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Review

Dynamic programming on graphs!
‣ variable elimination example!

Graphical model = graph + model!
‣ e.g., Bayes net: DAG + CPTs!

‣ e.g., rusty robot!

Benefits: !
‣ fewer parameters, faster inference!

‣ some properties (e.g., some conditional 
independences) depend only on graph
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P[(x ∨ y ∨ z̄) ∧ (ȳ ∨ ū) ∧ (z ∨ w) ∧ (z ∨ u ∨ v)]
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Review

Blocking!

!

!

Explaining away
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d-separation

General graphical test: “d-separation”!
‣ d = dependence!

X ⊥ Y | Z when there are no active paths between 
X and Y given Z!
‣ activity of path depends on conditioning variable/set Z!

Active paths of length 3 (W ∉ conditioning set):
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Longer paths

Node X is active (wrt path P) if:!

!

!

and inactive o/w!

(Undirected) path is active if all intermediate 
nodes are active

"5



Geoff Gordon—Machine Learning—Fall 2013

Algorithm: X ⊥ Y | {Z1, Z2, …}?

For each Zi:!
‣ mark self and ancestors by traversing parent links!

Breadth-first search starting from X!
‣ traverse edges only if they can be part of an active path!

‣ use “ancestor of shaded” marks to test activity!

‣ prune when we visit a node for the second time from 
the same direction (from children or from parents)!

If we reach Y, then X and Y are dependent given 
{Z1, Z2, …} — else, conditionally independent
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Markov blanket

Markov blanket of 
C = minimal set of 
obs’ns to make C 
independent of rest 
of graph
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Learning fully-observed Bayes nets

M Ra O W Ru

T F T T F

T T T T T

F T T F F

T F F F T

F F T F T

P(Ra) =

P(M) =

P(O) =

P(W | Ra, O) =

P(Ru | M, W) =
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Limitations of counting

Works only when all variables are observed in all 
examples!

If there are hidden or latent variables, more 
complicated algorithm (expectation-maximization 
or spectral)!
‣ or use a toolbox!
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Factor graphs

Another common type of graphical model!

Undirected, bipartite graph instead of DAG!

Like Bayes net:!
‣ can represent any distribution!

‣ can infer conditional independences from graph 
structure!

‣ but some distributions have more faithful 
representations in one formalism or the other
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Rusty robot: factor graph

P(M) P(Ra) P(O) P(W|Ra,O) P(Ru|M,W)
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Conventions

Don’t need to show unary factors—why?!
‣ can usually be collapsed into other factors!

‣ don’t affect structure of dynamic programming!

Show factors as cliques
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Markov random field
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Non-CPT factors

Just saw: easy to convert Bayes net → factor graph!

In general, factors need not be CPTs: any 
nonnegative #s allowed!
‣ higher # → this combination more likely!

In general, P(A, B, …) =!

!

Z = 
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Independence

Just like Bayes nets, there are graphical tests for 
independence and conditional independence!

Simpler, though:!
‣ Cover up all observed nodes!

‣ Look for a path
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Independence example
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What gives?

Take a Bayes net, list (conditional) independences!

Convert to a factor graph, list (conditional) 
independences!

Are they the same list?!

What happened?
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Inference: same kind of DP as before

Typical Q: given Ra=F, 
Ru=T, what is P(W)?
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Incorporate evidence

Condition on Ra=F, Ru=T
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Eliminate nuisance nodes

Remaining nodes: M, O, W!

Query: P(W)!

So, O&M are nuisance—marginalize away!

Marginal = 
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Elimination order

Sum out nuisance variables in turn!

Can do it in any order, but some orders may be 
easier than others—do O then M
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Discussion

Directed v. undirected: advantages to both!

Normalization!

Each elimination introduces a new table (all 
current neighbors of eliminated variable), 
makes some old tables irrelevant!

Each elim. order introduces different tables!

Some tables bigger than others!
‣ FLOP count; treewidth
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Treewidth examples
Chain!

!

!

 Tree
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Treewidth examples

Parallel chains!

!

!

!

Cycle
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Inference in general models

Prior + evidence → (marginals of) posterior!
‣ several examples so far, but no general algorithm!

General algorithm: message passing!
‣ aka belief propagation!

‣ build a junction tree, instantiate evidence, pass messages 
(calibrate), read off answer, eliminate nuisance variables!

Share work of building JT among multiple queries!
‣ there are many possible JTs; different ones are better 

for different queries, so might want to build several

"24



Geoff Gordon—Machine Learning—Fall 2013

Better than variable elimination

Suppose we want all 1-variable marginals!
‣ Could do N runs of variable elimination!

‣ Or: BP simulates N runs for the price of 2!

Further reading: Kschischang et al., “Factor Graphs 
and the Sum-Product Algorithm”!

!

Or, Daphne Koller’s book

www.comm.utoronto.ca/frank/papers/KFL01.pdf
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What you need to understand

How expensive will inference be?!
‣ what tables will be built and how big are they?!

What does a message represent and why?
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Junction tree 
(aka clique tree, aka join tree)

Represents the tables that we build during 
elimination!
‣ many JTs for each graphical model!

‣ many-to-many correspondence w/ elimination orders!

A junction tree for a model is:!
‣ a tree!

‣ whose nodes are sets of variables (“cliques”)!

‣ that contains a node for each of our factors!

‣ that satisfies running intersection property (below)
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Example network

Elimination order: CEABDF!

Factors: ABC, ABE, ABD, BDF
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Building a junction tree  
(given an elimination order)

S0 ← ∅,  V ← ∅            [S = table args;  V = visited]!

For i = 1…n:                [elimination order]!
‣ Ti ← Si–1 ∪ (nbr(Xi)\ V)    [extend table to unvisited nbrs]!

‣ Si ← Ti \ {Xi}                    [marginalize out Xi]!

‣ V ← V ∪ {Xi}                   [mark Xi visited]!

Build a junction tree from values Si, Ti:!
‣ nodes: local maxima of Ti (Ti ⊈ Tj for j ≠ i)!

‣ edges: local minima of Si (after a run of marginalizations 
without adding new nodes)
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Example
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CEABDF
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Edges, cont’d

Pattern:  Ti … Sj–1 Tj … Sk–1 Tk …!

!

Pair each T with its following S (e.g., Ti w/ Sj–1)!

Can connect Ti to Tk iff k>i and Sj–1 ⊆ Tk!

Subject to this constraint, free to choose edges!
‣ always OK to connect in a line, but may be able to skip
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Running intersection property

Once a node X is added to T, it stays in T until 
eliminated, then never appears again!

In JT, this means all sets containing X form a 
connected region of tree!
‣ true for all X = running intersection property
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Moralize & triangulate
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