Review

- Selection bias, overfitting
- Bias v. variance v.residual
- Bias-variance tradeoff
- Cramér-Rao bound

Geoff Gordon—Machine Learning—Fall 2013

Review: bootstrap

Cross-validation

- Used to estimate classification error, RMSE, or similar error measure of an algorithm
- Surrogate sample: exactly the same as $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{N}}$ except for train-test split
- k-fold CV:
- randomly permute $\mathrm{X}_{1}, \ldots \mathrm{X}_{\mathrm{N}}$
- split into folds: first N / k samples, second N / k samples, ...
- train on $\mathrm{k}-\mathrm{l}$ folds, measure error on remaining fold
- repeat k times, with each fold being holdout set once

Geoff Gordon-Machine Learning—Fall 2013

$\mathrm{f}=$ function from whole sample to single number $=$ train model on $\mathrm{k}-1$ folds then evaluate error on remaining one

CV: uses sample splitting idea twice
first: split into train \& validation second: repeat to estimate variability only the second is approximated
$\mathrm{k}=\mathrm{N}$: leave-one-out CV (LOOCV)

Cross-validation: caveats

- Original sample might not be i.i.d.
- Size of surrogate sample is wrong:
- want to estimate error we'd get on a sample of size N
- actually use samples of size $N(k-I) / k$
- Failure of i.i.d, even if original sample was i.i.d.

Geoff Gordon—Machine Learning—Fall 2013

two of these are potentially optimistic; middle one is conservative (but usually pretty small effect)

Graphical models

Dynamic programming on a graph

- Probability calculation problem (all binary vars, $\mathrm{p}=0.5$):

$$
\mathbb{P}[(x \vee y \vee \bar{z}) \wedge(\bar{y} \vee \bar{u}) \wedge(z \vee w) \wedge(z \vee u \vee v)]
$$

- Essentially an instance of \#SAT
- Structure:

Geoff Gordon—Machine Learning—Fall 2013

Variable elimination

$$
\sum_{x} \sum_{y} \sum_{z} \sum_{u} \sum_{v} \sum_{0} A(x y z) B(y u) C(z w) D(z u v)
$$

Geoff Gordon—Machine Learning—Fall 2013
(leaving off normalizer of $1 / 2 \wedge 6$)
move in sum over w: get sum_w C(zw) = table
$\mathrm{E}(\mathrm{z}): 1: 2,0: 1$
move in sum over v: get sum_uv $D(z u v)=$ table
$\mathrm{F}(\mathrm{zu}): 11: 2,10: 2,01: 2,0 \overline{0}: 1$
move in sum over u: get sum _u $B(y u) F(z u)$
BF (yzu): (01011111) *($\begin{aligned} & 2 \\ & 2\end{aligned} 212221$)

$$
=02012221
$$

sum over u: $G(y z)=2143$
write out EGA(xyz): (2 121212 1) * (2 143214 3) *A

$$
=(41834103)
$$

sum over xyz: 24 satisfying assignments

Variable elimination

In general

- Pick a variable ordering
- Repeat: say next variable is z
- move sum over z inward as far as it goes
- make a new table by multiplying all old tables containing z, then summing out z
- arguments of new table are "neighbors" of z
- Cost: O(size of biggest table * \# of sums)
- sadly: biggest table can be exponentially large
- but often not: low-treewidth formulas

Geoff Gordon—Machine Learning—Fall 2013

neighbors: share a table
note that vars can become neighbors when we delete old tables and add a new table

```
treewidth = #args of largest table - 1
```

(for best elimination ordering)

Why did we do this?

- A simple graphical model!
- Graphical model = graphical representation + statistical model
- in our example: graph of clauses \& variables, plus coin flips for variables

Why do we need graphical models?

- Don't want to write a distribution as a big table - Gets unwieldy fast!
- E.g., IO RVs, each w/ 10 settings
- Table size $=10^{10}$
- Graphical model: way to write distribution compactly using diagrams \& numbers
- Typical GMs are huge (10^{10} is a small one), but we'll use tiny ones for examples

Bayes nets

- Best-known type of graphical model
- Two parts: DAG and CPTs

Rusty robot: the CPTs

- For each RV (say X), there is one CPT specifying $\mathrm{P}(\mathrm{X} \mid \mathrm{pa}(\mathrm{X}))$

```
\(P(\) Metal \()=0.9\)
P (Rains) \(=0.7\)
\(\mathrm{P}(\) Outside) \(=0.2\)
P(Wet | Rains, Outside)
    TT:0.9 TF: 0.I
    FT:0.1 FF:0.I
P(Rusty | Metal,Wet) =
    TT:0.8 TF:0.1
    FT:0 FF: 0
```

Geoff Gordon—Machine Learning—Fall 2013
$\mathrm{P}($ Metal $)=0.9$
P (Rains) $=0.7$
$\mathrm{P}($ Outside $)=0.2$
P (Wet | Rains, Outside)
TT: $0.9 \quad$ TF: 0.1
FT: $0.1 \quad$ FF: 0.1
$\mathrm{P}($ Rusty \mid Metal, Wet $)=$
TT: $0.8 \quad$ TF: 0.1
FT: $0 \quad$ FF: 0

Interpreting it

Geoff Gordon—Machine Learning—Fall 2013

Met	Rai	Out	Wet	Rus	$\mathrm{P}(\ldots)$
F	F	F	F	F	$.1^{*} \cdot 3^{*} \cdot 8^{*} \cdot 9 * 1=.0216$
F	F	F	F	T	$.1^{*} \cdot 3^{*} \cdot 8^{*} \cdot 9 * 0=0$
\ldots					
T	T	T	T	T	$.9^{*} \cdot 7^{*} \cdot 2^{*} \cdot 9 * \cdot 8=0.0907$

Note: 11 numbers (instead of $2 \wedge 5-1=31$) just gets better as \#RVs increases

Benefits

- || v. 3I numbers
- Fewer parameters to learn
- Efficient inference = computation of marginals, conditionals \Rightarrow posteriors

Inference Qs

- Is $Z>0$?
- What is $P(E)$?
- What is $P\left(E_{1} \mid E_{2}\right)$?
- Sample a random configuration according to $\mathrm{P}($. or P(.|E)
- Hard part: taking sums over r.v.s (e.g., sum over all values to get normalizer)

Geoff Gordon—Machine Learning—Fall 2013
$Z=0$: probabilities undefined
why is Z hard? exponentially many configurations
other than Z, it's just a bunch of table lookups

Inference example

- $P(M, R a, O, W, R u)=$ P(M) P(Ra) P(O) P(W|Ra,O) P(Ru|M,W)
- Find marginal of M, O

Geoff Gordon-Machine Learning—Fall 2013

$\mathrm{P}(\mathrm{M}) \mathrm{P}(\mathrm{Ra}) \mathrm{P}(\overline{\mathrm{O}}) \mathrm{P}(\mathrm{W} \mid \mathrm{Ra}, \mathrm{O}) \mathrm{P}(\mathrm{Ru} \mid \mathrm{M}, \mathrm{W})$
= sum_Ra sum_W $P(M) P(R a) P(O) P(W \mid R a, O)$ sum_Ru $P(R u \mid M, W)$
= sum_Ra sum_W $\mathrm{P}(\mathrm{M}) \mathrm{P}(\mathrm{Ra}) \mathrm{P}(\mathrm{O}) \mathrm{P}(\mathrm{W} \mid \mathrm{Ra}, \mathrm{O})$
= sum_Ra $P(M) P(R a) P(O)$ sum_W $P(W \mid R a, O)$
$=$ sum_Ra $P(M) P(R a) P(O)$
$=P(M) P(O)$
note: so far, no actual arithmetic (all analytic, true for *any* CPTs)
now can write $\mathrm{P}(\mathrm{M}, \mathrm{O})$ using 4 multiplications (using CPTs)
.9, . 7 (.63 . 07.27 .03)
note: M \& O are independent

Independence

- Showed M \perp O
- Any other independences?

- Didn't use CPTs: some independences depend only on graph structure
- May also be "accidental" independences
- i.e., depend on values in CPTs

Geoff Gordon-Machine Learning—Fall 2013

depend only on graph structure

Conditional independence

- How about O, Ru? O Ru
- Suppose we know we're not wet
- $P(M, R a, O, W, R u)=$
, P(M) P(Ra) P(O) P(W|Ra,O) P(Ru|M,W)
- Condition on W=F, find marginal of O, Ru

Geoff Gordon—Machine Learning—Fall 2013

sum_M sum_Ra $P(M) P(R a) P(O) P(W=F I R a, O) P(R u l M, W=F) / P(W=F)$
$=[$ sum_Ra $\bar{P}(R a) P(O) P(W=F I R a, O)]\left[s u m _M P(M) P(R u l M, W=F) / P(W=F)\right]$
= factored!

Conditional independence

- This is generally true
- conditioning can make or break independences
- many conditional independences can be derived from graph structure alone
- accidental ones often considered less interesting
- We derived them by looking for factorizations
- turns out there is a purely graphical test
- one of the key contributions of Bayes nets

Example: blocking

- Shaded = observed (by convention)

Example: explaining away

 - Intuitively:
d-separation

- General graphical test:"d-separation"
- d = dependence
- $X \perp Y \mid Z$ when there are no active paths between X and Y
- Active paths of length 3 ($\mathrm{W} \notin$ conditioning set):

Longer paths

- Node is active if:

and inactive o/w
- Path is active if intermediate nodes are

Geoff Gordon-Machine Learning—Fall 2013
unshaded and arrows are \gg, \ll, or $<>$
shaded (or descendant shaded) and arrows $><$ (collider)
active when *all* intermediate nodes are active
example: shade Rusty; are M and O indep?
no: active path thru Ru and W

Markov blanket

- Markov blanket of $C=$ minimal set of obs'ns to make C independent of rest of graph

Geoff Gordon—Machine Learning—Fall 2013

Learning fully-observed Bayes nets

$$
\begin{aligned}
& P(M)= \\
& P(R a)= \\
& P(O)= \\
& P(W \mid R a, O)=
\end{aligned}
$$

$$
P(R u \mid M, W)=
$$

M	Ra	O	W	Ru
T	F	T	T	F
T	T	T	T	T
F	T	T	F	F
T	F	F	F	T
F	F	T	F	T

Geoff Gordon-Machine Learning—Fall 2013

TT: 1/2

$$
\text { FT: } 0 / 0 \text { !!! FF: } 1 / 2
$$

note division by zero --> Laplace smoothing note extreme probabilities

Limitations of counting

- Works only when all variables are observed in all examples
- If there are hidden or latent variables, more complicated algorithm
- or just use a toolbox!

