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• Parzen Windows
Kernels, algorithm

• Model selection
Crossvalidation, leave one out, bias variance

• Watson-Nadaraya estimator
Classification, regression, novelty detection

• Nearest Neighbor estimator
Limit case of Parzen Windows
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Density Estimation
• Observe some data xi

• Want to estimate p(x)
• Find unusual observations (e.g. security)
• Find typical observations (e.g. prototypes)
• Classifier via Bayes Rule

• Need tool for computing p(x) easily

p(y|x) = p(x, y)

p(x)
=

p(x|y)p(y)P
y0 p(x|y0)p(y0)



Bin Counting
• Discrete random variables, e.g.

• English, Chinese, German, French, ...
• Male, Female

• Bin counting (record # of occurrences)

25 English Chinese German French Spanish

male 5 2 3 1 0

female 6 3 2 2 1
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female 0.24 0.12 0.08 0.08 0.04



Bin Counting
• Discrete random variables, e.g.

• English, Chinese, German, French, ...
• Male, Female

• Bin counting (record # of occurrences)

25 English Chinese German French Spanish

male 0.2 0.08 0.12 0.04 0

female 0.24 0.12 0.08 0.08 0.04



Bin Counting
• Discrete random variables, e.g.

• English, Chinese, German, French, ...
• Male, Female

• Bin counting (record # of occurrences)

25 English Chinese German French Spanish

male 0.2 0.08 0.12 0.04 0

female 0.24 0.12 0.08 0.08 0.04

not enough data



• Discrete random variables, e.g.
• English, Chinese, German, French, ...
• Male, Female
• ZIP code
• Day of the week
• Operating system
• ...

• Continuous random variables
• Income
• Bandwidth
• Time

Curse of dimensionality (lite)

#bins grows
exponentially

need many bins 
per dimension
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Density Estimation

• Continuous domain = infinite number of bins
• Curse of dimensionality

• 10 bins on [0, 1] is probably good
• 1010 bins on [0, 1]10 requires high accuracy in estimate:

probability mass per cell also decreases by 1010.
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Bin Counting

can’t we just go and 
smooth this out?



• Hoeffding’s theorem

For any average of [0,1] iid random variables.
• Bin counting

• Random variables xi are events in bins
• Apply Hoeffding’s theorem to each bin
• Take the union bound over all bins to 

guarantee that all estimates converge

What is happening?
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• Hoeffding’s theorem

• Applying the union bound and Hoeffding

• Solving for error probability

Density Estimation
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• Hoeffding’s theorem

• Applying the union bound and Hoeffding

• Solving for error probability

Density Estimation
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Bin Counting

can’t we just go and 
smooth this out?



Parzen Windows
• Naive approach

Use empirical density (delta distributions)

• This breaks if we see slightly different instances
• Kernel density estimate

Smear out empirical density with a nonnegative 
smoothing kernel kx(x’) satisfying

pemp(x) =
1

m

mX

i=1

�

xi(x)

Z

X
k

x
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0
)dx

0
= 1 for all x



• Density estimate

• Smoothing kernels

Parzen Windows
pemp(x) =

1

m

mX

i=1

�

xi(x)

p̂(x) =
1

m

mX

i=1

k

xi(x)
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Fig. 2.5. Left: a naive density estimate given a sample of the weight of 18 persons.
Right: the underlying weight distribution.
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Fig. 2.6. Parzen windows density estimate associated with the 18 observations of
the Figure above. From left to right: Gaussian kernel density estimate with kernel
of width 0.3, 1, 3, and 10 respectively.
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Fig. 2.7. Some kernels for Parzen windows density estimation. From left to right:
Gaussian kernel, Laplace kernel, Epanechikov kernel, and uniform density.

Moreover, there is the issue of choosing a suitable kernel function. The
fact that a large variety of them exists might suggest that this is a crucial
issue. In practice, this turns out not to be the case and instead, the choice
of a suitable kernel width is much more vital for good estimates. In other
words, size matters, shape is secondary.

The problem is that we do not know which kernel width is best for the
data. If the problem is one-dimensional, we might hope to be able to eyeball
the size of r. Obviously, in higher dimensions this approach fails. A second
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Smoothing



Smoothing

dist = norm(X - x * ones(1,m),'columns');
p = (1/m) * ((2 * pi)**(-d/2)) * sum(exp(-0.5 * dist.**2))



Smoothing



Smoothing



Size matters

2.2 Parzen Windows 55
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Size matters
Shape matters mostly in theory

• Kernel width
• Too narrow overfits 
• Too wide smoothes with constant distribution

• How to choose?
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Moreover, there is the issue of choosing a suitable kernel function. The
fact that a large variety of them exists might suggest that this is a crucial
issue. In practice, this turns out not to be the case and instead, the choice
of a suitable kernel width is much more vital for good estimates. In other
words, size matters, shape is secondary.

The problem is that we do not know which kernel width is best for the
data. If the problem is one-dimensional, we might hope to be able to eyeball
the size of r. Obviously, in higher dimensions this approach fails. A second
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Model 
Selection



Maximum Likelihood
• Need to measure how well we do
• For density estimation we care about

• Finding a that maximizes P(X) will peak at
all data points since xi explains xi best ...

• Maxima are delta functions on data.
• Overfitting! 

Pr {X} =
mY

i=1

p(xi)
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Moreover, there is the issue of choosing a suitable kernel function. The
fact that a large variety of them exists might suggest that this is a crucial
issue. In practice, this turns out not to be the case and instead, the choice
of a suitable kernel width is much more vital for good estimates. In other
words, size matters, shape is secondary.

The problem is that we do not know which kernel width is best for the
data. If the problem is one-dimensional, we might hope to be able to eyeball
the size of r. Obviously, in higher dimensions this approach fails. A second

Overfitting

Likelihood on
training set is
much higher
than typical.



2.2 Parzen Windows 55

40 50 60 70 80 90 100 110
0.00

0.05

0.10

40 50 60 70 80 90 100 110
0.00

0.01

0.02

0.03

0.04

0.05

Fig. 2.5. Left: a naive density estimate given a sample of the weight of 18 persons.
Right: the underlying weight distribution.

40 60 80 100
0.000

0.025

0.050

40 60 80 100
0.000

0.025

0.050

40 60 80 100
0.000

0.025

0.050

40 60 80 100
0.000

0.025

0.050

Fig. 2.6. Parzen windows density estimate associated with the 18 observations of
the Figure above. From left to right: Gaussian kernel density estimate with kernel
of width 0.3, 1, 3, and 10 respectively.

-2 -1 0 1 2
0.0

0.5

1.0

-2 -1 0 1 2
0.0

0.5

1.0

-2 -1 0 1 2
0.0

0.5

1.0

-2 -1 0 1 2
0.0

0.5

1.0

Fig. 2.7. Some kernels for Parzen windows density estimation. From left to right:
Gaussian kernel, Laplace kernel, Epanechikov kernel, and uniform density.

Moreover, there is the issue of choosing a suitable kernel function. The
fact that a large variety of them exists might suggest that this is a crucial
issue. In practice, this turns out not to be the case and instead, the choice
of a suitable kernel width is much more vital for good estimates. In other
words, size matters, shape is secondary.
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Fig. 2.7. Some kernels for Parzen windows density estimation. From left to right:
Gaussian kernel, Laplace kernel, Epanechikov kernel, and uniform density.

Moreover, there is the issue of choosing a suitable kernel function. The
fact that a large variety of them exists might suggest that this is a crucial
issue. In practice, this turns out not to be the case and instead, the choice
of a suitable kernel width is much more vital for good estimates. In other
words, size matters, shape is secondary.

The problem is that we do not know which kernel width is best for the
data. If the problem is one-dimensional, we might hope to be able to eyeball
the size of r. Obviously, in higher dimensions this approach fails. A second

Underfitting

Likelihood on
training set is
very similar to 
typical one.

Too simple.



Model Selection
• Validation

• Use some of the data to estimate density.
• Use other part to evaluate how well it works
• Pick the parameter that works best

• Learning Theory
• Use data to build model
• Measure complexity and use this to bound
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Model Selection
• Leave-one-out Crossvalidation

• Use almost all data to estimate density.
• Use single instance to estimate how well it works

• This has huge variance
• Average over estimates for all training data
• Pick the parameter that works best

• Simple implementation

 

log p(xi|X\xi) = log

1
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Leave-one out estimate



Optimal estimate



Model Selection
• k-fold Crossvalidation

• Partition data into k blocks (typically 10)
• Use all but one block to compute estimate
• Use remaining block as validation set
• Average over all validation estimates

• Almost unbiased (e.g. via Luntz and Brailovski, 1969)
(error is for (k-1)/k sized set)

• Pick best parameter (why must we not check too many?)

1

k

kX

i=1

l(p(Xi|X\Xi))



Watson 
Nadaraya 
Estimator

Geoff Watson



From density estimation to classification

• Binary classification
• Estimate
• Use Bayes rule

• Decision boundary 

p(x|y = 1) and p(x|y = �1)

p(y|x) = p(x|y)p(y)
p(x)

=
1

my

P
yi=y k(xi, x) · my

m
1
m

P
i k(xi, x)

local weights

p(y = 1|x)� p(y = �1|x) =
P

j yjk(xj , x)P
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Watson-Nadaraya Classifier



Watson-Nadaraya Classifier

dist = norm(X - x * ones(1,m),'columns');
f = sum(y .* exp(-0.5 * dist.**2));



Watson Nadaraya Regression
• Binary classification

• Regression - use same weighted expansion

labels local 
weights

p(y = 1|x)� p(y = �1|x) =
P
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Watson-Nadaraya regression estimate



Silverman’s
Rule

Bernard Silverman



Silverman’s rule
• Chicken and egg problem

• Want wide kernel for low density region
• Want narrow kernel where we have much data
• Need density estimate to estimate density

• Simple hack
Use average distance from k nearest neighbors

• Nonuniform bandwidth for smoother.

r
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Densitytrue density



non adaptive estimate



adaptive estimate



distance distribution



Nearest
Neighbor



Nearest Neighbors
• Table lookup

For previously seen instance remember label
• Nearest neighbor

• Pick label of most similar neighbor
• Slight improvement - use k-nearest neighbors
• For regression average
• Really useful baseline!
• Easy to implement for

small amounts of data.



Relation to Watson Nadaraya
• Watson Nadaraya estimator

• Nearest neighbor estimator

Neighborhood function is hard threshold.
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1-Nearest Neighbor



4-Nearest Neighbors



4-Nearest Neighbors Sign



If we get more data

• 1 Nearest Neighbor
• Converges to perfect solution if separation
• Twice the minimal error rate 2p(1-p) for noisy problems

• k-Nearest Neighbor
• Converges to perfect solution if separation (but needs more data)
• Converges to minimal error min(p,1-p) for noisy problems

(use increasing k)



1 Nearest Neighbor

• For given point x take ϵ neighborhood N with probability mass > d/n
• Probability that at least one point of n is in this neighborhood is 1-e-d 

so we can make this small
• Assume that probability mass doesn’t change much in neighborhood
• Probability that labels of query and point do not match is 2p(1-p)  

(up to some approximation error in neighborhood)



k Nearest Neighbor

• For given point x take ϵ neighborhood N with probability mass > dk/n
• Small probability that we don’t have at least k points in neighborhood.
• Assume that probability mass doesn’t change much in neighborhood
• Bound probability that majority of points doesn’t match majority for p

(e.g. via Hoeffding’s theorem for tail). Show that it vanishes
• Error is therefore min(p, 1-p), i.e. Bayes optimal error.



Fast lookup
• KD trees (Moore et al.)

• Partition space (one dimension at a time)
• Only search for subset that contains point

• Cover trees (Beygelzimer et al.)
• Hierarchically partition space with distance 

guarantees
• No need for nonoverlapping sets
• Bounded number of paths to follow 

(logarithmic time lookup)



• Parzen Windows
Kernels, algorithm

• Model selection
Crossvalidation, leave one out, bias variance

• Watson-Nadaraya estimator
Classification, regression, novelty detection

• Nearest Neighbor estimator
Limit case of Parzen Windows

Summary



Further Reading
• Cover tree homepage (paper & code)

http://hunch.net/~jl/projects/cover_tree/cover_tree.html
• http://doi.acm.org/10.1145/361002.361007 (kd trees, original paper)
• http://www.autonlab.org/autonweb/14665/version/2/part/5/data/moore-tutorial.pdf

(Andrew Moore’s tutorial from his PhD thesis)
• Nadaraya’s regression estimator (1964)

http://dx.doi.org/10.1137/1109020
• Watson’s regression estimator (1964)

http://www.jstor.org/stable/25049340
• Watson-Nadaraya regression package in R

http://cran.r-project.org/web/packages/np/index.html
• Stone’s k-NN regression consistency proof

http://projecteuclid.org/euclid.aos/1176343886
• Cover and Hart’s k-NN classification consistency proof

http://www-isl.stanford.edu/people/cover/papers/transIT/0021cove.pdf
• Tom Cover’s rate analysis for k-NN

Rates of Convergence for Nearest Neighbor Procedures.
• Sanjoy Dasgupta’s analysis for k-NN estimation with selective sampling

http://cseweb.ucsd.edu/~dasgupta/papers/nnactive.pdf
• Multiedit & Condense (Dasarathy, Sanchez, Townsend)

http://cgm.cs.mcgill.ca/~godfried/teaching/pr-notes/dasarathy.pdf
• Geometric approximation via core sets

http://valis.cs.uiuc.edu/~sariel/papers/04/survey/survey.pdf
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