Graphical
models



Review
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O Dynamic programming on graphs
» variable elimination example - .
O Graphical model = graph + model

» e.g., Bayes net: DAG + CPTs
» e.g., rusty robot

O Benefits:

» fewer parameters, faster inference

» some properties (e.g., some conditional
independences) depend only on graph
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Rains —-> Wet --> Rusty
vs Rains --> Wet (shaded) —--> Rusty

Rains --> Wet <-- Qutside
vs Rains -—-> Wet (shaded) <-- Outside

Review
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O Blocking

O Explaining away
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d-separation
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O General graphical test:“d-separation”

» d = dependence

0 X 1Y | Zwhen there are no active paths between
X andY given Z

» activity of path depends on conditioning variable/set Z

o Active paths of length 3 (W ¢ conditioning set):
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active paths
X-—>W-->Y
X<--W<--Y
X<--W-->Y
X-——>Z<-Y
X-->W<--Y *if* W-—-> ... -->7



Longer paths
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O Node X is active (wrt path P) if:

and inactive o/w

O (Undirected) path is active if all intermediate
nodes are active
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active if
unshaded and path arrows are >>, <<, or <>
shaded (or descendant shaded) and arrows > < (collider)

longer paths:
active when *all* intermediate nodes are active

example: shade Rusty; are M and O indep?
no: active path thru Ru and W



test activity:

Algorithm: X LY \ {Z,,2,,...}?
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O For each Z;:

» mark self and ancestors by traversing parent links

O Breadth-first search starting from X
» traverse edges only if they can be part of an active path
» use “ancestor of shaded” marks to test activity
» prune when we visit a node for the second time from

the same direction (from children or from parents)

O If we reachY, then X andY are dependent given
{Z\,2Z,, ...} — else, conditionally independent
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e.g., coming in from child; if node is marked, can’t leave by parents
e.g., coming in from parent; if node is unmarked, can’t leave by parent



Markov blanket
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O Markov blanket of &,
C = minimal set of
M A S

obs’ns to make C
independent of rest

of graph F

4
\
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MB(C) =

= parents, children, co-parents

= enough to ensure no active paths to C

AB block from above; DE block to below; conditioning on DE makes C depend on FG, so need them too



Learning fully-observed Bayes nets
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P(M) =
P(Ra) =
P(O) =
M|Ra|O |W|R
P(W | Ra, O) = -
T|{F|T|T|F
T|T|T|T|T
P(Ru | M,W) = FIT(T|F|F
T|F|F|F|T
FIF|T|F|T
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P(M) = 3/5
P(Ra) = 2/5
P(O) = 4/5
P(W[Ra, O):
TT:1/2 TF: 0/0!
FT: 1/2 FF: 1/17?
P(Ru|M, W):

TT: 1/2 TF: 1/17?
FT: 0/0! FF: 1/2

note division by zero, extreme probabilities --> Laplace smoothing



Limitations of countmg
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O Works only when all variables are observed in all
examples

O If there are hidden or latent variables, more
complicated algorithm (expectation-maximization
or spectral)

» or use a toolbox!
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EM: alternately infer distribution for latent nodes, maximize likelihood given that distribution

we’ll discuss later in course



Factor graphs
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O Another common type of graphical model
O Undirected, bipartite graph instead of DAG

O Like Bayes net:
» can represent any distribution

» can infer conditional independences from graph
structure

» but some distributions have more faithful
representations in one formalism or the other
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more faithful: more of the conditional independences follow from graph structure

more faithful as Bayes net: e.g., rusty robot

more faithful as factor graph:
e.g., hode with a lot of neighbors, but simple (factored) structure of joint potential
e.g., any graph with only pairwise potentials but bigger cliques
e.g., cycles (ring in factor graph -> chorded ring -> chain junction tree of treewidth 2)

B it



Rusty robot: factor graph
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P(M) P(Ra) P(O) P(W|Ra,O) P(Ru|M,W)
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node = RV

draw squares for factors (also “potentials”)
phi_{M, Ra, O, W, Ru}

draw arcs: factor mentions variable

defn: neighbor set
nbr(phi_W) = {W, Ra, O}
nbr(W) = {phi_W, phi_Ru}



DS Conventlons
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Markov random field

O Don’t need to show unary factors—why?
» can usually be collapsed into other factors
» don’t affect structure of dynamic programming

O Show factors as cliques
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another convention: instead of a factor, draw a clique
e.g.: binary factors are just edges (no little square)

MRFs: lose some information relative to factor graphs
e.g., distinction between A — B — C — A and a factor on ABC
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Non-CPT factors

B it

O Just saw: easy to convert Bayes net — factor graph

O In general, factors need not be CPTs: any
nonnegative #s allowed

» higher # — this combination more likely

O In general, P(A,B,...) =

o /=
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normalizing constant: to compensate for sum of P-tilde not being 1

P =(1/z) P-tilde(A, B, ...)
P-tilde = prod_{i in factor nodes} phi_i(nbr(i))
Z = sum_A sum_B ... P-tilde(A, B, ...)



Independence
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O Just like Bayes nets, there are graphical tests for
independence and conditional independence

O Simpler, though:
» Cover up all observed nodes

» Look for a path
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Independence example
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Are M and O dependent? (y)
given Ru? (y)
given W? (n)

Note: some answers different than we got from Bayes net representation! Fewer conditional independences: e.g., in Bayes net, M L O



What gives?
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O Take a Bayes net, list (conditional) independences

O Convert to a factor graph, list (conditional)
independences

O Are they the same list?

© What happened?
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same list? No! Fewer Cls in factor graph
e.g., M&O dep in factor graph, but not in BNet

went away? No, since it’s the same distribution
instead, turned into “accidental” Cls
factor graph doesn’t force factors to be CPTs



Inference: same kind of DP as before
PIM G 0L R = b ()4, (@D g 0) by a0 ) (410 %) [z
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Ru=T, what is P(W)!? CFT O\ €F7 2
=FF 09 —FF (
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label: evidence, query (evidence is shaded)
everything else: nuisance

we will go through these steps: instantiate evidence, eliminate nuisance nodes, normalize, answer query

P(Metal) = 0.9

P(Rains) = 0.7

P(Outside) = 0.2

P(Wet | Rains, Outside)
TT: 0.9 TF: 0.1
FT: 0.1 FF: 0.1

P(Rusty | Metal, Wet) =
TT: 0.8 TF: 0.1
FT:0 FF: 0



Incorporate evidence
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note: Z = 1 before evidence (since we converted from Bayes net) but evidence will change Z
can’t answer *any* questions w/o Z
new Z will be a result of inference
(goal: get it w/ less than exponential work)

change LHS to P(M, O, W | Ra=T, Ru=F)
cross out Ra = T in Phi2, Phi4

cross out Ru = F in Phi5

cross out Ra as arg in Phi2, Phi4

cross out Ru as arg in Phi5

note: changed 3-arg to 2-arg potentials
cross out Phi2 (incorporate into Z)



Ellmmate nu:sance nodes
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O Remaining nodes: M, O,W
O Query: P(W)

O So, O&M are nuisance—marginalize away

O Marginal =
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marginal = sum_M sum_O P(M, O, W | Ra=T, Ru=F)
= sum_M sum_O phil(M) phi3(0) phi4(O,W) phi5(M,W) / Z



Elimination order

B T e .
ST 6 M\ZD(L\\dJ (o \d; (Hw\/g
M O

O Sum out nuisance variables in turn

O Can do it in any order, but some orders may be
easier than others—do O then M

LOVT &2 e -
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T
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move sum over O in:
sum_W phil(M) phi5(M,W) sum_O phi3(O) phi4(O,W)
= sum_W phil(M) phi5(M,W) phi6(W)
phi6(W) = sum_O phi3(0) phi4(O,W)
T: 0.02+0.08 = 0.1
F: 0.18+0.72 = 0.9

sum_M phil(M) phi5(M,W) phi6(W)

phi7(W) =
T: 0.1¥0.9%0.8 + 0.1%0.1*0 = .072
F: 0.9%0.9%0.1 + 0.9%0.1*0 = .081

renormalize: P(W) = T:8/17, F:9/17
this is the answer!
note: it’s easy to renorm now

FLOPs: 10, then 3 for renorm (+ earlier 2 = 15)
compare to full table method:
8 relevant entries (M, O, W for Ra=T, Ru=F)
4 mults each (5 phis): 32 flops
normalize: sum (7 flops), divide (8 flops): 15 flops
total = 47



Discussion
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O Directed v. undirected: advantages to both
O Normalization

O Each elimination introduces a new table (all
current neighbors of eliminated variable),
makes some old tables irrelevant

O Each elim. order introduces different tables

O Some tables bigger than others
» FLOP count; treewidth
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importance of norm const: if we don’t know it, need to compute it
Bnets: Z = 1 to start, so can answer some questions w/o inference; but once we’ve instantiated evidence, have a general factor graph (i.e., normalization is required)
Factor graphs: usually any question requires inference



Treewidth examples
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chain, tree = 1
chain = special case of tree
tree: eliminate any leaf



Treewidth examples
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parallel chains: #rows

eliminate down each column -- form a factor of #rows+1 just before eliminating last element of column
Cycle: 2

eliminate anything; we form a factor of size 3, then get back to a smaller cycle

23



Inference in general models

B it
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O Prior + evidence — (marginals of) posterior

» several examples so far, but no general algorithm

O General algorithm: message passing

» aka belief propagation
» build a junction tree, instantiate evidence, pass messages
(cdlibrate), read off answer, eliminate nuisance variables

O Share work of building JT among multiple queries

» there are many possible |Ts; different ones are better
for different queries, so might want to build several
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prior: a GM
evidence: observations at some nodes
posterior: resulting distribution after conditioning (incl renormalizing)

JT: also called “clique tree”—as with many other related problems, finding best JT for a given graphical model is NP-hard

BP: refers to “instantiate evidence, pass messages, read off answer” [but often building a JT and eliminating nuisance vars are assumed when we’re doing BP]



or take the “graphical models” course...

Better than var:able eIlmmatlon
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O Suppose we want all |-variable marginals
» Could do N runs of variable elimination

» Or: BP simulates N runs for the price of 2

O Further reading: Kschischang et al.,"Factor Graphs
and the Sum-Product Algorithm”

www.comm.utoronto.ca/frank/papers/KFLO | .pdf

O Or, Daphne Koller’s book
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http://www.comm.utoronto.ca/frank/papers/KFL01.pdf

What you need to understand
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© How expensive will inference be?
» what tables will be built and how big are they?

O What does a message represent and why?
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each factor: a source of evidence (similar to a term in likelihood)
message: summary of evidence from one part of tree



Junction tree

(aka clique tree, aka join tree)
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O Represents the tables that we build during
elimination

» many JTs for each graphical model

» many-to-many correspondence w/ elimination orders

O A junction tree for a model is:
b a tree
» whose nodes are sets of variables (“cliques”)
» that contains a node for each of our factors

» that satisfies running intersection property (below)
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nodes are cliques:
these are the tables we build

a node for each factor:
factor is a subset of that node’s clique
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Example network

VAR P il St WD P LA T $ P SN TR S A M e T v es Lt PR e

ot >

O Elimination order: CEABDF
O Factors:ABC, ABE, ABD, BDF
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Building a junction tree

(given an ellmmatlon order)

B il e = i S, gy
0So+—o,V«<Jo [S = table args; V = visited]
O Fori=1...n: [elimination order]
» Ti < Siij u (nbr(Xi)\V) [extend table to unvisited nbrs]
» Si « T \ {Xi} [marginalize out Xi]
» V «Vu {Xi} [mark X visited]

O Build a junction tree from values S;, Ti:
» nodes: local maxima of T; (T; € T; for j # i)

» edges: local minima of S; (after a run of marginalizations
without adding new nodes)
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after for loop, it should be clear that each value of S or T corresponds to a table we have to reason about during variable elimination

if you’ve heard the phrase “moralize and triangulate”, that’s essentially what we’re doing here



T1 = CAB
S1 =AB
T2 = EAB
S2 = AB
T3 = ABD
S3 =BD
T4 = BDF
S4 = DF
T5 = DF
S5=F
T6 =F
56 ={}
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messages: AB, AB, BD (the smaller marginal tables we multiply into larger (node) tables)
note: we can delay multiplying in messages
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Edges, contd

VRIS il St WAL ol LA T $ 4 Py S B S N e SN it PR - ol

O Pattern: Ti ... S Ty ... Siei T ...

O Pair each T with its following S (e.g., Ti w/ Si-1)
O Can connectT; to Ty iff k>i and Sj-| € Tk

O Subject to this constraint, free to choose edges

» always OK to connect in a line, but may be able to skip
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S increases and decreases in size: might add a lot of nodes at once (for a high-degree X) then eliminate several in a row without adding more (if all their neighbors are
already in S)

T are local maxima, S are local minima



“** mark where we use RIP later

Running intersection property

idraern e

Py P BT W S

O Once a node X is added to T, it stays in T until
eliminated, then never appears again

O In JT, this means all sets containing X form a
connected region of tree

» true for all X = running intersection property
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*** note: largest clique is size treewidth+1



Moralize & tr:angulate
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define sepset ***

Instant:ate ewdence
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O For each factor:
» fix known arguments

» assign to some clique containing all non-fixed
arguments
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e
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Pass messages (bel:ef propagat:on)
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Read off answer
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B it
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O Find some subtree that contains all variables of
interest

0 Compute distribution over variables mentioned in
this subtree

O Marginalize (sum out) nuisance variables
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depending on query and JT, might have a lot of nuisance variables

*** make a running example?
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Hard v. soft factors
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Hard Soft
X X

iR e,
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number = degree to which event is more or less likely
must be nonnegative

0 = hard constraint
can combine hard & soft (some numbers zero, others positive and varying)

hard factors can lead to complications (e.g., impossible to satisfy all constraints; e.g., Koller ex 4.4 (may not be able to factor according to a graph that matches our actual
set of independences, i.e., failure of Hammersley-Clifford))

we’ll mostly be using soft factors



Factor graph — Bayes net
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O Conversion possible, but more involved
» Each representation can handle any distribution

» But, size/complexity of graph may differ

O 2 cases for conversion:
» without adding nodes:
» adding nodes:
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Without adding nodes: #P-complete (i.e., we think exp-time)
Adding nodes: poly-time, but we get a bigger Bayes net
won't cover algorithm

chordal graphs are precisely the graphs that turn directly into both factor graphs / MRFs and Bayes nets

B it
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