Alex Smola Barnabas Poczos

Ina Fiterau CMU - MLD

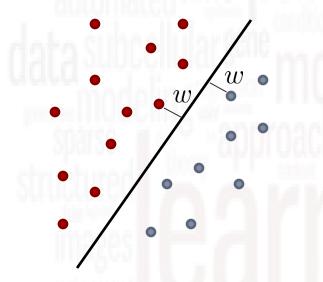
Recitation 6: Kernel SVM

SVM Revision. The Kernel Trick. Reproducing Kernels. Examples.

Main Source: F2009 10-701 course taught by Carlos Guestrin

SVM Primal

Find maximum margin hyper-plane $f(x) = \langle w, x \rangle + b = 0$

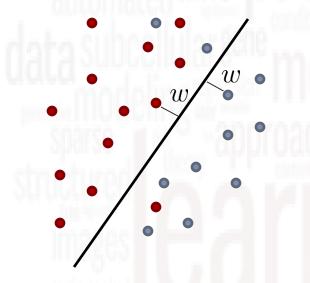


Hard Margin

 $\min_{w,b} ||w||^2$ subject to $(\langle w, x_i \rangle + b)y_i \ge 1$

SVM Primal

Find maximum margin hyper-plane $f(x) = \langle w, x \rangle + b = 0$

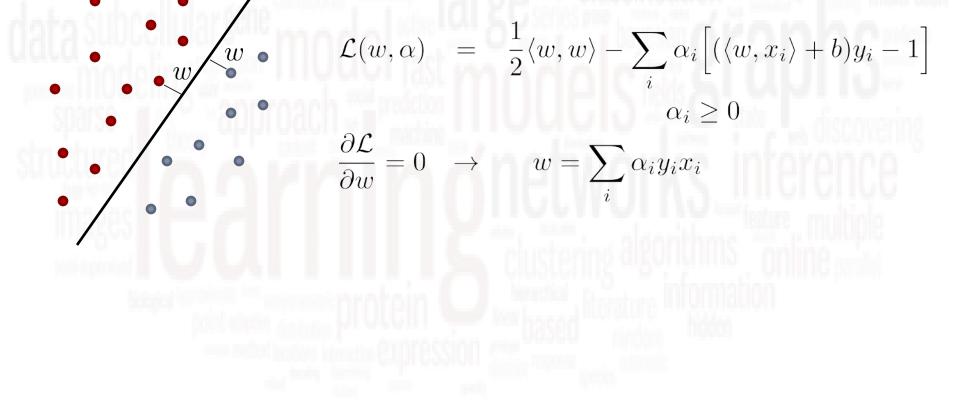


Soft Margin

 $\min_{w,b} ||w||^2 + C \sum_i \xi_i$ subject to $(\langle w, x_i \rangle + b)y_i \ge 1$ $\xi_i \ge 0$

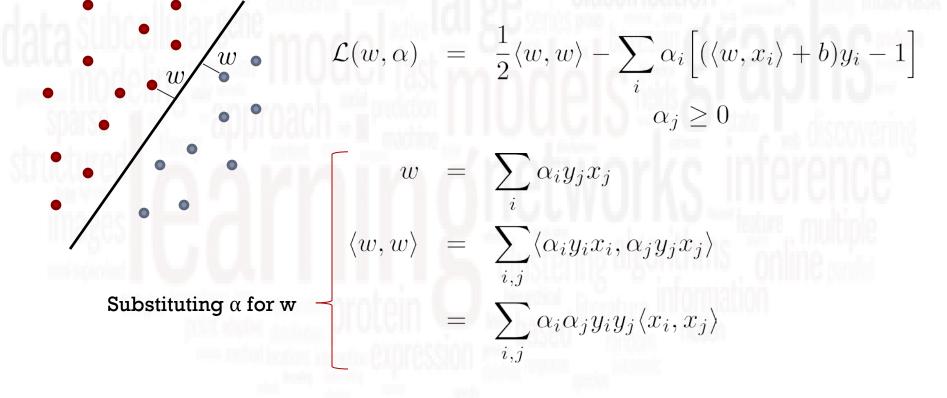
Find maximum margin hyper-plane $f(x) = \langle w, x \rangle + b = 0$

Dual for the hard margin SVM



Find maximum margin hyper-plane $f(x) = \langle w, x \rangle + b = 0$

Dual for the hard margin SVM



Find maximum margin hyper-plane $f(x) = \langle w, x \rangle + b = 0$

Dual for the hard margin SVM

$$\mathcal{L}(w,\alpha) = \frac{1}{2} \langle w, w \rangle - \sum_{i} \alpha_{i} \left[(\langle w, x_{i} \rangle + b) y_{i} - 1 \right]$$
$$\alpha_{j} \ge 0$$

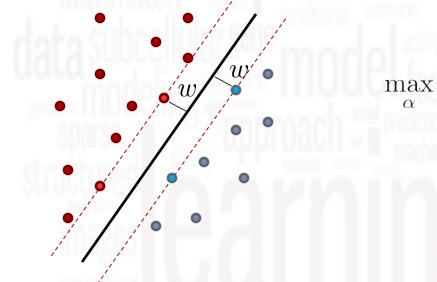
The constraints are active for the support vectors

$$\forall k \text{ s.t. } a_k > 0 \qquad b = y_k - \langle w, x_k \rangle$$

Find maximum margin hyper-plane $f(x) = \langle w, x \rangle + b = 0$

 α

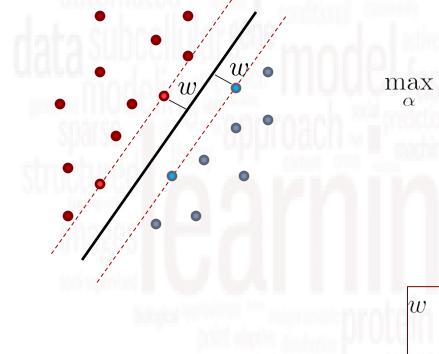
Dual for the hard margin SVM

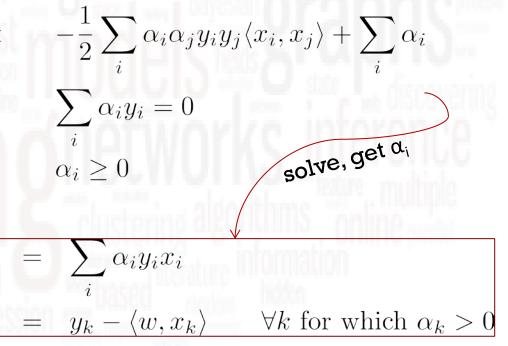


$$-\frac{1}{2}\sum_{i} \alpha_{i}\alpha_{j}y_{i}y_{j}\langle x_{i}, x_{j}\rangle + \sum_{i} \alpha_{i}$$
$$\sum_{i} \alpha_{i}y_{i} = 0$$
$$\alpha_{i} \ge 0$$

Find maximum margin hyper-plane $f(x) = \langle w, x \rangle + b = 0$

Dual for the hard margin SVM





11

SVM – Computing w

Find maximum margin hyper-plane $f(x) = \langle w, x \rangle + b = 0$

Dual for the soft margin SVM

only difference from the separable case

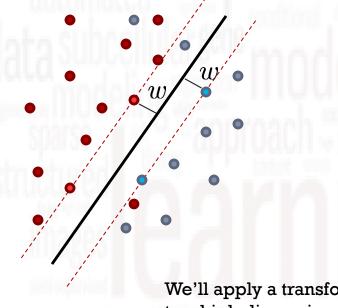
 $-\frac{1}{2}\sum_{i}\alpha_{i}\alpha_{j}y_{i}y_{j}\langle x_{i}, x_{j}\rangle + \sum_{i}\alpha_{i}$ $\sum_{i}\alpha_{i}y_{i} = 0$ $C \ge \alpha_{i} \ge 0$ solve, get α_{i}

$$w = \sum_{i} \alpha_{i} y_{i} x_{i}$$

$$b = y_{k} - \langle w, x_{k} \rangle \quad \forall k \text{ for which } C > \alpha_{k} > 0$$

SVM – the feature map

Find maximum margin hyper-plane $f(x) = \langle w, x \rangle + b = 0$

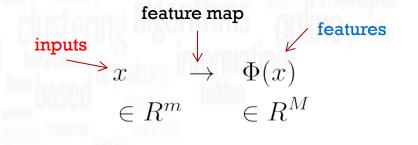


 \max_{α}

But data is not linearly separable 😕

$$-\frac{1}{2}\sum_{i} \alpha_{i}\alpha_{j}y_{i}y_{j}\langle x_{i}, x_{j}\rangle + \sum_{i} \alpha_{i}$$
$$\sum_{i} \alpha_{i}y_{i} = 0$$
$$C \ge \alpha_{i} \ge 0$$

We'll apply a transformation to a high dimensional space where the data is linearly separable



SVM – the feature map

Find maximum margin hyper-plane $f(x) = \langle w, \Phi(x) \rangle + b = 0$

But data is not linearly separable 😕

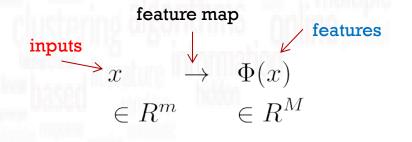
max

$$-\frac{1}{2}\sum_{i} \alpha_{i}\alpha_{j}y_{i}y_{j}\langle\Phi(x_{i}),\Phi(x_{j})\rangle + \sum_{i}\alpha_{i}$$
$$\sum_{i} \alpha_{i}y_{i} = 0$$
$$C \ge \alpha_{i} \ge 0$$

We obtain a linear separator in the feature space.

!! M >> m

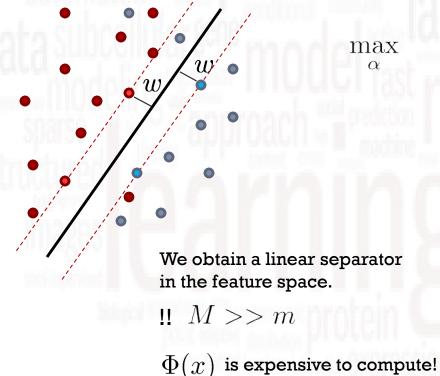
 $\Phi(x)$ is expensive to compute!



Spring 2013

Introducing the kernel

The dual formulation no longer depends on w, only on a dot product!



$$-\frac{1}{2}\sum_{i} \alpha_{i}\alpha_{j}y_{i}y_{j}\langle\Phi(x_{i}),\Phi(x_{j})\rangle + \sum_{i} \alpha_{i}$$
$$\sum_{i} \alpha_{i}y_{i} = 0$$
$$C \ge \alpha_{i} \ge 0$$

What we need is the dot product: $K(x_i, x_j) = \langle \Phi(x_i), \Phi(x_j) \rangle$

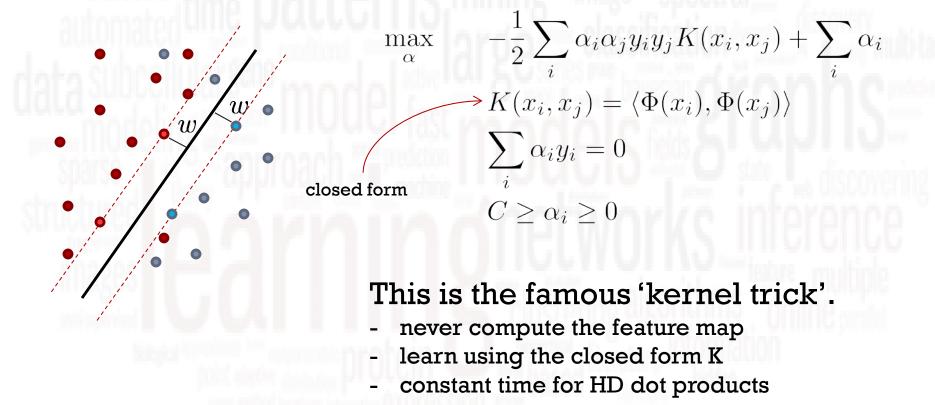
Let's call this a kernel

But we don't have to!

- 2-variable function
- can be written as a dot product

Kernel SVM

The dual formulation no longer depends on w, only on a dot product!



What happens when we need to classify some x_0 ?

Recall that w depends on α

$$w = \sum_{i} \alpha_{i} y_{i} \Phi(x_{i})$$

$$b = y_{k} - \langle w, \Phi(x_{k}) \rangle$$

$$\forall k \text{ s.t. } C > \alpha_{k} > 0$$

Our classifier for \mathbf{x}_0 uses w $sign(\langle w, \Phi(x_0) \rangle + b)$

What happens when we need to classify some x_0 ?

Recall that w depends on α

$$w = \sum_{i} \alpha_{i} y_{i} \Phi(x_{i})$$

$$b = y_{k} - \langle w, \Phi(x_{k}) \rangle$$

$$\forall k \text{ s.t. } C > \alpha_{k} > 0$$

Our classifier for \mathbf{x}_0 uses w $sign(\langle w, \Phi(x_0) \rangle + b)$

Who needs w when we've got dot products?

$$\langle w, \Phi(x_0) \rangle = \sum_i \alpha_i y_i K(x_0, x_i)$$

 $b = y_k - \sum_i \alpha_i y_i K(x_k, x_i)$
 $k \rightarrow \text{ support vectors}$

Kernel SVM Recap

Pick kernel

Solve the optimization to get α

 \max_{α}

$$-\frac{1}{2}\sum_{i} \alpha_{i}\alpha_{j}y_{i}y_{j}K(x_{i}, x_{j}) + \sum_{i} \alpha_{i}$$
$$K(x_{i}, x_{j}) = \langle \Phi(x_{i}), \Phi(x_{j}) \rangle$$
$$\sum_{i} \alpha_{i}y_{i} = 0$$
$$C \ge \alpha_{i} \ge 0$$

Compute b using the support vectors

$$b = y_k - \sum_i \alpha_i y_i K(x_k, x_i)$$

Classify as

$$sign\left(\sum_{i} \alpha_{i} y_{i} K(x_{0}, x_{i}) + b\right)$$

Logistic Regression

http://books.nips.cc/papers/files/nips14/AA13.pdf

Multiple Kernel Boosting

http://siam.omnibooksonline.com/2011datamining/data/papers/146.pdf

Trees and Kernels

http://users.cecs.anu.edu.au/~williams/papers/P175.pdf

Conditional Mean Embeddings

http://arxiv.org/abs/1205.4656

Gram Matrix

 of a set of vectors x₁ ... x_n in the inner product space defined by the kernel K

•
$$G_{ij} = K(x_i, x_j)$$
 $\forall i, j \in 1 \dots n$

Reproducing Kernels

Point evaluation function for a Hilbert sp. of functions

 $f(x) = \langle f, K_x \rangle \quad \forall f \in H$

Reproducing property

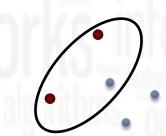
 $K(x,y) \stackrel{def}{=} \overline{K_x(y)} \longrightarrow K(x,y) = \overline{K(y,x)} = \langle K_y, K_x \rangle$

SVM Pop Quiz

- What's the maximum number of Support Vectors for a linear classification problem?
 - Hint: it's related to a concept you've recently studied

l-d case

2-d case

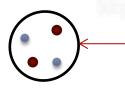


SVM Pop Quiz

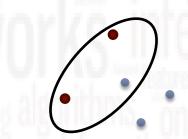
- What's the worst case number of Support Vectors for a [linear] classification problem?
 - Hint: it's related to a concept you've recently studied

l-d case

A: it's the same as the VC dimension of the classifier.

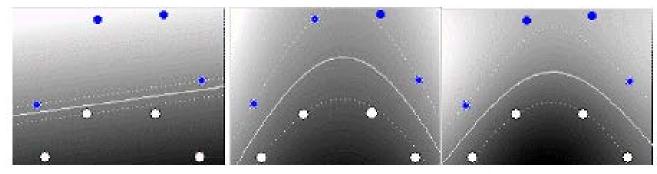


Because we can't have these as support vectors in 2D 2-d case



K-SVM Pop Quiz

Here's the result of training different kernels on this dataset



Linear

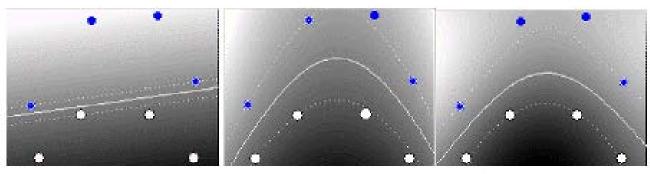
Quadratic Polynomial

RBF

What happens when we translate the points up by a large constant T on the vertical axis?

K-SVM Pop Quiz

Here's the result of training different kernels on this dataset



Linear

Quadratic Polynomial

RBF

What happens when we translate the points up by a large constant T on the vertical axis?

the bound retains relative position to points - it is shifted by 10 units the bound depends more on the y value, therefore the bound becomes more arched the value of the kernel is the same for each pair of points, so the bound retains position relative to points

Reminder: midterm is on Monday, feel free to ask questions about problems given in previous years