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Motivation 
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What have we seen so far? 
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Several algorithms that seem to work fine on  training datasets: 
• Linear regression 
• Naïve Bayes classifier 
• Perceptron classifier 
• Support Vector Machines for regression and classification 

How good are these algorithms on unknown test sets? 
How many training samples do we need to achieve small error? 
What is the smallest possible error we can achieve? 

) Learning Theory 
To answer these questions, we will need a few powerful tools 



Basic Estimation Theory 

4 



Rolling a Dice,  
Estimation of parameters θ1,θ2,…,θ6 

24 

120 60 

12 

5 

Does the MLE estimation converge to the right value? 
How fast does it converge? 
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Rolling a Dice  
Calculating the Empirical Average  

Does the empirical average converge to the true mean?  
How fast does it converge? 



5 sample traces 
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How fast do they converge? 

Rolling a Dice,  
 Calculating the Empirical Average  



Key Questions 

I want to know the coin parameter θ2[0,1] within ε = 0.1 
error, with probability at least 1-δ = 0.95.  
How many flips do I need? 
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• Do empirical averages converge? 
• Does the MLE converge in the dice rolling problem? 
• What do we mean on convergence?  
• What is the rate of convergence?  

Applications:  
• drug testing (Does this drug modifies the average blood pressure?)  
• user interface design (We will see later) 



Outline 
Theory: 
• Stochastic Convergences: 

– Weak convergence = Convergence in distribution  
– Convergence in probability  
– Strong (almost surely) 
–  Convergence in Lp norm 
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• Limit theorems: 
– Law of large numbers  
– Central limit theorem  

• Tail bounds: 
– Markov, Chebyshev 



Stochastic convergence 
definitions and properties 
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Convergence of vectors 
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Convergence in Distribution = 
 Convergence Weakly = Convergence in Law 
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Notation: 

Let {Z, Z1, Z2, …} be a sequence of random variables. 

Definition: 

This is the “weakest” convergence. 



Only the distribution functions converge!  
(NOT the values of the random variables) 
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Convergence in Distribution = 
 Convergence Weakly = Convergence in Law 
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Continuity is important! 

Proof: 

The limit random variable is constant 0: 

Example: 

In this example the limit Z is discrete, not random (constant 0),  
although Zn is a continuous random variable. 
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Convergence in Distribution = 
 Convergence Weakly = Convergence in Law 



This image cannot currently be displayed.
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Properties 

Scheffe's theorem: 
convergence of the probability density functions ) convergence in distribution 

Example: 
(Central Limit Theorem) 

Zn and Z can still be independent even if their distributions are the same! 

Convergence in Distribution = 
 Convergence Weakly = Convergence in Law 



Convergence in Probability 
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Notation: 
Definition: 

This indeed measures how far the values of Zn(ω) and Z(ω) are from each other. 



Almost Surely Convergence 
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Notation: 
Definition: 



Convergence in p-th mean, Lp norm 

Definition: 
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Notation: 

Properties: 



Counter Examples 
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Further Readings on  
Stochastic convergence 

•http://en.wikipedia.org/wiki/Convergence_of_random_variables  
 

•Patrick Billingsley: Probability and Measure 
 

•Patrick Billingsley: Convergence of Probability Measures 
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http://en.wikipedia.org/wiki/Convergence_of_random_variables


Finite sample tail 
bounds 

Useful tools!  
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This image cannot currently be displayed.

Gauss Markov inequality 

Decompose the expectation 

If X is any nonnegative random variable and a > 0, then 

Proof: 

Corollary: Chebyshev's inequality 
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Chebyshev inequality 
If X is any nonnegative random variable and a > 0, then 

Proof: 

Here Var(X) is the variance of X, defined as: 
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This image cannot currently be displayed.

Generalizations of  
Chebyshev's inequality 

Chebyshev:  

Asymmetric two-sided case (X is asymmetric distribution) 

Symmetric two-sided case (X is symmetric distribution)  

This is equivalent to this: 

There are lots of other generalizations, for example multivariate X. 
24 



Higher moments? 

Chebyshev: 

Markov: 

Higher moments: 
where n ≥ 1 

Other functions instead of polynomials? 
Exp function: 

Proof: (Markov ineq.) 
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Law of Large Numbers 
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Do empirical averages converge? 
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 Answer: Yes, they do. (Law of large numbers) 

Chebyshev’s inequality is good enough to study the question:  
Do the empirical averages converge to the true mean? 



Law of Large Numbers 
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Strong Law of Large Numbers: 

Weak Law of Large Numbers: 



Weak Law of Large Numbers 
Proof I: 

Assume finite variance. (Not very important) 

Therefore, 

As n approaches infinity, this expression approaches 1. 
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What we have learned today 
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Theory: 
• Stochastic Convergences: 

– Weak convergence = Convergence in distribution  
– Convergence in probability  
– Strong (almost surely) 
–  Convergence in Lp norm 

 
• Limit theorems: 

– Law of large numbers  
– Central limit theorem  

• Tail bounds: 
– Markov, Chebyshev 



Thanks for your attention  
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