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models
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Review

Dynamic programming on graphs	


‣ variable elimination example	



Graphical model = graph + model	


‣ e.g., Bayes net: DAG + CPTs	



‣ e.g., rusty robot	



Benefits: 	


‣ fewer parameters, faster inference	



‣ some properties (e.g., some conditional 
independences) depend only on graph
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P[(x _ y _ z̄) ^ (ȳ _ ū) ^ (z _ w) ^ (z _ u _ v)]



Geoff Gordon—Machine Learning—Fall 2013

Review

Blocking	



!

!

Explaining away
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Rains --> Wet --> Rusty 

vs Rains --> Wet (shaded) --> Rusty
!
Rains --> Wet <-- Outside 

vs Rains --> Wet (shaded)  <-- Outside
!
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d-separation

General graphical test: “d-separation”	


‣ d = dependence	



X ⊥ Y | Z when there are no active paths between 
X and Y given Z	


‣ activity of path depends on conditioning variable/set Z	



Active paths of length 3 (W ∉ conditioning set):
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active paths


 X --> W --> Y


 X <-- W <-- Y


 X <-- W --> Y


 X --> Z <-- Y


 X --> W <-- Y  *if*  W --> ... --> Z
!
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Longer paths

Node X is active (wrt path P) if:	



!

!

and inactive o/w	



(Undirected) path is active if all intermediate 
nodes are active
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active if


 unshaded and path arrows are >>, <<, or <>


 shaded (or descendant shaded) and arrows >< (collider)
!
longer paths: 


 active when *all* intermediate nodes are active
!
example: shade Rusty; are M and O indep?


 no: active path thru Ru and W
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Algorithm: X ⊥ Y | {Z1, Z2, …}?

For each Zi:	


‣ mark self and ancestors by traversing parent links	



Breadth-first search starting from X	


‣ traverse edges only if they can be part of an active path	



‣ use “ancestor of shaded” marks to test activity	



‣ prune when we visit a node for the second time from 
the same direction (from children or from parents)	



If we reach Y, then X and Y are dependent given 
{Z1, Z2, …} — else, conditionally independent
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test activity:


 e.g., coming in from child; if node is marked, can’t leave by parents


 e.g., coming in from parent; if node is unmarked, can’t leave by parent
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Markov blanket

Markov blanket of 
C = minimal set of 
obs’ns to make C 
independent of rest 
of graph
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MB(C) = A..G

 = parents, children, co-parents

 = enough to ensure no active paths to C

AB block from above; DE block to below; conditioning on DE makes C depend on FG, so need them too
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Learning fully-observed Bayes nets

M Ra O W Ru

T F T T F

T T T T T

F T T F F

T F F F T

F F T F T

P(Ra) =

P(M) =

P(O) =

P(W | Ra, O) =

P(Ru | M, W) =
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P(M) = 3/5

P(Ra) = 2/5

P(O) = 4/5

P(W|Ra, O):


 TT: 1/2
 TF: 0/0 !


 FT: 1/2
 
 FF: 1/1 ?

P(Ru|M, W):


 TT: 1/2
 TF: 1/1 ?


 FT: 0/0 !
 FF: 1/2
!
note division by zero, extreme probabilities --> Laplace smoothing
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Limitations of counting

Works only when all variables are observed in all 
examples	



If there are hidden or latent variables, more 
complicated algorithm (expectation-maximization 
or spectral)	


‣ or use a toolbox!
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EM: alternately infer distribution for latent nodes, maximize likelihood given that distribution
!
we’ll discuss later in course




Geoff Gordon—Machine Learning—Fall 2013

Factor graphs

Another common type of graphical model	



Undirected, bipartite graph instead of DAG	



Like Bayes net:	


‣ can represent any distribution	



‣ can infer conditional independences from graph 
structure	



‣ but some distributions have more faithful 
representations in one formalism or the other
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more faithful: more of the conditional independences follow from graph structure
!
more faithful as Bayes net: e.g., rusty robot

more faithful as factor graph: 


 e.g., node with a lot of neighbors, but simple (factored) structure of joint potential


 e.g., any graph with only pairwise potentials but bigger cliques


 e.g., cycles (ring in factor graph -> chorded ring -> chain junction tree of treewidth 2)
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Rusty robot: factor graph

P(M) P(Ra) P(O) P(W|Ra,O) P(Ru|M,W)
���11

node = RV

draw squares for factors (also “potentials”)


 phi_{M, Ra, O, W, Ru}

draw arcs: factor mentions variable

defn: neighbor set


 nbr(phi_W) = {W, Ra, O}


 nbr(W) = {phi_W, phi_Ru}
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Conventions

Don’t need to show unary factors—why?	


‣ can usually be collapsed into other factors	



‣ don’t affect structure of dynamic programming	



Show factors as cliques
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Markov random field

another convention: instead of a factor, draw a clique


 e.g.: binary factors are just edges (no little square)
!
MRFs: lose some information relative to factor graphs


 e.g., distinction between A — B — C — A and a factor on ABC



Geoff Gordon—Machine Learning—Fall 2013

Non-CPT factors

Just saw: easy to convert Bayes net → factor graph	



In general, factors need not be CPTs: any 
nonnegative #s allowed	


‣ higher # → this combination more likely	



In general, P(A, B, …) =	



!

Z = 
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normalizing constant: to compensate for sum of P-tilde not being 1

P = (1/Z) P-tilde(A, B, …)

P-tilde = prod_{i in factor nodes} phi_i(nbr(i))

Z = sum_A sum_B ... P-tilde(A, B, ...)
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Independence

Just like Bayes nets, there are graphical tests for 
independence and conditional independence	



Simpler, though:	


‣ Cover up all observed nodes	



‣ Look for a path
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Independence example
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Are M and O dependent?  (y)


 given Ru?  (y)


 given W?  (n)
!
Note: some answers different than we got from Bayes net representation!  Fewer conditional independences: e.g., in Bayes net, M ⊥ O
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What gives?

Take a Bayes net, list (conditional) independences	



Convert to a factor graph, list (conditional) 
independences	



Are they the same list?	



What happened?
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same list?  No!  Fewer CIs in factor graph


 e.g., M&O dep in factor graph, but not in BNet
!
went away?  No, since it’s the same distribution

instead, turned into “accidental” CIs


 factor graph doesn’t force factors to be CPTs
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Inference: same kind of DP as before

Typical Q: given Ra=F, 
Ru=T, what is P(W)?
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label: evidence, query (evidence is shaded)

everything else: nuisance
!
we will go through these steps: instantiate evidence, eliminate nuisance nodes, normalize, answer query
!
P(Metal) = 0.9

P(Rains) = 0.7

P(Outside) = 0.2

P(Wet | Rains, Outside)


 TT: 0.9
TF: 0.1


 FT: 0.1
 FF: 0.1

P(Rusty | Metal, Wet) =


 TT: 0.8
TF: 0.1


 FT: 0
 FF: 0
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Incorporate evidence

Condition on Ra=F, Ru=T
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note: Z = 1 before evidence (since we converted from Bayes net) but evidence will change Z


 can’t answer *any* questions w/o Z


 new Z will be a result of inference


 (goal: get it w/ less than exponential work)
!
change LHS to P(M, O, W | Ra=T, Ru=F)

cross out Ra = T in Phi2, Phi4

cross out Ru = F in Phi5

cross out Ra as arg in Phi2, Phi4

cross out Ru as arg in Phi5

note: changed 3-arg to 2-arg potentials

cross out Phi2 (incorporate into Z)
!
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Eliminate nuisance nodes

Remaining nodes: M, O, W	



Query: P(W)	



So, O&M are nuisance—marginalize away	



Marginal = 
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marginal = sum_M sum_O P(M, O, W | Ra=T, Ru=F) 

 = sum_M sum_O phi1(M) phi3(O) phi4(O,W) phi5(M,W) / Z
!
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Elimination order

Sum out nuisance variables in turn	



Can do it in any order, but some orders may be 
easier than others—do O then M
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move sum over O in:

sum_W phi1(M) phi5(M,W) sum_O phi3(O) phi4(O,W)

= sum_W phi1(M) phi5(M,W) phi6(W)

phi6(W) = sum_O phi3(O) phi4(O,W)

  T: 0.02+0.08 = 0.1

  F: 0.18+0.72 = 0.9
!
sum_M phi1(M) phi5(M,W) phi6(W)

phi7(W) =

  T: 0.1*0.9*0.8 + 0.1*0.1*0 = .072

  F: 0.9*0.9*0.1 + 0.9*0.1*0 = .081
!
renormalize: P(W) = T:8/17, F:9/17


 this is the answer!


 note: it’s easy to renorm now
!
FLOPs: 10, then 3 for renorm (+ earlier 2 = 15)

compare to full table method: 


 8 relevant entries (M, O, W for Ra=T, Ru=F)


 4 mults each (5 phis): 32 flops


 normalize: sum (7 flops), divide (8 flops): 15 flops


 total = 47
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Discussion

Directed v. undirected: advantages to both	



Normalization	



Each elimination introduces a new table (all 
current neighbors of eliminated variable), 
makes some old tables irrelevant	



Each elim. order introduces different tables	



Some tables bigger than others	


‣ FLOP count; treewidth
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importance of norm const: if we don’t know it, need to compute it

Bnets: Z = 1 to start, so can answer some questions w/o inference; but once we’ve instantiated evidence, have a general factor graph (i.e., normalization is required)

Factor graphs: usually any question requires inference
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Treewidth examples
Chain	



!

!

 Tree
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chain, tree = 1


 chain = special case of tree


 tree: eliminate any leaf




Geoff Gordon—Machine Learning—Fall 2013

Treewidth examples

Parallel chains	



!

!

!

Cycle
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parallel chains: #rows


 eliminate down each column -- form a factor of #rows+1 just before eliminating last element of column

Cycle: 2


 eliminate anything; we form a factor of size 3, then get back to a smaller cycle
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Inference in general models

Prior + evidence → (marginals of) posterior	


‣ several examples so far, but no general algorithm	



General algorithm: message passing	


‣ aka belief propagation	



‣ build a junction tree, instantiate evidence, pass messages 
(calibrate), read off answer, eliminate nuisance variables	



Share work of building JT among multiple queries	


‣ there are many possible JTs; different ones are better 

for different queries, so might want to build several
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prior: a GM

evidence: observations at some nodes

posterior: resulting distribution after conditioning (incl renormalizing)
!
JT: also called “clique tree”—as with many other related problems, finding best JT for a given graphical model is NP-hard
!
BP: refers to “instantiate evidence, pass messages, read off answer” [but often building a JT and eliminating nuisance vars are assumed when we’re doing BP]
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Better than variable elimination

Suppose we want all 1-variable marginals	


‣ Could do N runs of variable elimination	



‣ Or: BP simulates N runs for the price of 2	



Further reading: Kschischang et al., “Factor Graphs 
and the Sum-Product Algorithm”	



!

Or, Daphne Koller’s book

www.comm.utoronto.ca/frank/papers/KFL01.pdf
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or take the “graphical models” course…


http://www.comm.utoronto.ca/frank/papers/KFL01.pdf
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What you need to understand

How expensive will inference be?	


‣ what tables will be built and how big are they?	



What does a message represent and why?
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each factor: a source of evidence (similar to a term in likelihood)

message: summary of evidence from one part of tree
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Junction tree 
(aka clique tree, aka join tree)

Represents the tables that we build during 
elimination	


‣ many JTs for each graphical model	



‣ many-to-many correspondence w/ elimination orders	



A junction tree for a model is:	


‣ a tree	



‣ whose nodes are sets of variables (“cliques”)	



‣ that contains a node for each of our factors	



‣ that satisfies running intersection property (below)
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nodes are cliques:


 these are the tables we build
!
a node for each factor: 


 factor is a subset of that node’s clique
!!
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Example network

Elimination order: CEABDF	



Factors: ABC, ABE, ABD, BDF
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Building a junction tree  
(given an elimination order)

S0 ← ∅,  V ← ∅            [S = table args;  V = visited]	



For i = 1…n:                [elimination order]	


‣ Ti ← Si–1 ∪ (nbr(Xi)\ V)    [extend table to unvisited nbrs]	



‣ Si ← Ti \ {Xi}                    [marginalize out Xi]	



‣ V ← V ∪ {Xi}                   [mark Xi visited]	



Build a junction tree from values Si, Ti:	


‣ nodes: local maxima of Ti (Ti ⊈ Tj for j ≠ i)	



‣ edges: local minima of Si (after a run of marginalizations 
without adding new nodes)
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after for loop, it should be clear that each value of S or T corresponds to a table we have to reason about during variable elimination
!
if you’ve heard the phrase “moralize and triangulate”, that’s essentially what we’re doing here
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Example

���30

CEABDF

T1 = CAB

S1 = AB

T2 = EAB

S2 = AB

T3 = ABD

S3 = BD

T4 = BDF

S4 = DF

T5 = DF

S5 = F

T6 = F

S6 = {}
!
messages: AB, AB, BD (the smaller marginal tables we multiply into larger (node) tables)

note: we can delay multiplying in messages
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Edges, cont’d

Pattern:  Ti … Sj–1 Tj … Sk–1 Tk …	



!

Pair each T with its following S (e.g., Ti w/ Sj–1)	



Can connect Ti to Tk iff k>i and Sj–1 ⊆ Tk	



Subject to this constraint, free to choose edges	


‣ always OK to connect in a line, but may be able to skip
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S increases and decreases in size: might add a lot of nodes at once (for a high-degree X) then eliminate several in a row without adding more (if all their neighbors are 
already in S)
!
T are local maxima, S are local minima
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Running intersection property

Once a node X is added to T, it stays in T until 
eliminated, then never appears again	



In JT, this means all sets containing X form a 
connected region of tree	


‣ true for all X = running intersection property
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*** mark where we use RIP later
!
*** note: largest clique is size treewidth+1
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Moralize & triangulate

���33



Geoff Gordon—Machine Learning—Fall 2013

Instantiate evidence

For each factor:	


‣ fix known arguments	



‣ assign to some clique containing all non-fixed 
arguments

���34

define sepset ***
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Pass messages (belief propagation)
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Read off answer

Find some subtree that contains all variables of 
interest	



Compute distribution over variables mentioned in 
this subtree	



Marginalize (sum out) nuisance variables
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depending on query and JT, might have a lot of nuisance variables
!
*** make a running example?
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Hard v. soft factors

0 1 2

0 1 1 1

1 1 1 3

2 1 3 3

X

Y

0 1 2

0 0 0 0

1 0 0 1

2 0 1 1

X

Y

Hard Soft
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number = degree to which event is more or less likely


 must be nonnegative
!
0 = hard constraint
!
can combine hard & soft (some numbers zero, others positive and varying)
!
hard factors can lead to complications (e.g., impossible to satisfy all constraints; e.g., Koller ex 4.4 (may not be able to factor according to a graph that matches our actual 
set of independences, i.e., failure of Hammersley-Clifford))
!
we’ll mostly be using soft factors
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Factor graph → Bayes net

Conversion possible, but more involved	


‣ Each representation can handle any distribution	



‣ But, size/complexity of graph may differ	



2 cases for conversion:	


‣ without adding nodes:	



‣ adding nodes:
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Without adding nodes: #P-complete (i.e., we think exp-time)!
Adding nodes: poly-time, but we get a bigger Bayes net!
! won’t cover algorithm!!
chordal graphs are precisely the graphs that turn directly into both factor graphs / MRFs and Bayes nets


