

Introduction to Machine Learning 3. Instance Based Learning

Alex Smola Carnegie Mellon University

http://alex.smola.org/teaching/cmu2013-10-701 10-701

Outline

- Parzen Windows Kernels, algorithm
- Model selection
 Crossvalidation, leave one out, bias variance
- Watson-Nadaraya estimator
 Classification, regression, novelty detection
- Nearest Neighbor estimator
 Limit case of Parzen Windows

MAGIC Etch A Sketch SCREEN

Parzen Windows

Parzen

latenzienten Luid 121 GENTOR OF TOK

emare deponde vâriură în telo conto ați hefemdo aldan Frad heen fradție elema

- Observe some data x_i
- Want to estimate p(x)
 - Find unusual observations (e.g. security)
 - Find typical observations (e.g. prototypes)
 - Classifier via Bayes Rule

$$p(y|x) = \frac{p(x,y)}{p(x)} = \frac{p(x|y)p(y)}{\sum_{y'} p(x|y')p(y')}$$

Need tool for computing p(x) easily

- Discrete random variables, e.g.
 - English, Chinese, German, French, ...
 - Male, Female
- Bin counting (record # of occurrences)

25	English	Chinese	German	French	Spanish
male	5	2	3	1	0
female	6	3	2	2	1

- Discrete random variables, e.g.
 - English, Chinese, German, French, ...
 - Male, Female
- Bin counting (record # of occurrences)

25	English	Chinese	German	French	Spanish
male	0.2	0.08	0.12	0.04	0
female	0.24	0.12	0.08	0.08	0.04

- Discrete random variables, e.g.
 - English, Chinese, German, French, ...
 - Male, Female
- Bin counting (record # of occurrences)

25	English	Chinese	German	French	Spanish
male	0.2	0.08	0.12	0.04	Ο
female	0.24	0.12	0.08	0.08	0.04

- Discrete random variables, e.g.
 - English, Chinese, German, French, ...
 - Male, Female not enough data
- Bin counting (record # of occurrences)

25	English	Chinese	German	French	Spanish
male	0.2	0.08	0.12	0.04	0
female	0.24	0.12	0.08	0.08	0.04

Curse of dimensionality (lite)

- Discrete random variables, e.g.
 - English, Chinese, German, French, ...
 - Male, Female
 - ZIP code
 - Day of the week
 - Operating system

#bins grows exponentially

Curse of dimensionality (lite)

- Discrete random variables, e.g.
 - English, Chinese, German, French, ...
 - Male, Female
 - ZIP code
 - Day of the week
 - Operating system

• ..

- Continuous random variables
 - Income
 - Bandwidth
 - Time

need many bins per dimension

- Continuous domain = infinite number of bins
- Curse of dimensionality
 - 10 bins on [0, 1] is probably good
 - 10¹⁰ bins on [0, 1]¹⁰ requires high accuracy in estimate: probability mass per cell also decreases by 10¹⁰ Carnegie Mellon University

What is happening?

Hoeffding's theorem

$$\Pr\left\{ \left| \mathbf{E}[x] - \frac{1}{m} \sum_{i=1}^{m} x_i \right| > \epsilon \right\} \le 2e^{-2m\epsilon^2}$$

For any average of [0,1] iid random variables.

- Bin counting
 - Random variables x_i are events in bins
 - Apply Hoeffding's theorem to each bin
 - Take the union bound over all bins to guarantee that all estimates converge

Hoeffding's theorem

$$\Pr\left\{\left|\mathbf{E}[x] - \frac{1}{m}\sum_{i=1}^{m} x_i\right| > \epsilon\right\} \le 2e^{-2m\epsilon^2}$$

 Applying the union bound and Hoeffding
 Pr (sup |p̂(a) - p(a)| ≥ ε) ≤ ∑ Pr (|p̂(a) - p(a)| ≥ ε)
 ≤2|A| exp (-2mε²)
 Solving for error probability good news

$$\frac{\delta}{2|A|} \le \exp(-m\epsilon^2) \Longrightarrow \epsilon \le \sqrt{\frac{\log 2|A| - \log \delta}{2m}}$$
Carnegie Mellon University

Hoeffding's theorem

$$\Pr\left\{\left|\mathbf{E}[x] - \frac{1}{m}\sum_{i=1}^{m} x_i\right| > \epsilon\right\} \le 2e^{-2m\epsilon^2}$$

• Applying the union bound and Hoeffding $\Pr\left(\sup_{a \in A} |\hat{p}(a) - p(a)| \ge \epsilon\right) \le \sum_{a \in A} \Pr\left(|\hat{p}(a) - p(a)| \ge \epsilon\right)$ $\le 2|A| \exp\left(-2r\right) \text{ but not good enough}$ • Solving for error probability $\frac{\delta}{2|A|} \le \exp(-m\epsilon^2) \Longrightarrow \epsilon \le \sqrt{\frac{\log 2|A| - \log \delta}{2m}}$

Hoeffding's theorem

$$\Pr\left\{ \begin{vmatrix} \mathbf{E}[x] - \frac{1}{m} \sum_{i=1}^{m} x_i \\ i = 1 \end{vmatrix} > \epsilon \right\} \le 2e^{-2m\epsilon^2}$$

bins not
independent
$$\Pr\left(\sup_{a \in A} |\hat{p}(a) - p(a)| \ge \epsilon \right) \le \sum_{a \in A} \Pr\left(|\hat{p}(a) - p(a)| \ge \epsilon \right)$$

• Solving for error probability

$$\frac{\delta}{2|A|} \le \exp(-m\epsilon^2) \Longrightarrow \epsilon \le \sqrt{\frac{\log 2|A| - \log \delta}{2m}}$$
Carnegie Mellon University

enough

 $\leq 2|A|\exp(-2r)$ but not good

Parzen Windows

Naive approach
 Use empirical density (delta distributions)

$$p_{\rm emp}(x) = \frac{1}{m} \sum_{i=1}^m \delta_{x_i}(x)$$

- This breaks if we see slightly different instances
- Kernel density estimate
 Smear out empirical density with a nonnegative smoothing kernel k_x(x') satisfying

$$\int_{\mathcal{X}} k_x(x') dx' = 1 \text{ for all } x$$

Parzen Windows

• Density estimate

$$p_{\text{emp}}(x) = \frac{1}{m} \sum_{i=1}^{m} \delta_{x_i}(x)$$
$$\hat{p}(x) = \frac{1}{m} \sum_{i=1}^{m} k_{x_i}(x)$$

Smoothing kernels

Gaussian Kernel with width $\sigma = 1$

Gaussian Kernel with width $\sigma = 1$

Laplacian Kernel with width $\lambda = 1$

Laplacian Kernel with width $\lambda = 10$

Size matters

Size matters Shape matters mostly in theory

• Kernel width
$$k_{x_i}(x) = r^{-d}h\left(\frac{x-x_i}{r}\right)$$

- Too narrow overfits
- Too wide smoothes with constant distribution
- How to choose?

MAGIC Etch A Sketch SCREEN

Model Selection

laten zen tell

PART CHENNER OF TRUE."

emare devoare vériené de telo ocalo al defendo ofoa

Maximum Likelihood

- Need to measure how well we do
- For density estimation we care about

$$\Pr\left\{X\right\} = \prod_{i=1}^{m} p(x_i)$$

- Finding a that maximizes P(X) will peak at all data points since x_i explains x_i best ...
- Maxima are delta functions on data.
- Overfitting!

Overfitting

Likelihood on training set is much higher than typical.

Underfitting

Likelihood on training set is very similar to typical one.

Too simple.

- Validation
 - Use some of the data to estimate density.
 - Use other part to evaluate how well it works
 - Pick the parameter that works best

$$\mathcal{L}(X'|X) := \frac{1}{n'} \sum_{i=1}^{n'} \log \hat{p}(x'_i)$$

- Learning Theory
 - Use data to build model
 - Measure complexity and use this to bound

$$\frac{1}{n} \sum_{i=1}^{n} \log \hat{p}(x_i) - \mathbf{E}_x \left[\log \hat{p}(x) \right]$$

- Validation
 - Use some of the data to estimate density.
 - Use other part to evaluate how well it works
 - Pick the parameter that works best

easy

$$\mathcal{L}(X'|X) := \frac{1}{n'} \sum_{i=1}^{n'} \log \hat{p}(x'_i)$$

- Learning Theory
 - Use data to build model
 - Measure complexity and use this to bound

$$\frac{1}{n} \sum_{i=1}^{n} \log \hat{p}(x_i) - \mathbf{E}_x \left[\log \hat{p}(x) \right]$$

- Validation
 - Use some of the data to estimate density.
 - Use other part to evaluate how well it works
 - Pick the parameter that works best $\mathcal{L}(X'|X) := \frac{1}{n'} \sum_{i=1}^{n'} \log \hat{p}(x'_i)$

easy

- Learning Theory
 - Use data to build model
 - Measure complexity and use this to bound

$$\frac{1}{n} \sum_{i=1}^{n} \log \hat{p}(x_i) - \mathbf{E}_x \left[\log \hat{p}(x) \right]$$

Carnegie Mellon University

wasteful

- Validation
 - Use some of the data to estimate density.
 - Use other part to evaluate how well it works
 - Pick the parameter that works best $\mathcal{L}(X'|X) := \frac{1}{n'} \sum_{i=1}^{n'} \log \hat{p}(x'_i)$

easy

- Learning Theory
 - Use data to build model
 - Measure complexity and use this to bound

difficult $-\frac{1}{n}\sum_{i=1}^{n}\log \hat{p}(x_i) - \mathbf{E}_x \left[\log \hat{p}(x)\right]$

Carnegie Mellon University

wasteful

- Leave-one-out Crossvalidation
 - Use almost all data to estimate density.
 - Use single instance to estimate how well it works

$$\log p(x_i | X \setminus x_i) = \log \frac{1}{n-1} \sum_{j \neq i} k(x_i, x_j)$$

- This has huge variance
- Average over estimates for all training data
- Pick the parameter that works best
- Simple implementation

$$\frac{1}{n} \sum_{i=1}^{n} \log \left[\frac{n}{n-1} p(x_i) - \frac{1}{n-1} k(x_i, x_i) \right] \text{ where } p(x) = \frac{1}{n} \sum_{i=1}^{n} k(x_i, x)$$

Leave-one out estimate

Optimal estimate

Laplacian Kernel with width optimal λ

- k-fold Crossvalidation
 - Partition data into k blocks (typically 10)
 - Use all but one block to compute estimate
 - Use remaining block as validation set
 - Average over all validation estimates

$$\frac{1}{k} \sum_{i=1}^{k} l(p(X_i | X \setminus X_i))$$

- Almost unbiased (e.g. via Luntz and Brailovski, 1969) (error is for (k-1)/k sized set)
- Pick best parameter (why must we not check too many?)

MAGIC Etch A Sketch SCREEN

Walson Nadaraya Estimator

Geoff Watson

Giana constan Gial 131 GANGIGOTAS

emase divoand vérilité in thic coalg al neeroo angat Brao meny sidil

From density estimation to classification

- Binary classification
 - Estimate p(x|y=1) and p(x|y=-1)
 - Use Bayes rule

$$p(y|x) = \frac{p(x|y)p(y)}{p(x)} = \frac{\frac{1}{m_y} \sum_{y_i=y} k(x_i, x) \cdot \frac{m_y}{m}}{\frac{1}{m} \sum_i k(x_i, x)}$$

Decision boundary

$$p(y = 1|x) - p(y = -1|x) = \frac{\sum_{j} y_{j} k(x_{j}, x)}{\sum_{i} k(x_{i}, x)} = \sum_{j} y_{j} \frac{k(x_{j}, x)}{\sum_{i} k(x_{i}, x)}$$

local weights

Watson-Nadaraya Classifier

Watson-Nadaraya Classifier

Watson Nadaraya Regression

• Binary classification

$$p(y = 1|x) - p(y = -1|x) = \frac{\sum_{j} y_{j} k(x_{j}, x)}{\sum_{i} k(x_{i}, x)} = \sum_{j} y_{j} \frac{k(x_{j}, x)}{\sum_{i} k(x_{i}, x)}$$

Regression - use same weighted expansion

$$\hat{y}(x) = \sum_{j} y_{j} \frac{k(x_{j}, x)}{\sum_{i} k(x_{i}, x)}$$
labels
local
weights

MAGIC Etch A Sketch SCREEN

silverman's Rule

Bernard Silverman

laten zen tell

121 GEANGIG OF TOK

emage divoand vâriurd in this graald gi neemdo nidari Haad menne sign

Silverman's rule

- Chicken and egg problem
 - Want wide kernel for low density region
 - Want narrow kernel where we have much data
 - Need density estimate to estimate density
- Simple hack
 Use average distance from k nearest neighbors

$$r_i = \frac{r}{k} \sum_{x \in \text{NN}(x_i, k)} \|x_i - x\|$$

• Nonuniform bandwidth for smoother.

MAGIC Etch A Sketch SCREEN

latenzenten Luin LAND TORCANONG OF TORC."

emazie depoare vérileé in percordado al meendo aloan Erado mpine elon

Nearest Neighbors

- Table lookup
 - For previously seen instance remember label
- Nearest neighbor
 - Pick label of most similar neighbor
 - Slight improvement use k-nearest neighbors
 - For regression average
 - Really useful baseline!
 - Easy to implement for small amounts of data.

Relation to Watson Nadaraya

• Watson Nadaraya estimator

$$\hat{y}(x) = \sum_{j} y_j \frac{k(x_i, x)}{\sum_{i} k(x_i, x)} = \sum_{j} y_j w_j(x)$$

• Nearest neighbor estimator

$$\hat{y}(x) = \sum_{j} y_j \frac{k(x_j, x)}{\sum_{i} k(x_i, x)} = \sum_{j} y_j w_j(x)$$

Neighborhood function is hard threshold.

1-Nearest Neighbor

4-Nearest Neighbors

4-Nearest Neighbors Sign

If we get more data

- 1 Nearest Neighbor
 - Converges to perfect solution if separation
 - Twice the minimal error rate 2p(1-p) for noisy problems
- k-Nearest Neighbor
 - Converges to perfect solution if separation (but needs more data)
 - Converges to minimal error min(p,1-p) for noisy problems (use increasing k)
 Carnegie Mellon University

1 Nearest Neighbor

- For given point x take \in neighborhood N with probability mass > d/n
- Probability that at least one point of n is in this neighborhood is 1-e^{-d} so we can make this small
- Assume that probability mass doesn't change much in neighborhood
- Probability that labels of query and point do not match is 2p(1-p) (up to some approximation error in neighborhood)

k Nearest Neighbor

- For given point x take ϵ neighborhood N with probability mass > dk/n
- Small probability that we don't have at least k points in neighborhood.
- Assume that probability mass doesn't change much in neighborhood
- Bound probability that majority of points doesn't match majority for p (e.g. via Hoeffding's theorem for tail). Show that it vanishes
- Error is therefore min(p, 1-p), i.e. Bayes optimal error.

Fast lookup

- KD trees (Moore et al.)
 - Partition space (one dimension at a time)
 - Only search for subset that contains point
- Cover trees (Beygelzimer et al.)
 - Hierarchically partition space with distance guarantees
 - No need for nonoverlapping sets
 - Bounded number of paths to follow (logarithmic time lookup)

Summary

- Parzen Windows Kernels, algorithm
- Model selection
 Crossvalidation, leave one out, bias variance
- Watson-Nadaraya estimator
 Classification, regression, novelty detection
- Nearest Neighbor estimator
 Limit case of Parzen Windows

Further Reading

- Cover tree homepage (paper & code) <u>http://hunch.net/~jl/projects/cover_tree/cover_tree.html</u>
- <u>http://doi.acm.org/10.1145/361002.361007</u> (kd trees, original paper)
- <u>http://www.autonlab.org/autonweb/14665/version/2/part/5/data/moore-tutorial.pdf</u> (Andrew Moore's tutorial from his PhD thesis)
- Nadaraya's regression estimator (1964) <u>http://dx.doi.org/10.1137/1109020</u>
- Watson's regression estimator (1964) <u>http://www.jstor.org/stable/25049340</u>
- Watson-Nadaraya regression package in R <u>http://cran.r-project.org/web/packages/np/index.html</u>
- Stone's k-NN regression consistency proof <u>http://projecteuclid.org/euclid.aos/1176343886</u>
- Cover and Hart's k-NN classification consistency proof <u>http://www-isl.stanford.edu/people/cover/papers/translT/0021cove.pdf</u>
- Tom Cover's rate analysis for k-NN <u>Rates of Convergence for Nearest Neighbor Procedures.</u>
- Sanjoy Dasgupta's analysis for k-NN estimation with selective sampling <u>http://cseweb.ucsd.edu/~dasgupta/papers/nnactive.pdf</u>
- Multiedit & Condense (Dasarathy, Sanchez, Townsend) <u>http://cgm.cs.mcgill.ca/~godfried/teaching/pr-notes/dasarathy.pdf</u>
- Geometric approximation via core sets <u>http://valis.cs.uiuc.edu/~sariel/papers/04/survey/survey.pdf</u>