
Graphical
models

Geoff Gordon—Machine Learning—Fall 2013

Review

Dynamic programming on graphs	

‣ variable elimination example	

Graphical model = graph + model	

‣ e.g., Bayes net: DAG + CPTs	

‣ e.g., rusty robot	

Benefits: 	

‣ fewer parameters, faster inference	

‣ some properties (e.g., some conditional
independences) depend only on graph

���2

P[(x _ y _ z̄) ^ (ȳ _ ū) ^ (z _ w) ^ (z _ u _ v)]

Geoff Gordon—Machine Learning—Fall 2013

Review

Blocking	

!

!

Explaining away

���3

Rains --> Wet --> Rusty
vs Rains --> Wet (shaded) --> Rusty!
Rains --> Wet <-- Outside
vs Rains --> Wet (shaded) <-- Outside!

Geoff Gordon—Machine Learning—Fall 2013

d-separation

General graphical test: “d-separation”	

‣ d = dependence	

X ⊥ Y | Z when there are no active paths between
X and Y given Z	

‣ activity of path depends on conditioning variable/set Z	

Active paths of length 3 (W ∉ conditioning set):

���4

active paths
 X --> W --> Y
 X <-- W <-- Y
 X <-- W --> Y
 X --> Z <-- Y
 X --> W <-- Y *if* W --> ... --> Z!

Geoff Gordon—Machine Learning—Fall 2013

Longer paths

Node X is active (wrt path P) if:	

!

!

and inactive o/w	

(Undirected) path is active if all intermediate
nodes are active

���5

active if
 unshaded and path arrows are >>, <<, or <>
 shaded (or descendant shaded) and arrows >< (collider)!
longer paths:
 active when *all* intermediate nodes are active!
example: shade Rusty; are M and O indep?
 no: active path thru Ru and W

Geoff Gordon—Machine Learning—Fall 2013

Algorithm: X ⊥ Y | {Z1, Z2, …}?

For each Zi:	

‣ mark self and ancestors by traversing parent links	

Breadth-first search starting from X	

‣ traverse edges only if they can be part of an active path	

‣ use “ancestor of shaded” marks to test activity	

‣ prune when we visit a node for the second time from
the same direction (from children or from parents)	

If we reach Y, then X and Y are dependent given
{Z1, Z2, …} — else, conditionally independent

���6

test activity:
 e.g., coming in from child; if node is marked, can’t leave by parents
 e.g., coming in from parent; if node is unmarked, can’t leave by parent

Geoff Gordon—Machine Learning—Fall 2013

Markov blanket

Markov blanket of
C = minimal set of
obs’ns to make C
independent of rest
of graph

���7

MB(C) = A..G
 = parents, children, co-parents
 = enough to ensure no active paths to C
AB block from above; DE block to below; conditioning on DE makes C depend on FG, so need them too

Geoff Gordon—Machine Learning—Fall 2013

Learning fully-observed Bayes nets

M Ra O W Ru

T F T T F

T T T T T

F T T F F

T F F F T

F F T F T

P(Ra) =

P(M) =

P(O) =

P(W | Ra, O) =

P(Ru | M, W) =

���8

P(M) = 3/5
P(Ra) = 2/5
P(O) = 4/5
P(W|Ra, O):
 TT: 1/2 TF: 0/0 !
 FT: 1/2 FF: 1/1 ?
P(Ru|M, W):
 TT: 1/2 TF: 1/1 ?
 FT: 0/0 ! FF: 1/2!
note division by zero, extreme probabilities --> Laplace smoothing

Geoff Gordon—Machine Learning—Fall 2013

Limitations of counting

Works only when all variables are observed in all
examples	

If there are hidden or latent variables, more
complicated algorithm (expectation-maximization
or spectral)	

‣ or use a toolbox!

���9

EM: alternately infer distribution for latent nodes, maximize likelihood given that distribution!
we’ll discuss later in course

Geoff Gordon—Machine Learning—Fall 2013

Factor graphs

Another common type of graphical model	

Undirected, bipartite graph instead of DAG	

Like Bayes net:	

‣ can represent any distribution	

‣ can infer conditional independences from graph
structure	

‣ but some distributions have more faithful
representations in one formalism or the other

���10

more faithful: more of the conditional independences follow from graph structure!
more faithful as Bayes net: e.g., rusty robot
more faithful as factor graph:
 e.g., node with a lot of neighbors, but simple (factored) structure of joint potential
 e.g., any graph with only pairwise potentials but bigger cliques
 e.g., cycles (ring in factor graph -> chorded ring -> chain junction tree of treewidth 2)

Geoff Gordon—Machine Learning—Fall 2013

Rusty robot: factor graph

P(M) P(Ra) P(O) P(W|Ra,O) P(Ru|M,W)
���11

node = RV
draw squares for factors (also “potentials”)
 phi_{M, Ra, O, W, Ru}
draw arcs: factor mentions variable
defn: neighbor set
 nbr(phi_W) = {W, Ra, O}
 nbr(W) = {phi_W, phi_Ru}

Geoff Gordon—Machine Learning—Fall 2013

Conventions

Don’t need to show unary factors—why?	

‣ can usually be collapsed into other factors	

‣ don’t affect structure of dynamic programming	

Show factors as cliques
���12

Markov random field

another convention: instead of a factor, draw a clique
 e.g.: binary factors are just edges (no little square)!
MRFs: lose some information relative to factor graphs
 e.g., distinction between A — B — C — A and a factor on ABC

Geoff Gordon—Machine Learning—Fall 2013

Non-CPT factors

Just saw: easy to convert Bayes net → factor graph	

In general, factors need not be CPTs: any
nonnegative #s allowed	

‣ higher # → this combination more likely	

In general, P(A, B, …) =	

!

Z =

���13

normalizing constant: to compensate for sum of P-tilde not being 1
P = (1/Z) P-tilde(A, B, …)
P-tilde = prod_{i in factor nodes} phi_i(nbr(i))
Z = sum_A sum_B ... P-tilde(A, B, ...)

Geoff Gordon—Machine Learning—Fall 2013

Independence

Just like Bayes nets, there are graphical tests for
independence and conditional independence	

Simpler, though:	

‣ Cover up all observed nodes	

‣ Look for a path

���14

Geoff Gordon—Machine Learning—Fall 2013

Independence example

���15

Are M and O dependent? (y)
 given Ru? (y)
 given W? (n)!
Note: some answers different than we got from Bayes net representation! Fewer conditional independences: e.g., in Bayes net, M ⊥ O

Geoff Gordon—Machine Learning—Fall 2013

What gives?

Take a Bayes net, list (conditional) independences	

Convert to a factor graph, list (conditional)
independences	

Are they the same list?	

What happened?

���16

same list? No! Fewer CIs in factor graph
 e.g., M&O dep in factor graph, but not in BNet!
went away? No, since it’s the same distribution
instead, turned into “accidental” CIs
 factor graph doesn’t force factors to be CPTs

Geoff Gordon—Machine Learning—Fall 2013

Inference: same kind of DP as before

Typical Q: given Ra=F,
Ru=T, what is P(W)?

���17

label: evidence, query (evidence is shaded)
everything else: nuisance!
we will go through these steps: instantiate evidence, eliminate nuisance nodes, normalize, answer query!
P(Metal) = 0.9
P(Rains) = 0.7
P(Outside) = 0.2
P(Wet | Rains, Outside)
 TT: 0.9TF: 0.1
 FT: 0.1 FF: 0.1
P(Rusty | Metal, Wet) =
 TT: 0.8TF: 0.1
 FT: 0 FF: 0

Geoff Gordon—Machine Learning—Fall 2013

Incorporate evidence

Condition on Ra=F, Ru=T

���18

note: Z = 1 before evidence (since we converted from Bayes net) but evidence will change Z
 can’t answer *any* questions w/o Z
 new Z will be a result of inference
 (goal: get it w/ less than exponential work)!
change LHS to P(M, O, W | Ra=T, Ru=F)
cross out Ra = T in Phi2, Phi4
cross out Ru = F in Phi5
cross out Ra as arg in Phi2, Phi4
cross out Ru as arg in Phi5
note: changed 3-arg to 2-arg potentials
cross out Phi2 (incorporate into Z)!

Geoff Gordon—Machine Learning—Fall 2013

Eliminate nuisance nodes

Remaining nodes: M, O, W	

Query: P(W)	

So, O&M are nuisance—marginalize away	

Marginal =

���19

marginal = sum_M sum_O P(M, O, W | Ra=T, Ru=F)
 = sum_M sum_O phi1(M) phi3(O) phi4(O,W) phi5(M,W) / Z!

Geoff Gordon—Machine Learning—Fall 2013

Elimination order

Sum out nuisance variables in turn	

Can do it in any order, but some orders may be
easier than others—do O then M

���20

move sum over O in:
sum_W phi1(M) phi5(M,W) sum_O phi3(O) phi4(O,W)
= sum_W phi1(M) phi5(M,W) phi6(W)
phi6(W) = sum_O phi3(O) phi4(O,W)
 T: 0.02+0.08 = 0.1
 F: 0.18+0.72 = 0.9!
sum_M phi1(M) phi5(M,W) phi6(W)
phi7(W) =
 T: 0.1*0.9*0.8 + 0.1*0.1*0 = .072
 F: 0.9*0.9*0.1 + 0.9*0.1*0 = .081!
renormalize: P(W) = T:8/17, F:9/17
 this is the answer!
 note: it’s easy to renorm now!
FLOPs: 10, then 3 for renorm (+ earlier 2 = 15)
compare to full table method:
 8 relevant entries (M, O, W for Ra=T, Ru=F)
 4 mults each (5 phis): 32 flops
 normalize: sum (7 flops), divide (8 flops): 15 flops
 total = 47

Geoff Gordon—Machine Learning—Fall 2013

Discussion

Directed v. undirected: advantages to both	

Normalization	

Each elimination introduces a new table (all
current neighbors of eliminated variable),
makes some old tables irrelevant	

Each elim. order introduces different tables	

Some tables bigger than others	

‣ FLOP count; treewidth

���21

importance of norm const: if we don’t know it, need to compute it
Bnets: Z = 1 to start, so can answer some questions w/o inference; but once we’ve instantiated evidence, have a general factor graph (i.e., normalization is required)
Factor graphs: usually any question requires inference

Geoff Gordon—Machine Learning—Fall 2013

Treewidth examples
Chain	

!

!

 Tree

���22

chain, tree = 1
 chain = special case of tree
 tree: eliminate any leaf

Geoff Gordon—Machine Learning—Fall 2013

Treewidth examples

Parallel chains	

!

!

!

Cycle

���23

parallel chains: #rows
 eliminate down each column -- form a factor of #rows+1 just before eliminating last element of column
Cycle: 2
 eliminate anything; we form a factor of size 3, then get back to a smaller cycle

Geoff Gordon—Machine Learning—Fall 2013

Inference in general models

Prior + evidence → (marginals of) posterior	

‣ several examples so far, but no general algorithm	

General algorithm: message passing	

‣ aka belief propagation	

‣ build a junction tree, instantiate evidence, pass messages
(calibrate), read off answer, eliminate nuisance variables	

Share work of building JT among multiple queries	

‣ there are many possible JTs; different ones are better

for different queries, so might want to build several

���24

prior: a GM
evidence: observations at some nodes
posterior: resulting distribution after conditioning (incl renormalizing)!
JT: also called “clique tree”—as with many other related problems, finding best JT for a given graphical model is NP-hard!
BP: refers to “instantiate evidence, pass messages, read off answer” [but often building a JT and eliminating nuisance vars are assumed when we’re doing BP]

Geoff Gordon—Machine Learning—Fall 2013

Better than variable elimination

Suppose we want all 1-variable marginals	

‣ Could do N runs of variable elimination	

‣ Or: BP simulates N runs for the price of 2	

Further reading: Kschischang et al., “Factor Graphs
and the Sum-Product Algorithm”	

!

Or, Daphne Koller’s book

www.comm.utoronto.ca/frank/papers/KFL01.pdf

���25

or take the “graphical models” course…

http://www.comm.utoronto.ca/frank/papers/KFL01.pdf

Geoff Gordon—Machine Learning—Fall 2013

What you need to understand

How expensive will inference be?	

‣ what tables will be built and how big are they?	

What does a message represent and why?

���26

each factor: a source of evidence (similar to a term in likelihood)
message: summary of evidence from one part of tree

Geoff Gordon—Machine Learning—Fall 2013

Junction tree
(aka clique tree, aka join tree)

Represents the tables that we build during
elimination	

‣ many JTs for each graphical model	

‣ many-to-many correspondence w/ elimination orders	

A junction tree for a model is:	

‣ a tree	

‣ whose nodes are sets of variables (“cliques”)	

‣ that contains a node for each of our factors	

‣ that satisfies running intersection property (below)

���27

nodes are cliques:
 these are the tables we build!
a node for each factor:
 factor is a subset of that node’s clique!!

Geoff Gordon—Machine Learning—Fall 2013

Example network

Elimination order: CEABDF	

Factors: ABC, ABE, ABD, BDF

���28

Geoff Gordon—Machine Learning—Fall 2013

Building a junction tree
(given an elimination order)

S0 ← ∅, V ← ∅ [S = table args; V = visited]	

For i = 1…n: [elimination order]	

‣ Ti ← Si–1 ∪ (nbr(Xi)\ V) [extend table to unvisited nbrs]	

‣ Si ← Ti \ {Xi} [marginalize out Xi]	

‣ V ← V ∪ {Xi} [mark Xi visited]	

Build a junction tree from values Si, Ti:	

‣ nodes: local maxima of Ti (Ti ⊈ Tj for j ≠ i)	

‣ edges: local minima of Si (after a run of marginalizations
without adding new nodes)

���29

after for loop, it should be clear that each value of S or T corresponds to a table we have to reason about during variable elimination!
if you’ve heard the phrase “moralize and triangulate”, that’s essentially what we’re doing here

Geoff Gordon—Machine Learning—Fall 2013

Example

���30

CEABDF

T1 = CAB
S1 = AB
T2 = EAB
S2 = AB
T3 = ABD
S3 = BD
T4 = BDF
S4 = DF
T5 = DF
S5 = F
T6 = F
S6 = {}!
messages: AB, AB, BD (the smaller marginal tables we multiply into larger (node) tables)
note: we can delay multiplying in messages

Geoff Gordon—Machine Learning—Fall 2013

Edges, cont’d

Pattern: Ti … Sj–1 Tj … Sk–1 Tk …	

!

Pair each T with its following S (e.g., Ti w/ Sj–1)	

Can connect Ti to Tk iff k>i and Sj–1 ⊆ Tk	

Subject to this constraint, free to choose edges	

‣ always OK to connect in a line, but may be able to skip

���31

S increases and decreases in size: might add a lot of nodes at once (for a high-degree X) then eliminate several in a row without adding more (if all their neighbors are
already in S)!
T are local maxima, S are local minima

Geoff Gordon—Machine Learning—Fall 2013

Running intersection property

Once a node X is added to T, it stays in T until
eliminated, then never appears again	

In JT, this means all sets containing X form a
connected region of tree	

‣ true for all X = running intersection property

���32

*** mark where we use RIP later!
*** note: largest clique is size treewidth+1

Geoff Gordon—Machine Learning—Fall 2013

Moralize & triangulate

���33

Geoff Gordon—Machine Learning—Fall 2013

Instantiate evidence

For each factor:	

‣ fix known arguments	

‣ assign to some clique containing all non-fixed
arguments

���34

define sepset ***

Geoff Gordon—Machine Learning—Fall 2013

Pass messages (belief propagation)

���35

Geoff Gordon—Machine Learning—Fall 2013

Read off answer

Find some subtree that contains all variables of
interest	

Compute distribution over variables mentioned in
this subtree	

Marginalize (sum out) nuisance variables

���36

depending on query and JT, might have a lot of nuisance variables!
*** make a running example?

Geoff Gordon—Machine Learning—Fall 2013

Hard v. soft factors

0 1 2

0 1 1 1

1 1 1 3

2 1 3 3

X

Y

0 1 2

0 0 0 0

1 0 0 1

2 0 1 1

X

Y

Hard Soft

���37

number = degree to which event is more or less likely
 must be nonnegative!
0 = hard constraint!
can combine hard & soft (some numbers zero, others positive and varying)!
hard factors can lead to complications (e.g., impossible to satisfy all constraints; e.g., Koller ex 4.4 (may not be able to factor according to a graph that matches our actual
set of independences, i.e., failure of Hammersley-Clifford))!
we’ll mostly be using soft factors

Geoff Gordon—Machine Learning—Fall 2013

Factor graph → Bayes net

Conversion possible, but more involved	

‣ Each representation can handle any distribution	

‣ But, size/complexity of graph may differ	

2 cases for conversion:	

‣ without adding nodes:	

‣ adding nodes:

���38

Without adding nodes: #P-complete (i.e., we think exp-time)!
Adding nodes: poly-time, but we get a bigger Bayes net!
! won’t cover algorithm!!
chordal graphs are precisely the graphs that turn directly into both factor graphs / MRFs and Bayes nets

