marginal = sum_M sum_O P(M, O, W | Ra=T, Ru=F) 
 = sum_M sum_O phi1(M) phi3(O) phi4(O,W) phi5(M,W) / Z!
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Elimination order

Sum out nuisance variables in turn	


Can do it in any order, but some orders may be 
easier than others—do O then M
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move sum over O in:
sum_W phi1(M) phi5(M,W) sum_O phi3(O) phi4(O,W)
= sum_W phi1(M) phi5(M,W) phi6(W)
phi6(W) = sum_O phi3(O) phi4(O,W)
  T: 0.02+0.08 = 0.1
  F: 0.18+0.72 = 0.9!
sum_M phi1(M) phi5(M,W) phi6(W)
phi7(W) =
  T: 0.1*0.9*0.8 + 0.1*0.1*0 = .072
  F: 0.9*0.9*0.1 + 0.9*0.1*0 = .081!
renormalize: P(W) = T:8/17, F:9/17
 this is the answer!
 note: it’s easy to renorm now!
FLOPs: 10, then 3 for renorm (+ earlier 2 = 15)
compare to full table method: 
 8 relevant entries (M, O, W for Ra=T, Ru=F)
 4 mults each (5 phis): 32 flops
 normalize: sum (7 flops), divide (8 flops): 15 flops
 total = 47
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Discussion

Directed v. undirected: advantages to both	


Normalization	


Each elimination introduces a new table (all 
current neighbors of eliminated variable), 
makes some old tables irrelevant	


Each elim. order introduces different tables	


Some tables bigger than others	

‣ FLOP count; treewidth
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importance of norm const: if we don’t know it, need to compute it
Bnets: Z = 1 to start, so can answer some questions w/o inference; but once we’ve instantiated evidence, have a general factor graph (i.e., normalization is required)
Factor graphs: usually any question requires inference
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Treewidth examples
Chain	


!

!

 Tree
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chain, tree = 1
 chain = special case of tree
 tree: eliminate any leaf
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Treewidth examples

Parallel chains	


!

!

!

Cycle
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parallel chains: #rows
 eliminate down each column -- form a factor of #rows+1 just before eliminating last element of column
Cycle: 2
 eliminate anything; we form a factor of size 3, then get back to a smaller cycle
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Inference in general models

Prior + evidence → (marginals of) posterior	

‣ several examples so far, but no general algorithm	


General algorithm: message passing	

‣ aka belief propagation	


‣ build a junction tree, instantiate evidence, pass messages 
(calibrate), read off answer, eliminate nuisance variables	


Share work of building JT among multiple queries	

‣ there are many possible JTs; different ones are better 

for different queries, so might want to build several
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prior: a GM
evidence: observations at some nodes
posterior: resulting distribution after conditioning (incl renormalizing)!
JT: also called “clique tree”—as with many other related problems, finding best JT for a given graphical model is NP-hard!
BP: refers to “instantiate evidence, pass messages, read off answer” [but often building a JT and eliminating nuisance vars are assumed when we’re doing BP]
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Better than variable elimination

Suppose we want all 1-variable marginals	

‣ Could do N runs of variable elimination	


‣ Or: BP simulates N runs for the price of 2	


Further reading: Kschischang et al., “Factor Graphs 
and the Sum-Product Algorithm”	


!

Or, Daphne Koller’s book

www.comm.utoronto.ca/frank/papers/KFL01.pdf
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or take the “graphical models” course…

http://www.comm.utoronto.ca/frank/papers/KFL01.pdf
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What you need to understand

How expensive will inference be?	

‣ what tables will be built and how big are they?	


What does a message represent and why?
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each factor: a source of evidence (similar to a term in likelihood)
message: summary of evidence from one part of tree
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Junction tree 
(aka clique tree, aka join tree)

Represents the tables that we build during 
elimination	

‣ many JTs for each graphical model	


‣ many-to-many correspondence w/ elimination orders	


A junction tree for a model is:	

‣ a tree	


‣ whose nodes are sets of variables (“cliques”)	


‣ that contains a node for each of our factors	


‣ that satisfies running intersection property (below)
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nodes are cliques:
 these are the tables we build!
a node for each factor: 
 factor is a subset of that node’s clique!!
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Example network

Elimination order: CEABDF	


Factors: ABC, ABE, ABD, BDF
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Building a junction tree  
(given an elimination order)

S0 ← ∅,  V ← ∅            [S = table args;  V = visited]	


For i = 1…n:                [elimination order]	

‣ Ti ← Si–1 ∪ (nbr(Xi)\ V)    [extend table to unvisited nbrs]	


‣ Si ← Ti \ {Xi}                    [marginalize out Xi]	


‣ V ← V ∪ {Xi}                   [mark Xi visited]	


Build a junction tree from values Si, Ti:	

‣ nodes: local maxima of Ti (Ti ⊈ Tj for j ≠ i)	


‣ edges: local minima of Si (after a run of marginalizations 
without adding new nodes)
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after for loop, it should be clear that each value of S or T corresponds to a table we have to reason about during variable elimination!
if you’ve heard the phrase “moralize and triangulate”, that’s essentially what we’re doing here
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Example
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CEABDF

T1 = CAB
S1 = AB
T2 = EAB
S2 = AB
T3 = ABD
S3 = BD
T4 = BDF
S4 = DF
T5 = DF
S5 = F
T6 = F
S6 = {}!
messages: AB, AB, BD (the smaller marginal tables we multiply into larger (node) tables)
note: we can delay multiplying in messages
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Edges, cont’d

Pattern:  Ti … Sj–1 Tj … Sk–1 Tk …	


!

Pair each T with its following S (e.g., Ti w/ Sj–1)	


Can connect Ti to Tk iff k>i and Sj–1 ⊆ Tk	


Subject to this constraint, free to choose edges	

‣ always OK to connect in a line, but may be able to skip
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S increases and decreases in size: might add a lot of nodes at once (for a high-degree X) then eliminate several in a row without adding more (if all their neighbors are 
already in S)!
T are local maxima, S are local minima
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Running intersection property

Once a node X is added to T, it stays in T until 
eliminated, then never appears again	


In JT, this means all sets containing X form a 
connected region of tree	

‣ true for all X = running intersection property
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*** mark where we use RIP later!
*** note: largest clique is size treewidth+1



Geoff Gordon—Machine Learning—Fall 2013

Moralize & triangulate
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Instantiate evidence

For each factor:	

‣ fix known arguments	


‣ assign to some clique containing all non-fixed 
arguments
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define sepset ***
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Pass messages (belief propagation)
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Read off answer

Find some subtree that contains all variables of 
interest	


Compute distribution over variables mentioned in 
this subtree	


Marginalize (sum out) nuisance variables
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depending on query and JT, might have a lot of nuisance variables!
*** make a running example?
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Hard v. soft factors

0 1 2

0 1 1 1

1 1 1 3

2 1 3 3

X

Y

0 1 2

0 0 0 0

1 0 0 1

2 0 1 1

X

Y

Hard Soft
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number = degree to which event is more or less likely
 must be nonnegative!
0 = hard constraint!
can combine hard & soft (some numbers zero, others positive and varying)!
hard factors can lead to complications (e.g., impossible to satisfy all constraints; e.g., Koller ex 4.4 (may not be able to factor according to a graph that matches our actual 
set of independences, i.e., failure of Hammersley-Clifford))!
we’ll mostly be using soft factors
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Factor graph → Bayes net

Conversion possible, but more involved	

‣ Each representation can handle any distribution	


‣ But, size/complexity of graph may differ	


2 cases for conversion:	

‣ without adding nodes:	


‣ adding nodes:
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Without adding nodes: #P-complete (i.e., we think exp-time)!
Adding nodes: poly-time, but we get a bigger Bayes net!
! won’t cover algorithm!!
chordal graphs are precisely the graphs that turn directly into both factor graphs / MRFs and Bayes nets


