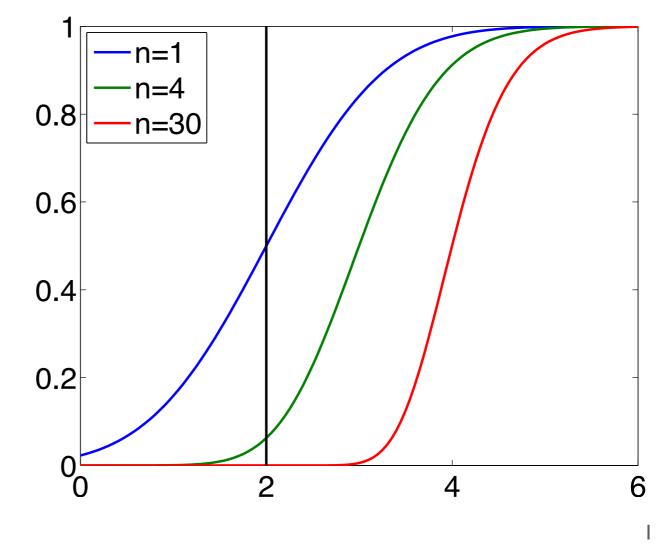
Review

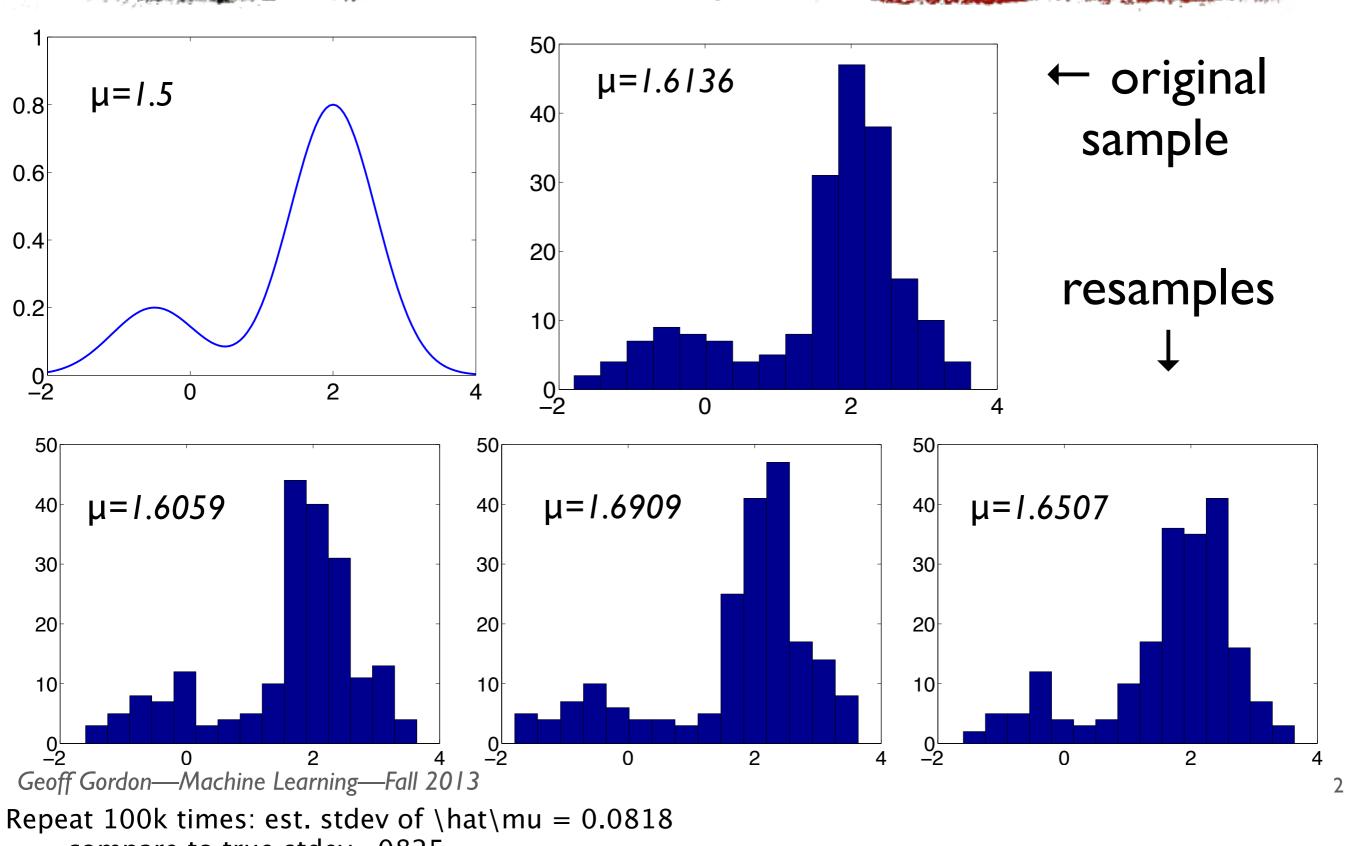
- Selection bias, overfitting
- Bias v. variance v. residual
- Bias-variance tradeoff
 - Cramér-Rao bound

CDF of max of n samples of $N(\mu=2, \sigma^2=1)$ [representing error estimates for n models]



Geoff Gordon—Machine Learning—Fall 2013

Review: bootstrap



compare to true stdev, .0825

Cross-validation

- Used to estimate classification error, RMSE, or similar error measure of an algorithm
- Surrogate sample: exactly the same as $x_1, ..., x_N$ except for train-test split
- k-fold CV:
 - randomly permute $x_1, \ldots x_N$
 - ▶ split into folds: first N/k samples, second N/k samples, ...
 - ▶ train on k–1 folds, measure error on remaining fold
 - repeat k times, with each fold being holdout set once

3

Geoff Gordon—Machine Learning—Fall 2013

f = function from whole sample to single number = train model on k-1 folds then evaluate error on remaining one

- CV: uses sample splitting idea twice first: split into train & validation second: repeat to estimate variability only the second is approximated
- k = N: leave-one-out CV (LOOCV)

Cross-validation: caveats

- Original sample might not be i.i.d.
- Size of surrogate sample is wrong:
 - want to estimate error we'd get on a sample of size N
 - ▶ actually use samples of size N(k−1)/k
- Failure of i.i.d, even if original sample was i.i.d.

Geoff Gordon—Machine Learning—Fall 2013 two of these are potentially optimistic; middle one is conservative (but usually pretty small effect)

Graphical models

Dynamic programming on a graph

Probability calculation problem (all binary vars, p=0.5):

 $\mathbb{P}[(x \lor y \lor \bar{z}) \land (\bar{y} \lor \bar{u}) \land (z \lor w) \land (z \lor u \lor v)]$

- Essentially an instance of #SAT
- Structure: $\sqrt{\frac{1}{x}}$

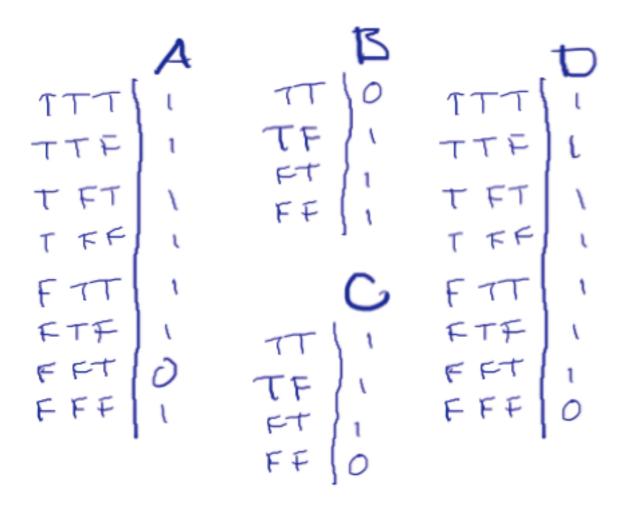
Geoff Gordon—Machine Learning—Fall 2013

[\]mathbb P[(x \vee y \vee \bar z) \wedge (\bar y \vee \bar u) \wedge (z \vee w) \wedge (z \vee u \vee v)]

Variable elimination

7

ZZZZZA A(xyz)B(yn)C(zw)D(znv)



Geoff Gordon—Machine Learning—Fall 2013
(leaving off normalizer of 1/2^6)
move in sum over w: get sum_w C(zw) = table
 E(z): 1: 2, 0: 1
move in sum over v: get sum_uv D(zuv) = table
 F(zu): 11: 2, 10: 2, 01: 2, 00: 1
move in sum over u: get sum_u B(yu) F(zu)
 BF(yzu): (0 1 0 1 1 1 1 1) * (2 2 2 1 2 2 2 1)
 = 0 2 0 1 2 2 2 1
 sum over u: G(yz) = 2 1 4 3
write out EGA(xyz): (2 1 2 1 2 1 2 1) * (2 1 4 3 2 1 4 3) * A
 = (4 1 8 3 4 1 0 3)
sum over xyz: 24 satisfying assignments

Variable elimination

Starte Antes

The farment of the second of the ball

Geoff Gordon—Machine Learning—Fall 2013

The Provide Line Desta 1 4 14-44

In general

- Pick a variable ordering
- Repeat: say next variable is z
 - move sum over z inward as far as it goes
 - make a new table by multiplying all old tables containing z, then summing out z
 - arguments of new table are "neighbors" of z
- Cost: O(size of biggest table * # of sums)
 - sadly: biggest table can be exponentially large
 - but often not: low-treewidth formulas

Geoff Gordon—Machine Learning—Fall 2013

neighbors: share a table note that vars can become neighbors when we delete old tables and add a new table

treewidth = #args of largest table - 1 (for best elimination ordering)

Why did we do this?

- A simple graphical model!
- Graphical model = graphical representation + statistical model
 - in our example: graph of clauses & variables, plus coin flips for variables

Geoff Gordon—Machine Learning—Fall 2013

Why do we need graphical models?

- Don't want to write a distribution as a big table
 - Gets unwieldy fast!
 - E.g., 10 RVs, each w/ 10 settings
 - ► Table size = 10¹⁰
- Graphical model: way to write distribution compactly using diagrams & numbers
- Typical GMs are huge (10¹⁰ is a small one), but we'll use tiny ones for examples

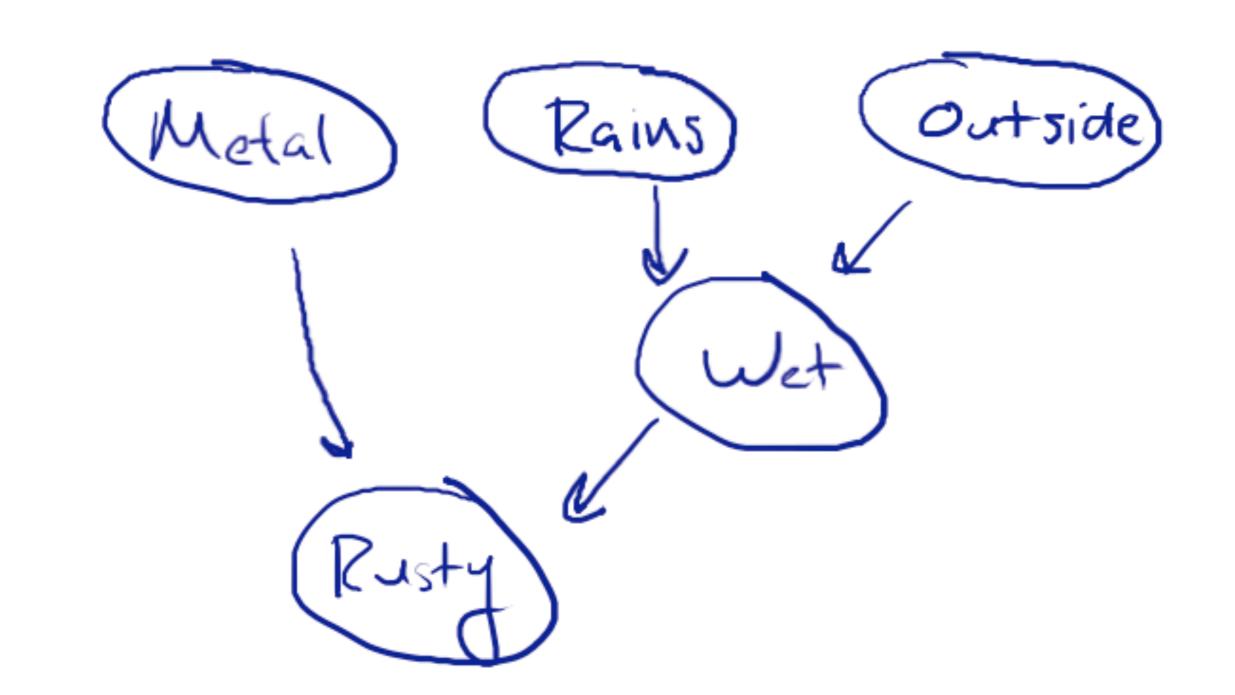
Geoff Gordon—Machine Learning—Fall 2013

- Best-known type of graphical model
- Two parts: DAG and CPTs

Geoff Gordon—Machine Learning—Fall 2013

Rusty robot: the DAG

Sec. 2. 2. 2. 2. 4



Geoff Gordon—Machine Learning—Fall 2013

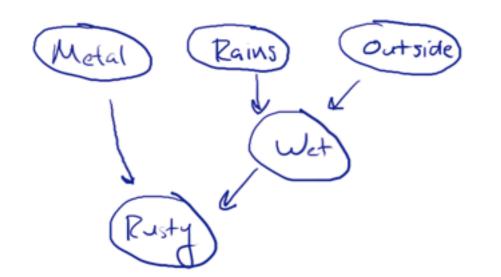
node = RV
arcs: indicate probabilistic dependence
 rusty: metal, wet
 wet: rains, outside
define: pa(X) = parent set
 e.g., pa(rusty) = metal, wet

Rusty robot: the CPTs



 For each RV (say X), there is one CPT specifying P(X | pa(X)) P(Metal) = 0.9 P(Rains) = 0.7 P(Outside) = 0.2 P(Wet | Rains, Outside) TT: 0.9 TF: 0.1 FT: 0.1 FF: 0.1 P(Rusty | Metal, Wet) = TT: 0.8 TF: 0.1 FT: 0 FF: 0

Interpreting it



Geoff Gordon—Machine Learning—Fall 201	off Gordon—Machine Lea	arning—Fall 2013
--	------------------------	------------------

 $P(RVs) = prod_{X in RVs} P(X | pa(X))$ P(M, Ra, O, W, Ru) = P(M)P(Ra)P(O)P(W|Ra,O)P(Ru|M,W)

Write out part of table:								
Met	Rai	Out	Wet	Rus	P()			
F	F	F	F	F	$.1^*.3^*.8^*.9^*1 = .0216$			
F	F	F	F	Т	$.1^*.3^*.8^*.9^*0 = 0$			
Т	Т	Т	Т	Т	.9*.7*.2*.9*.8 = 0.0907			

Note: 11 numbers (instead of 2^5 - 1 = 31) just gets better as #RVs increases

Benefits

- II v. 31 numbers
- Fewer parameters to learn
- Efficient *inference* = computation of marginals, conditionals ⇒ posteriors

Geoff Gordon—Machine Learning—Fall 2013

Inference Qs

- ls Z > 0?
- What is P(E)?
- What is $P(E_1 | E_2)$?
- Sample a random configuration according to P(.) or P(. | E)
- Hard part: taking sums over r.v.s (e.g., sum over all values to get normalizer)

Geoff Gordon—Machine Learning—Fall 2013 Z = 0: probabilities undefined

why is Z hard? exponentially many configurations

other than Z, it's just a bunch of table lookups

Inference example

• P(M, Ra, O, W, Ru) =P(M) P(Ra) P(O) P(W|Ra, O) P(Ru|M, W)

• Find marginal of M, O

```
Geoff Gordon—Machine Learning—Fall 2013

sum_Ra in 0,1 sum_W in 0,1 sum_Ru in 0,1

P(M) P(Ra) P(O) P(W|Ra,O) P(Ru|M,W)

= sum_Ra sum_W P(M) P(Ra) P(O) P(W|Ra,O) sum_Ru P(Ru|M,W)

= sum_Ra sum_W P(M) P(Ra) P(O) P(W|Ra,O)

= sum_Ra P(M) P(Ra) P(O) sum_W P(W|Ra,O)

= sum_Ra P(M) P(Ra) P(O)

= P(M) P(O)

note: so far, no actual arithmetic (all analytic, true for *any* CPTs)

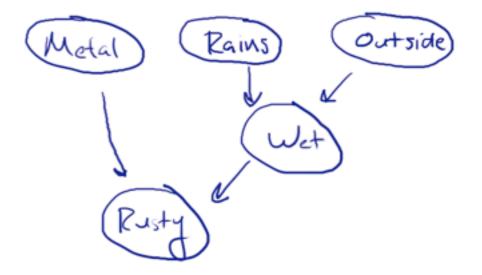
now can write P(M, O) using 4 multiplications (using CPTs)

_9, .7 (.63 .07 .27 .03)

note: M & O are independent
```

Independence

- \bullet Showed M \perp O
- Any other independences?



- Didn't use CPTs: some independences depend only on graph structure
- May also be "accidental" independences
 - i.e., depend on values in CPTs

Geoff Gordon—Machine Learning—Fall 2013

note new symbol \perp M \perp R R \perp O M \perp W

- didn't use CPTs ==> these hold for *all* CPTs depend only on graph structure
- accidental = depend on values in CPTs e.g.: P(W I Ra, O) = .3 .3 .3 .3 yields W ⊥ Ra, O note that even a tiny change in CPT voids this

Conditional independence

- How about O, Ru? O Ru
- Suppose we know we're not wet
- P(M, Ra, O, W, Ru) =

- Metal Rains Outsid Wetal Rusty
- ► P(M) P(Ra) P(O) P(W|Ra,O) P(Ru|M,W)
- Condition on W=F, find marginal of O, Ru

Geoff Gordon—Machine Learning—Fall 2013

O not indep Ru

sum_M sum_Ra P(M) P(Ra) P(O) P(W=FIRa,O) P(RuIM,W=F) / P(W=F) = [sum_Ra P(Ra) P(O) P(W=FIRa,O)] [sum_M P(M) P(RuIM,W=F) / P(W=F)] = factored!

O ! Ru I W=F again, true no matter what CPTs are

Conditional independence

- This is generally true
 - conditioning can make or break independences
 - many conditional independences can be derived from graph structure alone
 - accidental ones often considered less interesting
- We derived them by looking for factorizations
 - turns out there is a purely graphical test
 - one of the key contributions of Bayes nets

Geoff Gordon—Machine Learning—Fall 2013 less interesting: *except* context-specific

Example: blocking

Adver Range

The second states and the se

Shaded = observed (by convention)

Geoff Gordon—Machine Learning—Fall 2013

Rains --> Wet --> Rusty P(Ra) P(W I Ra) P(Ru I W)

Rains --> Wet (shaded) --> Rusty P(Ra) P(W=T | Ra) P(Ru | W=T) / P(W=T) [P(Ra) P(W=T | Ra)] [P(Ru | W=T) / P(W=T)]

 $\text{Ra}\perp\text{Ru}\mid\text{W}$

Example: explaining away

States and a loss of the states of the state

Geoff Gordon—Machine Learning—Fall 2013

Rains --> Wet <-- Outside already showed Ra ! O sum_W P(Ra) P(O) P(W I Ra, O) = P(Ra) P(O)

Rains --> Wet (shaded) <-- Outside P(Ra) P(O) P(W = F | Ra, O) / P(W=F)became dependent! Ra not indep O | W

intuitively: If we know we're not wet, suppose we find out it's raining: then we know we're probably not outside

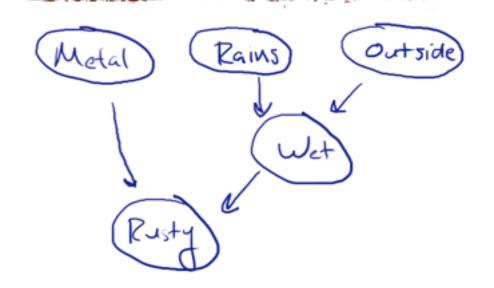
d-separation

- General graphical test: "d-separation"
 - d = dependence
- $X \perp Y \mid Z$ when there are no active paths between X and Y
- Active paths of length 3 (W ∉ conditioning set):

Geoff Gordon—Machine Learning—Fall 2013 active paths X --> W --> Y X <-- W <-- Y X <-- W --> Y X --> Z <-- Y X --> W <-- Y *if* W --> ... --> Z

Longer paths

• Node is active if:



and inactive o/w

• Path is active if intermediate nodes are

Geoff Gordon—Machine Learning—Fall 2013

active if

unshaded and arrows are >>, <<, or <> shaded (or descendant shaded) and arrows >< (collider)

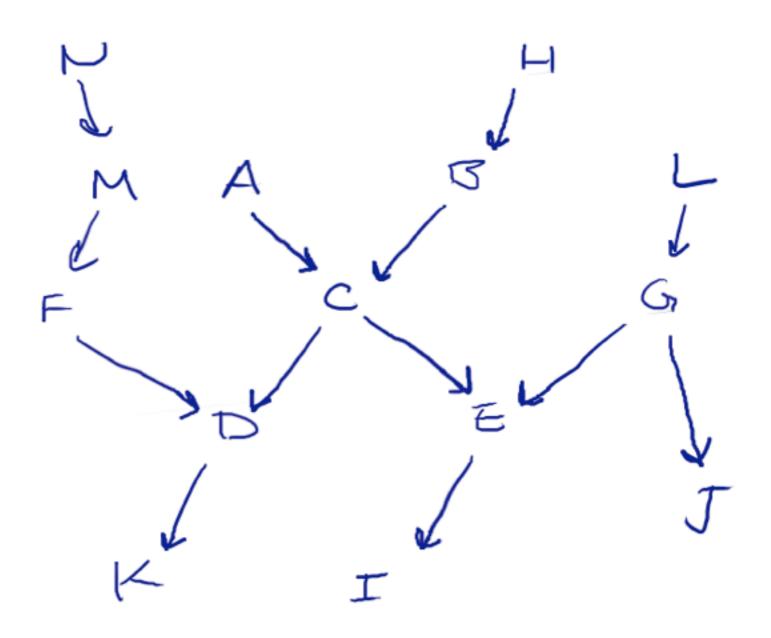
longer paths:

active when *all* intermediate nodes are active

example: shade Rusty; are M and O indep? no: active path thru Ru and W

Markov blanket

 Markov blanket of C = minimal set of obs'ns to make C independent of rest of graph



Geoff Gordon—Machine Learning—Fall 2013

MB(C) = A..G = parents, children, co-parents = enough to ensure no active paths to C

AB block from above; DE block to below; conditioning on DE makes C depend on FG, so need them too

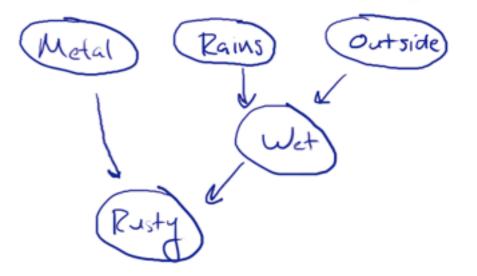
Learning fully-observed Bayes nets

P(M) = P(Ra) = P(O) = $P(W \mid Ra, O) =$

P(Ru | M,W) =

Geoff Gordon—Machine Learning—Fall 2013 P(M) = 3/5 P(Ra) = 2/5 P(O) = 4/5 P(WIRa, O): TT: 1/2 TF: 0/0 !!! FT: 1/2 FF: 1/1 P(RuIM, W): TT: 1/2 TF: 1/1 ??? FT: 0/0 !!! FF: 1/2

note division by zero --> Laplace smoothing note extreme probabilities



Μ	Ra	0	W	Ru
Т	F	Т	Т	F
Т	Т	Т	Т	Т
F	Т	Т	F	F
Т	F	F	F	Т
F	F	Т	F	Т

Limitations of counting

- Works only when all variables are observed in all examples
- If there are *hidden* or *latent* variables, more complicated algorithm
 - or just use a toolbox!

Geoff Gordon—Machine Learning—Fall 2013