Graphical models

Review

$$\mathbb{P}[(x \vee y \vee \bar{z}) \wedge (\bar{y} \vee \bar{u}) \wedge (z \vee w) \wedge (z \vee u \vee v)]$$

- Dynamic programming on graphs
 - variable elimination example
- Graphical model = graph + model
 - e.g., Bayes net: DAG + CPTs
 - e.g., rusty robot
- Objective Benefits:
 - ▶ fewer parameters, faster inference
 - some properties (e.g., some conditional independences) depend only on graph

Review

Blocking

Explaining away

d-separation

- General graphical test: "d-separation"
 - ▶ d = dependence
- \circ X \perp Y | Z when there are no active paths between X and Y given Z
 - ▶ activity of path depends on conditioning variable/set Z
- O Active paths of length 3 (W ∉ conditioning set):

Longer paths

Node X is active (wrt path P) if:

and inactive o/w

O (Undirected) path is active if all intermediate nodes are active

Algorithm: $X \perp Y \mid \{Z_1, Z_2, \ldots\}$?

- For each Z_i:
 - mark self and ancestors by traversing parent links
- Breadth-first search starting from X
 - traverse edges only if they can be part of an active path
 - use "ancestor of shaded" marks to test activity
 - prune when we visit a node for the second time from the same direction (from children or from parents)
- \circ If we reach Y, then X and Y are dependent given $\{Z_1, Z_2, ...\}$ else, conditionally independent

Markov blanket

Markov blanket of
 C = minimal set of
 obs'ns to make C
 independent of rest
 of graph

parents ditten co-parents

Learning fully-observed Bayes nets

M	Ra	0	W	Ru
T	F	—) T	F
Т	\dashv	\dashv	⊣	Т
F	Т	Т	F	F
Т	F	F	F	Т
F	F	\backslash	F	Т

Limitations of counting

- Works only when all variables are observed in all examples
- If there are hidden or latent variables, more complicated algorithm (expectation-maximization or spectral)
 - or use a toolbox!

Factor graphs

- Another common type of graphical model
- Undirected, bipartite graph instead of DAG
- Like Bayes net:
 - can represent any distribution
 - can infer conditional independences from graph structure
 - but some distributions have more faithful representations in one formalism or the other

Rusty robot: factor graph

P(M) P(Ra) P(O) P(W|Ra,O) P(Ru|M,W)

Conventions

Markov random field

- On't need to show unary factors—why?
 - can usually be collapsed into other factors
 - don't affect structure of dynamic programming
- Show factors as cliques

Non-CPT factors

- O Just saw: easy to convert Bayes net → factor graph
- In general, factors need not be CPTs: any nonnegative #s allowed

- ▶ higher # → this combination more likely $\{ A, C, \nabla \}$

$$o Z = \sum_{x} \bigcap_{i} \phi_{i}(x_{i})$$

$$G = \sum_{x} \bigcap_{x} \phi_{i}(x_{i})$$

Independence

- Just like Bayes nets, there are graphical tests for independence and conditional independence
- Simpler, though:
 - Cover up all observed nodes
 - ▶ Look for a path

Independence example

What gives?

- Take a Bayes net, list (conditional) independences
- Convert to a factor graph, list (conditional) independences
- Are they the same list?
- OWhat happened?

accidental indep.

Inference: same kind of DP as before

P(M, Ra, O, W, Ru) = 6, (M) & (Ra) & (0) & (Ra, 0, u) & (M, W, Ru) / 2

 Typical Q: given Ra=F, Ru=T, what is P(W)?

FFF 0.9

Incorporate evidence

P(M,O,W|Ra=FR=T) P(M,Ra,O,W|Ru)= &(M) &=(Ra) &=(0) &+(Ra,O, w) &+(M,W,Ru)/2

FFT O.1

FFF 0.9

Eliminate nuisance nodes

 $P(M_1, O_1 \cup | P_a = T_1, R_u = F) = \phi_1(M) \phi_2(P_a) \phi_3(O) \phi_4(P_a, O_1 \cup V) \phi_5(M_1 \cup V_1, P_u) / 2$

- Remaining nodes: M, O, W
- Query: P(W)
- So, O&M are nuisance—marginalize away
- o Marginal = $\sum_{Q} \sum_{M} \phi_{1}(M) \phi_{3}(Q) \phi_{4}(Q_{1}W) \phi_{5}(M_{1}W) / 2$

Elimination order

- Sum out nuisance variables in turn
- Can do it in any order, but some orders may be easier than others—do O then M

$$\frac{d_{3}(0) = T \cdot 0.7}{F \cdot 0.8} \qquad \frac{d_{4}(\omega) = T \cdot 0.1}{D_{4}(\omega) = F \cdot 0.9}$$

$$\frac{d_{4}(\omega) = T \cdot 0.1}{D_{4}(\omega) = F \cdot 0.9}$$

$$\frac{d_{5}(\omega) = T \cdot 0.1}{F \cdot 0.9}$$

$$\frac{d_{7}(\omega) = T \cdot 0.1}{F \cdot 0.9}$$

$$\frac{d_{1}(\omega)}{d_{1}(\omega)} = \frac{1}{2} \frac{\partial_{1}(x) \partial_{1}(x) \partial_{2}(x) \partial_{3}(x) \partial_{4}(x) \partial_{5}(x) \partial_$$

Discussion

- Directed v. undirected: advantages to both
- Normalization
- Each elimination introduces a new table (all current neighbors of eliminated variable), makes some old tables irrelevant
- Each elim. order introduces different tables
- Some tables bigger than others
 - ▶ FLOP count; treewidth

Treewidth examples

Treewidth examples

Parallel chains

Cycle ²

Inference in general models

- \circ Prior + evidence \rightarrow (marginals of) posterior
 - > several examples so far, but no general algorithm
- General algorithm: message passing
 - ▶ aka belief propagation
 - build a junction tree, instantiate evidence, pass messages (calibrate), read off answer, eliminate nuisance variables
- Share work of building JT among multiple queries
 - there are many possible JTs; different ones are better for different queries, so might want to build several

Better than variable elimination

- Suppose we want all I-variable marginals
 - Could do N runs of variable elimination
 - Or: BP simulates N runs for the price of 2
- Further reading: Kschischang et al., "Factor Graphs and the Sum-Product Algorithm"

www.comm.utoronto.ca/frank/papers/KFL01.pdf

Or, Daphne Koller's book

What you need to understand

- O How expensive will inference be?
 - what tables will be built and how big are they?
- What does a message represent and why?

Junction tree

(aka clique tree, aka join tree)

- many JTs for each graphical model
- many-to-many correspondence w/ elimination orders
- A junction tree for a model is:
 - ▶ a tree
 - whose nodes are sets of variables ("cliques")
 - that contains a node for each of our factors
 - that satisfies running intersection property (below)

ABD

factor c clique

Example network

- Elimination order: CEABDF
- Factors: ABC, ABE, ABD, BDF

Building a junction tree

(given an elimination order)

○
$$S_0 \leftarrow \emptyset$$
, $V \leftarrow \emptyset$ [$S = table\ args;\ V = visited$]

○ For $i = I ...n$: [elimination order]

→ $T_i \leftarrow S_{i-1} \cup (nbr(X_i) \setminus V)$ [extend table to unvisited nbrs]

→ $S_i \leftarrow T_i \setminus \{X_i\}$ [marginalize out X_i]

→ $V \leftarrow V \cup \{X_i\}$ [mark X_i visited]

- \circ Build a junction tree from values S_i, T_i :
 - ▶ nodes: local maxima of T_i ($T_i \nsubseteq T_j$ for $j \neq i$)
 - ▶ edges: local minima of S_i (after a run of marginalizations without adding new nodes)

Example

CEABDF

Edges, cont'd

- Pattern: $T_i \dots S_{j-1} T_j \dots S_{k-1} T_k \dots$
- \circ Pair each T with its following S (e.g., T_i w/ S_{j-1})
- \circ Can connect T_i to T_k iff k > i and $S_{i-1} \subseteq T_k$
- Subject to this constraint, free to choose edges
 - always OK to connect in a line, but may be able to skip

Running intersection property

- Once a node X is added to T, it stays in T until eliminated, then never appears again
- In JT, this means all sets containing X form a connected region of tree
 - true for all X = running intersection property

Moralize & triangulate

mary

A B C G

A B