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Review

• Selection bias, overfitting

• Bias v. variance v. residual

• Bias-variance tradeoff
‣ Cramér-Rao bound
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Repeat 100k times: est. stdev of \hat\mu = 0.0818
 compare to true stdev, .0825



Geoff Gordon—Machine Learning—Fall 2013

Cross-validation

• Used to estimate classification error, RMSE, or 
similar error measure of an algorithm

• Surrogate sample: exactly the same as x1, …, xN 
except for train-test split

• k-fold CV:
‣ randomly permute x1, … xN

‣ split into folds: first N/k samples, second N/k samples, …

‣ train on k–1 folds, measure error on remaining fold

‣ repeat k times, with each fold being holdout set once

3

f = function from whole sample to single number = train model on k-1 folds then evaluate error on 
remaining one 

CV: uses sample splitting idea twice
 first: split into train & validation
 second: repeat to estimate variability
 only the second is approximated

k = N: leave-one-out CV (LOOCV)
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Cross-validation: caveats

• Original sample might not be i.i.d.

• Size of surrogate sample is wrong: 
‣ want to estimate error we’d get on a sample of size N

‣ actually use samples of size N(k–1)/k

• Failure of i.i.d, even if original sample was i.i.d.

4

two of these are potentially optimistic; middle one is conservative (but usually pretty small effect)



Graphical 
models
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Dynamic programming
on a graph

• Probability calculation problem (all binary vars,  
p=0.5): 

• Essentially an instance of #SAT

• Structure:

6

P[(x _ y _ z̄) ^ (ȳ _ ū) ^ (z _ w) ^ (z _ u _ v)]

===

\mathbb P[ (x \vee y \vee \bar z) \wedge (\bar y \vee \bar u) \wedge (z \vee w) \wedge (z \vee u \vee v) ]
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Variable elimination

7

(leaving off normalizer of 1/2^6)
move in sum over w: get sum_w C(zw) = table 
   E(z): 1: 2, 0: 1
move in sum over v: get sum_uv D(zuv) = table
   F(zu): 11: 2, 10: 2, 01: 2, 00: 1
move in sum over u: get sum_u B(yu) F(zu)
  BF(yzu): (0 1 0 1 1 1 1 1) * (2 2 2 1 2 2 2 1)
     = 0 2 0 1 2 2 2 1
  sum over u: G(yz) = 2 1 4 3
write out EGA(xyz): (2 1 2 1 2 1 2 1) * (2 1 4 3 2 1 4 3) * A
  = (4 1 8 3 4 1 0 3)
sum over xyz: 24 satisfying assignments
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Variable elimination

8
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In general

• Pick a variable ordering

• Repeat: say next variable is z
‣ move sum over z inward as far as it goes

‣ make a new table by multiplying all old tables containing 
z, then summing out z

‣ arguments of new table are “neighbors” of z

• Cost: O(size of biggest table * # of sums)
‣ sadly: biggest table can be exponentially large

‣ but often not: low-treewidth formulas

9

neighbors: share a table
note that vars can become neighbors when we delete old tables and add a new table

treewidth = #args of largest table - 1
 (for best elimination ordering)
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Why did we do this?

• A simple graphical model!

• Graphical model = graphical representation + 
statistical model
‣ in our example: graph of clauses & variables, plus coin 

flips for variables

10
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Why do we need graphical models?

• Don’t want to write a distribution as a big table
‣ Gets unwieldy fast!

‣ E.g., 10 RVs, each w/ 10 settings

‣ Table size = 1010

• Graphical model: way to write distribution 
compactly using diagrams & numbers

• Typical GMs are huge (1010 is a small one), but 
we’ll use tiny ones for examples

11
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Bayes nets

• Best-known type of graphical model

• Two parts: DAG and CPTs

12
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Rusty robot: the DAG

13

node = RV
arcs: indicate probabilistic dependence
 rusty: metal, wet
 wet: rains, outside
define: pa(X) = parent set
 e.g., pa(rusty) = metal, wet
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Rusty robot: the CPTs

• For each RV (say X), 
there is one CPT 
specifying P(X | pa(X))

P(Metal) = 0.9
P(Rains) = 0.7
P(Outside) = 0.2
P(Wet | Rains, Outside)
	 TT: 0.9	 TF: 0.1
	 FT: 0.1	 FF: 0.1
P(Rusty | Metal, Wet) =
	 TT: 0.8	 TF: 0.1
	 FT: 0		 FF: 0

14
P(Metal) = 0.9
P(Rains) = 0.7
P(Outside) = 0.2
P(Wet | Rains, Outside)
 TT: 0.9 TF: 0.1
 FT: 0.1 FF: 0.1
P(Rusty | Metal, Wet) =
 TT: 0.8 TF: 0.1
 FT: 0  FF: 0
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Interpreting it

15
P(RVs) = prod_{X in RVs} P(X | pa(X))
P(M, Ra, O, W, Ru) = P(M)P(Ra)P(O)P(W|Ra,O)P(Ru|M,W)

Write out part of table:
Met Rai Out Wet Rus P(...)
F F F F F .1*.3*.8*.9*1 = .0216
F F F F T .1*.3*.8*.9*0 = 0
...
T T T T T .9*.7*.2*.9*.8 = 0.0907

Note: 11 numbers (instead of 2^5 - 1 = 31)
 just gets better as #RVs increases
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Benefits

• 11 v. 31 numbers

• Fewer parameters to learn

• Efficient inference = computation of marginals, 
conditionals ⇒ posteriors

16
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Inference Qs

• Is Z > 0?

•What is P(E)?

•What is P(E1 | E2)?

• Sample a random configuration according to P(.) 
or P(. | E)

• Hard part: taking sums over r.v.s (e.g., sum over all 
values to get normalizer)

17

Z = 0: probabilities undefined

why is Z hard?  exponentially many configurations

other than Z, it’s just a bunch of table lookups
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Inference example

• P(M, Ra, O, W, Ru) = 
P(M) P(Ra) P(O) P(W|Ra,O) P(Ru|M,W)

• Find marginal of M, O

18

sum_Ra in 0,1 sum_W in 0,1 sum_Ru in 0,1
 P(M) P(Ra) P(O) P(W|Ra,O) P(Ru|M,W)
= sum_Ra sum_W P(M) P(Ra) P(O) P(W|Ra,O) sum_Ru P(Ru|M,W)
= sum_Ra sum_W P(M) P(Ra) P(O) P(W|Ra,O)
= sum_Ra P(M) P(Ra) P(O) sum_W P(W|Ra,O)
= sum_Ra P(M) P(Ra) P(O)
= P(M) P(O)
note: so far, no actual arithmetic (all analytic, true for *any* CPTs)
now can write P(M, O) using 4 multiplications (using CPTs)
 .9, .7  (.63 .07 .27 .03)
note: M & O are independent
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Independence

• Showed M ⊥ O

• Any other independences?

• Didn’t use CPTs: some independences depend 
only on graph structure

• May also be “accidental” independences
‣ i.e., depend on values in CPTs

19
note new symbol ⊥
M ⊥ R   R ⊥ O
M ⊥ W

didn’t use CPTs ==> these hold for *all* CPTs
! depend only on graph structure

accidental = depend on values in CPTs
! e.g.: P(W | Ra, O) = .3 .3 .3 .3 yields W ⊥ Ra, O
! note that even a tiny change in CPT voids this
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Conditional independence

• How about O, Ru?  O   Ru

• Suppose we know we’re not wet

• P(M, Ra, O, W, Ru) = 
‣ P(M) P(Ra) P(O) P(W|Ra,O) P(Ru|M,W)

• Condition on W=F, find marginal of O, Ru

20
O not indep Ru

sum_M sum_Ra P(M) P(Ra) P(O) P(W=F|Ra,O) P(Ru|M,W=F) / P(W=F)
 = [sum_Ra P(Ra) P(O) P(W=F|Ra,O)] [sum_M P(M) P(Ru|M,W=F) / P(W=F)]
 = factored!

O ! Ru | W=F
again, true no matter what CPTs are
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Conditional independence
• This is generally true
‣ conditioning can make or break independences

‣ many conditional independences can be derived from 
graph structure alone

‣ accidental ones often considered less interesting

•We derived them by looking for factorizations
‣ turns out there is a purely graphical test

‣ one of the key contributions of Bayes nets

21
less interesting: *except* context-specific
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Example: blocking

• Shaded = observed (by convention)

22
Rains --> Wet --> Rusty
P(Ra) P(W | Ra) P(Ru | W)

Rains --> Wet (shaded) --> Rusty
P(Ra) P(W=T | Ra) P(Ru | W=T) / P(W=T)
[P(Ra) P(W=T | Ra)] [P(Ru | W=T) / P(W=T)]

Ra ⊥ Ru | W
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Example: explaining away

• Intuitively:

23
Rains --> Wet <-- Outside
already showed Ra ! O
sum_W P(Ra) P(O) P(W | Ra, O) = P(Ra) P(O)

Rains --> Wet (shaded) <-- Outside
P(Ra) P(O) P(W = F | Ra, O) / P(W=F)
became dependent!  Ra not indep O | W

intuitively: If we know we’re not wet, suppose we find out it’s raining: then we know we’re probably not outside
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d-separation

• General graphical test: “d-separation”
‣ d = dependence

• X ⊥ Y | Z when there are no active paths between 
X and Y

• Active paths of length 3 (W ∉ conditioning set):

24
active paths
! X --> W --> Y
! X <-- W <-- Y
! X <-- W --> Y
! X --> Z <-- Y
! X --> W <-- Y  *if*  W --> ... --> Z



Geoff Gordon—Machine Learning—Fall 2013

Longer paths

• Node is active if:

and inactive o/w

• Path is active if      intermediate nodes are

25
active if
! unshaded and arrows are >>, <<, or <>
! shaded (or descendant shaded) and arrows >< (collider)

longer paths: 
! active when *all* intermediate nodes are active

example: shade Rusty; are M and O indep?
! no: active path thru Ru and W
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Markov blanket

• Markov blanket of 
C = minimal set of 
obs’ns to make C 
independent of rest 
of graph

26
MB(C) = A..G
 = parents, children, co-parents
 = enough to ensure no active paths to C
AB block from above; DE block to below; conditioning on DE makes C depend on FG, so need them too
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Learning fully-observed Bayes nets

M Ra O W Ru

T F T T F

T T T T T

F T T F F

T F F F T

F F T F T

P(Ra) =

P(M) =

P(O) =

P(W | Ra, O) =

P(Ru | M, W) =

27
P(M) = 3/5
P(Ra) = 2/5
P(O) = 4/5
P(W|Ra, O):
! TT: 1/2! ! TF: 0/0 !!!
! FT: 1/2! ! FF: 1/1
P(Ru|M, W):
! TT: 1/2! ! TF: 1/1 ???
! FT: 0/0 !!!! FF: 1/2

note division by zero --> Laplace smoothing
note extreme probabilities
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Limitations of counting

•Works only when all variables are observed in all 
examples

• If there are hidden or latent variables, more 
complicated algorithm
‣ or just use a toolbox!

28


