
Graphical
models

Geoff Gordon—Machine Learning—Fall 2013

Review

Dynamic programming on graphs	

‣ variable elimination example	

Graphical model = graph + model	

‣ e.g., Bayes net: DAG + CPTs	

‣ e.g., rusty robot	

Benefits: 	

‣ fewer parameters, faster inference	

‣ some properties (e.g., some conditional
independences) depend only on graph

���2

P[(x _ y _ z̄) ^ (ȳ _ ū) ^ (z _ w) ^ (z _ u _ v)]

Geoff Gordon—Machine Learning—Fall 2013

Review

Blocking	

!

!

Explaining away

���3

Rains --> Wet --> Rusty

vs Rains --> Wet (shaded) --> Rusty
!
Rains --> Wet <-- Outside

vs Rains --> Wet (shaded) <-- Outside
!

Geoff Gordon—Machine Learning—Fall 2013

d-separation

General graphical test: “d-separation”	

‣ d = dependence	

X ⊥ Y | Z when there are no active paths between
X and Y given Z	

‣ activity of path depends on conditioning variable/set Z	

Active paths of length 3 (W ∉ conditioning set):

���4

active paths

 X --> W --> Y

 X <-- W <-- Y

 X <-- W --> Y

 X --> Z <-- Y

 X --> W <-- Y *if* W --> ... --> Z
!

Geoff Gordon—Machine Learning—Fall 2013

Longer paths

Node X is active (wrt path P) if:	

!

!

and inactive o/w	

(Undirected) path is active if all intermediate
nodes are active

���5

active if

 unshaded and path arrows are >>, <<, or <>

 shaded (or descendant shaded) and arrows >< (collider)
!
longer paths:

 active when *all* intermediate nodes are active
!
example: shade Rusty; are M and O indep?

 no: active path thru Ru and W

Geoff Gordon—Machine Learning—Fall 2013

Algorithm: X ⊥ Y | {Z1, Z2, …}?

For each Zi:	

‣ mark self and ancestors by traversing parent links	

Breadth-first search starting from X	

‣ traverse edges only if they can be part of an active path	

‣ use “ancestor of shaded” marks to test activity	

‣ prune when we visit a node for the second time from
the same direction (from children or from parents)	

If we reach Y, then X and Y are dependent given
{Z1, Z2, …} — else, conditionally independent

���6

test activity:

 e.g., coming in from child; if node is marked, can’t leave by parents

 e.g., coming in from parent; if node is unmarked, can’t leave by parent

Geoff Gordon—Machine Learning—Fall 2013

Markov blanket

Markov blanket of
C = minimal set of
obs’ns to make C
independent of rest
of graph

���7

MB(C) = A..G

 = parents, children, co-parents

 = enough to ensure no active paths to C

AB block from above; DE block to below; conditioning on DE makes C depend on FG, so need them too

Geoff Gordon—Machine Learning—Fall 2013

Learning fully-observed Bayes nets

M Ra O W Ru

T F T T F

T T T T T

F T T F F

T F F F T

F F T F T

P(Ra) =

P(M) =

P(O) =

P(W | Ra, O) =

P(Ru | M, W) =

���8

P(M) = 3/5

P(Ra) = 2/5

P(O) = 4/5

P(W|Ra, O):

 TT: 1/2
 TF: 0/0 !

 FT: 1/2

 FF: 1/1 ?

P(Ru|M, W):

 TT: 1/2
 TF: 1/1 ?

 FT: 0/0 !
 FF: 1/2
!
note division by zero, extreme probabilities --> Laplace smoothing

Geoff Gordon—Machine Learning—Fall 2013

Limitations of counting

Works only when all variables are observed in all
examples	

If there are hidden or latent variables, more
complicated algorithm (expectation-maximization
or spectral)	

‣ or use a toolbox!

���9

EM: alternately infer distribution for latent nodes, maximize likelihood given that distribution
!
we’ll discuss later in course

Geoff Gordon—Machine Learning—Fall 2013

Factor graphs

Another common type of graphical model	

Undirected, bipartite graph instead of DAG	

Like Bayes net:	

‣ can represent any distribution	

‣ can infer conditional independences from graph
structure	

‣ but some distributions have more faithful
representations in one formalism or the other

���10

more faithful: more of the conditional independences follow from graph structure
!
more faithful as Bayes net: e.g., rusty robot

more faithful as factor graph:

 e.g., node with a lot of neighbors, but simple (factored) structure of joint potential

 e.g., any graph with only pairwise potentials but bigger cliques

 e.g., cycles (ring in factor graph -> chorded ring -> chain junction tree of treewidth 2)

Geoff Gordon—Machine Learning—Fall 2013

Rusty robot: factor graph

P(M) P(Ra) P(O) P(W|Ra,O) P(Ru|M,W)
���11

node = RV

draw squares for factors (also “potentials”)

 phi_{M, Ra, O, W, Ru}

draw arcs: factor mentions variable

defn: neighbor set

 nbr(phi_W) = {W, Ra, O}

 nbr(W) = {phi_W, phi_Ru}

Geoff Gordon—Machine Learning—Fall 2013

Conventions

Don’t need to show unary factors—why?	

‣ can usually be collapsed into other factors	

‣ don’t affect structure of dynamic programming	

Show factors as cliques
���12

Markov random field

another convention: instead of a factor, draw a clique

 e.g.: binary factors are just edges (no little square)
!
MRFs: lose some information relative to factor graphs

 e.g., distinction between A — B — C — A and a factor on ABC

Geoff Gordon—Machine Learning—Fall 2013

Non-CPT factors

Just saw: easy to convert Bayes net → factor graph	

In general, factors need not be CPTs: any
nonnegative #s allowed	

‣ higher # → this combination more likely	

In general, P(A, B, …) =	

!

Z =

���13

normalizing constant: to compensate for sum of P-tilde not being 1

P = (1/Z) P-tilde(A, B, …)

P-tilde = prod_{i in factor nodes} phi_i(nbr(i))

Z = sum_A sum_B ... P-tilde(A, B, ...)

Geoff Gordon—Machine Learning—Fall 2013

Independence

Just like Bayes nets, there are graphical tests for
independence and conditional independence	

Simpler, though:	

‣ Cover up all observed nodes	

‣ Look for a path

���14

Geoff Gordon—Machine Learning—Fall 2013

Independence example

���15

Are M and O dependent? (y)

 given Ru? (y)

 given W? (n)
!
Note: some answers different than we got from Bayes net representation! Fewer conditional independences: e.g., in Bayes net, M ⊥ O

Geoff Gordon—Machine Learning—Fall 2013

What gives?

Take a Bayes net, list (conditional) independences	

Convert to a factor graph, list (conditional)
independences	

Are they the same list?	

What happened?

���16

same list? No! Fewer CIs in factor graph

 e.g., M&O dep in factor graph, but not in BNet
!
went away? No, since it’s the same distribution

instead, turned into “accidental” CIs

 factor graph doesn’t force factors to be CPTs

Geoff Gordon—Machine Learning—Fall 2013

Inference: same kind of DP as before

Typical Q: given Ra=F,
Ru=T, what is P(W)?

���17

label: evidence, query (evidence is shaded)

everything else: nuisance
!
we will go through these steps: instantiate evidence, eliminate nuisance nodes, normalize, answer query
!
P(Metal) = 0.9

P(Rains) = 0.7

P(Outside) = 0.2

P(Wet | Rains, Outside)

 TT: 0.9
TF: 0.1

 FT: 0.1
 FF: 0.1

P(Rusty | Metal, Wet) =

 TT: 0.8
TF: 0.1

 FT: 0
 FF: 0

Geoff Gordon—Machine Learning—Fall 2013

Incorporate evidence

Condition on Ra=F, Ru=T

���18

note: Z = 1 before evidence (since we converted from Bayes net) but evidence will change Z

 can’t answer *any* questions w/o Z

 new Z will be a result of inference

 (goal: get it w/ less than exponential work)
!
change LHS to P(M, O, W | Ra=T, Ru=F)

cross out Ra = T in Phi2, Phi4

cross out Ru = F in Phi5

cross out Ra as arg in Phi2, Phi4

cross out Ru as arg in Phi5

note: changed 3-arg to 2-arg potentials

cross out Phi2 (incorporate into Z)
!

Geoff Gordon—Machine Learning—Fall 2013

Eliminate nuisance nodes

Remaining nodes: M, O, W	

Query: P(W)	

So, O&M are nuisance—marginalize away	

Marginal =

���19

marginal = sum_M sum_O P(M, O, W | Ra=T, Ru=F)

 = sum_M sum_O phi1(M) phi3(O) phi4(O,W) phi5(M,W) / Z
!

Geoff Gordon—Machine Learning—Fall 2013

Elimination order

Sum out nuisance variables in turn	

Can do it in any order, but some orders may be
easier than others—do O then M

���20

move sum over O in:

sum_W phi1(M) phi5(M,W) sum_O phi3(O) phi4(O,W)

= sum_W phi1(M) phi5(M,W) phi6(W)

phi6(W) = sum_O phi3(O) phi4(O,W)

 T: 0.02+0.08 = 0.1

 F: 0.18+0.72 = 0.9
!
sum_M phi1(M) phi5(M,W) phi6(W)

phi7(W) =

 T: 0.1*0.9*0.8 + 0.1*0.1*0 = .072

 F: 0.9*0.9*0.1 + 0.9*0.1*0 = .081
!
renormalize: P(W) = T:8/17, F:9/17

 this is the answer!

 note: it’s easy to renorm now
!
FLOPs: 10, then 3 for renorm (+ earlier 2 = 15)

compare to full table method:

 8 relevant entries (M, O, W for Ra=T, Ru=F)

 4 mults each (5 phis): 32 flops

 normalize: sum (7 flops), divide (8 flops): 15 flops

 total = 47

Geoff Gordon—Machine Learning—Fall 2013

Discussion

Directed v. undirected: advantages to both	

Normalization	

Each elimination introduces a new table (all
current neighbors of eliminated variable),
makes some old tables irrelevant	

Each elim. order introduces different tables	

Some tables bigger than others	

‣ FLOP count; treewidth

���21

importance of norm const: if we don’t know it, need to compute it

Bnets: Z = 1 to start, so can answer some questions w/o inference; but once we’ve instantiated evidence, have a general factor graph (i.e., normalization is required)

Factor graphs: usually any question requires inference

Geoff Gordon—Machine Learning—Fall 2013

Treewidth examples
Chain	

!

!

 Tree

���22

chain, tree = 1

 chain = special case of tree

 tree: eliminate any leaf

Geoff Gordon—Machine Learning—Fall 2013

Treewidth examples

Parallel chains	

!

!

!

Cycle

���23

parallel chains: #rows

 eliminate down each column -- form a factor of #rows+1 just before eliminating last element of column

Cycle: 2

 eliminate anything; we form a factor of size 3, then get back to a smaller cycle

Geoff Gordon—Machine Learning—Fall 2013

Inference in general models

Prior + evidence → (marginals of) posterior	

‣ several examples so far, but no general algorithm	

General algorithm: message passing	

‣ aka belief propagation	

‣ build a junction tree, instantiate evidence, pass messages
(calibrate), read off answer, eliminate nuisance variables	

Share work of building JT among multiple queries	

‣ there are many possible JTs; different ones are better

for different queries, so might want to build several

���24

prior: a GM

evidence: observations at some nodes

posterior: resulting distribution after conditioning (incl renormalizing)
!
JT: also called “clique tree”—as with many other related problems, finding best JT for a given graphical model is NP-hard
!
BP: refers to “instantiate evidence, pass messages, read off answer” [but often building a JT and eliminating nuisance vars are assumed when we’re doing BP]

Geoff Gordon—Machine Learning—Fall 2013

Better than variable elimination

Suppose we want all 1-variable marginals	

‣ Could do N runs of variable elimination	

‣ Or: BP simulates N runs for the price of 2	

Further reading: Kschischang et al., “Factor Graphs
and the Sum-Product Algorithm”	

!

Or, Daphne Koller’s book

www.comm.utoronto.ca/frank/papers/KFL01.pdf

���25

or take the “graphical models” course…

http://www.comm.utoronto.ca/frank/papers/KFL01.pdf

Geoff Gordon—Machine Learning—Fall 2013

What you need to understand

How expensive will inference be?	

‣ what tables will be built and how big are they?	

What does a message represent and why?

���26

each factor: a source of evidence (similar to a term in likelihood)

message: summary of evidence from one part of tree

Geoff Gordon—Machine Learning—Fall 2013

Junction tree
(aka clique tree, aka join tree)

Represents the tables that we build during
elimination	

‣ many JTs for each graphical model	

‣ many-to-many correspondence w/ elimination orders	

A junction tree for a model is:	

‣ a tree	

‣ whose nodes are sets of variables (“cliques”)	

‣ that contains a node for each of our factors	

‣ that satisfies running intersection property (below)

���27

nodes are cliques:

 these are the tables we build
!
a node for each factor:

 factor is a subset of that node’s clique
!!

Geoff Gordon—Machine Learning—Fall 2013

Example network

Elimination order: CEABDF	

Factors: ABC, ABE, ABD, BDF

���28

Geoff Gordon—Machine Learning—Fall 2013

Building a junction tree
(given an elimination order)

S0 ← ∅, V ← ∅ [S = table args; V = visited]	

For i = 1…n: [elimination order]	

‣ Ti ← Si–1 ∪ (nbr(Xi)\ V) [extend table to unvisited nbrs]	

‣ Si ← Ti \ {Xi} [marginalize out Xi]	

‣ V ← V ∪ {Xi} [mark Xi visited]	

Build a junction tree from values Si, Ti:	

‣ nodes: local maxima of Ti (Ti ⊈ Tj for j ≠ i)	

‣ edges: local minima of Si (after a run of marginalizations
without adding new nodes)

���29

after for loop, it should be clear that each value of S or T corresponds to a table we have to reason about during variable elimination
!
if you’ve heard the phrase “moralize and triangulate”, that’s essentially what we’re doing here

Geoff Gordon—Machine Learning—Fall 2013

Example

���30

CEABDF

T1 = CAB

S1 = AB

T2 = EAB

S2 = AB

T3 = ABD

S3 = BD

T4 = BDF

S4 = DF

T5 = DF

S5 = F

T6 = F

S6 = {}
!
messages: AB, AB, BD (the smaller marginal tables we multiply into larger (node) tables)

note: we can delay multiplying in messages

Geoff Gordon—Machine Learning—Fall 2013

Edges, cont’d

Pattern: Ti … Sj–1 Tj … Sk–1 Tk …	

!

Pair each T with its following S (e.g., Ti w/ Sj–1)	

Can connect Ti to Tk iff k>i and Sj–1 ⊆ Tk	

Subject to this constraint, free to choose edges	

‣ always OK to connect in a line, but may be able to skip

���31

S increases and decreases in size: might add a lot of nodes at once (for a high-degree X) then eliminate several in a row without adding more (if all their neighbors are
already in S)
!
T are local maxima, S are local minima

Geoff Gordon—Machine Learning—Fall 2013

Running intersection property

Once a node X is added to T, it stays in T until
eliminated, then never appears again	

In JT, this means all sets containing X form a
connected region of tree	

‣ true for all X = running intersection property

���32

*** mark where we use RIP later
!
*** note: largest clique is size treewidth+1

Geoff Gordon—Machine Learning—Fall 2013

Moralize & triangulate

���33

Geoff Gordon—Machine Learning—Fall 2013

Instantiate evidence

For each factor:	

‣ fix known arguments	

‣ assign to some clique containing all non-fixed
arguments

���34

define sepset ***

Geoff Gordon—Machine Learning—Fall 2013

Pass messages (belief propagation)

���35

Geoff Gordon—Machine Learning—Fall 2013

Read off answer

Find some subtree that contains all variables of
interest	

Compute distribution over variables mentioned in
this subtree	

Marginalize (sum out) nuisance variables

���36

depending on query and JT, might have a lot of nuisance variables
!
*** make a running example?

Geoff Gordon—Machine Learning—Fall 2013

Hard v. soft factors

0 1 2

0 1 1 1

1 1 1 3

2 1 3 3

X

Y

0 1 2

0 0 0 0

1 0 0 1

2 0 1 1

X

Y

Hard Soft

���37

number = degree to which event is more or less likely

 must be nonnegative
!
0 = hard constraint
!
can combine hard & soft (some numbers zero, others positive and varying)
!
hard factors can lead to complications (e.g., impossible to satisfy all constraints; e.g., Koller ex 4.4 (may not be able to factor according to a graph that matches our actual
set of independences, i.e., failure of Hammersley-Clifford))
!
we’ll mostly be using soft factors

Geoff Gordon—Machine Learning—Fall 2013

Factor graph → Bayes net

Conversion possible, but more involved	

‣ Each representation can handle any distribution	

‣ But, size/complexity of graph may differ	

2 cases for conversion:	

‣ without adding nodes:	

‣ adding nodes:

���38

Without adding nodes: #P-complete (i.e., we think exp-time)!
Adding nodes: poly-time, but we get a bigger Bayes net!
! won’t cover algorithm!!
chordal graphs are precisely the graphs that turn directly into both factor graphs / MRFs and Bayes nets

