Scalable Machine Learning

6. Kernels

Alex Smola
Yahoo! Research and ANU

hitp://alex.smola.org/teaching/berkeley2012
Stat 260 SP 12

http://alex.smola.org/teaching/berkeley2012
http://alex.smola.org/teaching/berkeley2012

6. Kernels

Learning with Kernels

Support Vector Machines, Reqularization,

Optimization, and Beyond

Bernhard Scholkopf and Alexande

*

ADVANCES IN
LARGE MARGIN
CLASSIFIERS

D BY

ALEXANDER J. SMOLA
PETER L, BARTLETT

BERNHARD SCHOLKOPF
DALE SCHUURMANS

Advances in Kernel Methods
Support Vector Learning

e Kernels

e Hilbert Spaces

* Regularization theory

* Kernels on strings, sets, graphs, images
» Efficient algorithms

* Dual space (using «)

* Reduced dimensionality (low rank expanions)

* Function space (using fast Kx)

* Primal space (hashing & random kitchen sinks)
e Structured estimation

e Sequence annotation and segmentation

e Ranking and graph matching

 Ramp loss, consistency, and invariances

Function classes

Functional Analysis Basics

Microsoft’ _ Q
VisualBasic:

for Applications

Functional Analysis 101

* Banach space B

* Normed vector space

* Linear functions on B induce bilinear forms
flaz +b) = af(x) + f(b) and [af + g](z) = af(z) + g(z)
Express as inner products

flz) =:(f)
e Examples

* |1 (absolutely summable series)

* |« (bounded series)

* |2 (square summable series)

Functional Analysis 101

 Dual Norm

|vl[;== sup (u,v)
wil|uf <1

Functional Analysis 101

* Operator norm

A:B — B hence ||A]|= sup (v, Au)

ueB,velB’

* For Euclidean space this is the largest singular value
of the matrix.

e Other norms
* Trace norm - sum over singular values

* Frobenius norm - sum over squared singular values

|M |l gyne = tr M for M = 0 and [M|y, = [or MM]

Duality 101

* Fenchel-Legendre dual
f*(v) = sup (u,v) — f(u)

u

e Connection to dual norm via indicator function

lv]| = sup (u,v) = sup (u,v) — &y, (u)
s |ul| <1 u

e Dual norm via dual of characteristic function
on unit ball

* Convexity follows via sup over linear functions

e Useful, e.g. for general SYM problems

Translation table

vector
matrix
vector space
norm
eigenvalue
eigenvector
transpose
symmetric matrix

finite dimensional

function
operator
Banach Space (or Hilbert Space)
norm
eigenvalue
eigenfunction
adjoint
self-adjoint operator

infinite dimensional

*Terms and conditions apply. Check the theorems.

Solving XOR

(:Ela L2, 5131332)

e XOR not linearly separable
* Mapping into 3 dimensions makes it easily solvable

Kernels vs. Features

Problems

® Need to be an expert in the domain (e.g. Chinese
characters).
® Features may not be robust (e.g. postman drops letter
in dirt).
® Can be expensive to compute.
Solution

® Use shotgun approach.

® Compute many features and hope a good one is
among them.

® Do this efficiently.

Feature Space Mapping

* Naive Nonlinearization Strategy

e Express data x in terms of features ¢(x)
e Solve problem in feature space
* Requires explicit feature computation
e Kernel trick
* Write algorithm in terms of inner products
* Replace (z,2) by k(z,2") := (¢(x), p())
* Works well for dimension-insensitive methods
* Kernel matrix K is positive semidefinite

Quadratic Kernel

Quadratic Features in R?
P(x) = (a:l, V2x 129, :1:2)
Dot Product

Insight

Trick works for any polynomials of order d via (z, /).
: N 2 4

Computational Efficiency

Problem

® Extracting features can sometimes be very costly.

® Example: second order features in 1000 dimensions.
This leads to 5005 numbers. For higher order polyno-
mial features much worse.

Solution

Don’t compute the features, try to compute dot products
implicitly. For some features this works . ..

Definition
A kernel function & : X x X — R is a symmetric function
in its arguments for which the following property holds

k(x,2") = (O(x), d(2")) for some feature map ©.
If k(x,2") is much cheaper to compute than ¢(z) ...

Polynomial Kernels

Idea
® We want to extend k(z, ') = (z, 2')* to
k(x,2') = ((x,2') + c)d where c > 0 and d € N.

® Prove that such a kernel corresponds to a dot product.

Proof strategy
Simple and straightforward: compute the explicit sum
given by the kernel, i.e.

i) = (i) 4 ' = Y ()

Individual terms (({z, '))" are dot products for some @;(z).

Kernel Conditions

Computability
We have to be able to compute k(x, 2’) efficiently (much
cheaper than dot products themselves).

“Nice and Useful” Functions
The features themselves have to be useful for the learn-
ing problem at hand. Quite often this means smooth
functions.

Symmetry
Obviously k(x,2") = k(2', x) due to the symmetry of the
dot product (d(x), (")) = (P(2'), P(x)).

Dot Product in Feature Space
Is there always a ¢ such that k really is a dot product?

Mercer’s Theorem

The Theorem
For any symmetric function £ : X x X — R which is
square integrable in X x X and which satisfies

/ k(xz,2)f(x)f(2"dxdz" > 0forall f € Ly(X)

XxX

there exist ¢, : X — R and numbers \; > 0 where
k(x,2') = Z i (x)o;(2) for all z, 2" € X.

Interpretation
Double integral is the continuous version of a vector-
matrix-vector multiplication. For positive semidefinite
matrices we have

Properties

Distance in Feature Space
Distance between points in feature space via

d(z,2")” =||®(x) — (2")|7
=(®(z), P(x)) — 2(P(x), D(z)) + (P(a'), P(2))
=k(x,z) + k(2',2") — 2k(z, x)
Kernel Matrix

To compare observations we compute dot products, so
we study the matrix K given by

Kij = (®(x;), P(x)) = k(x;,)

where z; are the training patterns.

Similarity Measure
The entries K; tell us the overlap between ¢(x;) and
d(z,), so k(x;, x;) is a similarity measure.

Properties

K is Positive Semidefinite
Claim: o' Ka > 0 for all « € R™ and all kernel matrices
K € R™™_ Proof:

Z Qo = Z o (P O(x;))
<Zoz@ T;), Z (:1:])> ZO@@(%@)

J

Kernel Expansion
If w is given by a linear combination of ¢(x;) we get

— <Z @i®(xi),®(x)> — Z&zk<xzyﬂj>

A Counterexample

A Candidate for a Kernel

N1 ifflz—2| <1
k(z,2) = { 0 otherwise

This is symmetric and gives us some information about

the proximity of points, yet it is not a proper kernel . ..
Kernel Matrix

We use three points, 1 = 1,29 = 2, 23 = 3 and compute

the resulting “kernelmatrix” K. This yields

1 10
K=1|111| and eigenvalues (v2—1)"!,1 and (1—v2).
011

as eigensystem. Hence £ is not a kernel.

Examples

Examples of kernels k(z, 2')

Linear (x,)

Laplacian RBF exp (=AMl — 2'||)

Gaussian RBF exp (—A|lz — 2'||%)
Polynomial ((x,2") + c))d c>0,deN
B-Spline Bopii(x — ')

Cond. Expectation E_.[p(z|c)p(2'|c)]

Simple trick for checking Mercer’s condition
Compute the Fourier transform of the kernel and check
that it is nonnegative.

Linear Kernel

K(x,y) for x=1

Laplacian Kernel

Gaussian Kernel

Polynomial of order 3

B3 Spline Kernel

Mini Summary

Features

® Prior knowledge, expert knowledge

® Shotgun approach (polynomial features)
® Kernel trick k(z, 2") = (¢(z), (')

® Mercer’s theorem

Applications

® Kernel Perceptron
® Nonlinear algorithm automatically by query-replace

Examples of Kernels

® (Gaussian RBF
® Polynomial kernels

Regularization

INVERSION REQUE
| Rmumﬁ'l'vifnn
FAUSEAWANTON "
FROM THE MODEL SP AGE
CAN annnz smumms

Problems with Kernels

Myth
Support Vectors work because they map data into a
high-dimensional feature space.
And your statistician (Bellmann) told you ...
The higher the dimensionality, the more data you need
Example: Density Estimation
Assuming data in [0, 1]™, 1000 observations in |0, 1| give
you on average 100 instances per bin (using binsize 0.1™)
but only - instances in [0, 1]°.
Worrying Fact
Some kernels map into an infinite-dimensional space,
e.g., k(z, ') = exp(—5= ||z — 2'||?)
Encouraging Fact
SVMs work well in practice ...

Solving the Mystery

The Truth is in the Margins
Maybe the maximum margin requirement is what saves
us when finding a classifier, i.e., we minimize ||w||*.
Risk Functional
Rewrite the optimization problems in a unified form

m

Rreg[f] — Z C(xia Yi, f('TZ)) + Q[f]
1=1
c(x,y, f(x)) is aloss function and 2| f] is a regularizer.

® Q[f] = 5|lwl|* for linear functions.
® For classification c(z,y, f(z)) = max(0,1 — y f(x)).
® For regression c(z,y, f(x)) = max(0, |y — f(x)| — €).

Typical SVM loss

\/\ /

Soft Margin Loss e-insensitive Loss

Soft Margin Loss

Original Optimization Problem

w,§
subjectto y;f(x;) >1—-¢&and§ >0foralll <i<m

T T -
minimize - C ;
Sl + €3 e

Regularization Functional

A . w—
minimize §HwH + Zl max(0, 1 — y; f(z;))
® For fixed f, clearly & > max(0,1 — y; f(x;)).
® For £ > max(0,1 — y;f(x;)) we can decrease it such
that the bound is matched and improve the objective
function.

® Both methods are equivalent.

Why Regularization?

What we really wanted ...
Find some f(z) such that the expected loss
Elc(x,y, f(x))] is small.
What we ended up doing ...
Find some f(z) such that the empirical average of the
expected loss Eq,|c(z,y, f(z))] is small.
Eemp[C<ZE, Y, f(x))] — % Z C(in, Yiy f(fljz»
1=1
However, just minimizing the empirical average does not
guarantee anything for the expected loss (overfitting).
Safeguard against overfitting
We need to constrain the class of functions f € F some-
how. Adding 2| f] as a penalty does exactly that.

Some regularization ideas

Small Derivatives
We want to have a function f which is smooth on the
entire domain. In this case we could use

Qlf] = /X 10, f (@) di = (0.f, 0,f).

Small Function Values
If we have no further knowledge about the domain X,
minimizing || f||* might be sensible, i.e.,

Q] = I£IIF = (S, f)-

Splines
Here we want to find f such that both || f||* and ||5%f]|?
are small. Hence we can minimize

QU1 = IFIF + 19:£ 117 = ((f, 021, (f, Oz1))

Regularization

Regularization Operators
We map f into some P f, which is small for desirable f
and large otherwise, and minimize

QUff = IPfII* = (Pf.Pf).

For all previous examples we can find such a P.
Function Expansion for Regularization Operator
Using a linear function expansion of f in terms of some

f:, that is for f(x Z o, f;(x) we can compute

Regularization and Kernels

Regularization for Q[f] = 5||w||?
w=Y a0(z;) = |0l =Y ek,)
0 1)

This looks very similar to (Pf;, Pf;).
Key Idea
So if we could find a P and £ such that

k(xz,2") = (Pk(z,-), Pk, "))

we could show that using a kernel means that we are

minimizing the empirical risk plus a regularization term.
Solution: Greens Functions

A sufficient condition is that k is the Greens Function of

P*P,thatis (P"Pk(x,-), f(-)) = f(x).

One can show that this is necessary and sufficient.

Building Kernels

Kernels from Regularization Operators:
Given an operator P*P, we can find k by solving the self
consistency equation

(Pk(z,-), Pk(z',-)) = k' (x,)(P*P)k(',) = k(z, 2)
and take f to be the span of all k(x, -).
So we can find £ for a given measure of smoothness.

Regularization Operators from Kernels:
Given a kernel k, we can find some P*P for which the
self consistency equation is satisfied.

So we can find a measure of smoothness for a given k.

Spectrum and Kernels

Effective Function Class
Keeping €| f| small means that f(x) cannot take on arbi-

trary function values. Hence we study the function class

go={f|5prrp<ct

\\ /

Example
For [= ZO‘@ r;, x) this implies 104TK& < (C.
’ 2

Kernel Matrlx Coefficients Function Values
- 5 2 - ' i | | |

2

2 4
2 1 | | | |
_ - 0 1 0 1
-1 1 1]

-2]
-2]

-3 - - . . - : - - .

K:

Fourier Regularization

Goal
Find measure of smoothness that depends on the fre-
guency properties of f and not on the position of f.

A Hint: Rewriting || f||* + ||0.f||?
Notation: f(w) is the Fourier transform of f.

IFI2 + 10.F]12 = / (@) + 10, f (z) Pda
. / @) + o fw)Pdw

[P o
/ () dw where p()_1+w2.

Idea :
Generalize to arbitrary p(w), i.e. Q[f]| .= %/ W)l dw

Greens Function

Theorem

For regularization functionals Q| f / ‘f v) dw the
cu

self-consistency condition
(Pk(z,-), Pk(z', ")) = k' (z,)(P*P)k(<',) = k(z, 2')
is satisfied if £ has p(w) as its Fourier transform, i.e.,

bz, 2') = / exp(—i{w, (— 2')))p(w)dw

Consequences

® small p(w) correspond to high penalty (regularization).
® ()| f|is translation invariant, that is Q| f(:)] = Q[f(- — x)].

Examples

2 | - 2

Laplacian Kernel |

k(z,2') = exp(—||lz —2'||) | L |

p(w) o< (1+[|wl]*)™t o AL
Gaussian Kernel o 2
k(z,2") = 030 llz—a’|? | .
p(w) X @_%OQHMW o /\ _ |

Fourier transform of £ shows regularization properties.
The more rapidly p(w) decays, the more high frequencies
are filtered out.

Rules of thumb

® Fourier transform is sufficient to check whether k(x, 2')
satisfies Mercer’s condition: only check if k(w) > 0.

® Example: k(x,2") = sinc(z — 2').
k(w) = x[_xn(w), hence k is a proper kernel.

® Width of kernel often more important than type of kernel
(short range decay properties matter).

® Convenient way of incorporating prior knowledge, e.qg.:
for speech data we could use the autocorrelation func-
tion.

® Sum of derivatives becomes polynomial in Fourier
space.

Polynomial Kernels

Functional Form

k(z,a') = k((z,2"))

Series Expansion
Polynomial kernels admit an expansion in terms of Leg-
endre polynomials (L% : order n in RY).

k(z,2') =) byLn((z,2))

Consequence:
L,, (and their rotations) form an orthonormal basis on the
unit sphere, P*P is rotation invariant, and P*P is diago-
nal with respect to L,,. In other words

(P*P)LTL(<x7 >) — b;ILn<<x7 >)

Polynomial Kernels

® Decay properties of b, determine smoothness of func-
tions specified by k((x, x)).

® For N — oo all terms of L, but " vanish, hence a Taylor
series k(z,z') = > . a;(z,2')" gives a good guess.

Inhomogeneous Polynomial
k(z,2) = ((z,2) + 1)

a, = (p) ifn<p
n

Vovk’s Real Polynomial
1 — (x,z")P

I —((z,2))

a, = 1ifn<p

k(xz,2') =

Mini Summary

Regularized Risk Functional

® From Optimization Problems to Loss Functions
® Regularization
® Safeguard against Overfitting

Regularization and Kernels

® Examples of Regularizers
® Regularization Operators
® Greens Functions and Self Consistency Condition

Fourier Regularization

® Translation Invariant Regularizers
® Regularization in Fourier Space
® Kernel is inverse Fourier Transformation of Weight

Polynomial Kernels and Series Expansions

String Kernel (pre)History

The Kernel Perspective

* Design a kernel implementing good features

e(a,a') = ($(x), $(a')) and f(x) = Y ak(aia

* Many variants
* Bag of words (AT&T labs 1995, e.g. Vapnik)
* Matching substrings (Haussler, Watkins 1998)
e Spectrum kernel (Leslie, Eskin, Noble, 2000)
o Suffix tree (Vishwanathan, Smola, 2003)
o Suffix array (Teo, Vishwanathan, 2006)
e Rational kernels (Mohri, Cortes, Haffner, 2004 ...)

Bag of words

e At least since 1995 known in AT&T labs

]C(ZC,CC/) — an(x)nw(x/) and f(il?) — wanw(x/)

(to be or not to be) =p (be:2, or:1, not:1, to:2)
* Joachims 1998: Use sparse vectors

* Hatfner 2001: Inverted index for faster training
* Lots of work on feature weighting (TF/IDF)

* Variants of it deployed in many spam filters

Substring (mis)matching

* Watkins 1998+99 (dynamic alignment, etc)
 Haussler 1999 (convolution kernels)

* In general O(x x’) runtime
(e.g. Cristianini, Shawe-Taylor, Lodhi, 2001)
* Dynamic programming solution for pairHMM

Spectrum Kernel

e Leslie, Eskin, Noble & coworkers, 2002 AKQDYYYYEI
* Key idea is to focus on features directly ﬂ
* Linear time operation to get features
* Limited amount of mismatch AESD
(exponential in number of missed chars) ODY
* Explicit feature construction DYY
(good & fast for DNA sequences) Yy
YYY
YYE
YET

__— AKQ
EKQ AAQ

DKQ AKY

Suffix Tree Kernel

Vishwanathan & Smola, 2003 (O(x + x’) time)
Mismatch-free kernel + arbitrary weights

k(z,2") = Z Weo Ty ()T ()

w
Linear time construction

(Ukkonen, 1995)

Find matches for second
string in linear time

(Chang & Lawler, 1994)
Precompute weights on path

v~‘~ -7 .
NA:::"'
NAS

$

P 4
"'/:\‘ BAN:«NA NA
[o] .-
$

R 4
$ NAS$
[4]

* Large vocabulary size

* Need to build dictionary

* Approximate matches are still a problem

o Suffix tree/array is storage inefficient (40-60x)
* Realtime computation

* Memory constraints (keep in RAM)

o Difficult to implement

stay tuned

Graph Kernels

2 1 2 1 2 2
1 1 5 1 1
5
0 0 0 0 0
—1 0 —1 =0 - 1
) 05 1 0 05 1 0 05 1

0.5 1 —
0 05 10 05 1 0 05 1 0 05 1
2 2 2 2 2 2 2

R N R IR R N N R

1
1

o
o
4]
-

—1 —1 =0.5 —1 =0 9]
) o5 1 0 05 1 0 05 1 0 05 1 0 05 1 0 05 1 0 05 1 0 05 1

1 1 1 1 1 1 .5
0 0 0 0 0 0 0

Graphs

Basic Definitions

® Connectivity matrix W where
Wi; = 1if there is an edge from
vertex ¢ to 5 (W;; = 0 otherwise).
For undirected graphs W;; = 0.

® In this talk only undirected, un-
weighted graphs:
Wij c {0, 1} iInstead of RSL

Graph Laplacian
L=W-DandL: =D LD =D WDz —1
where D = diag(L1), i.e., D; = Y, Wj;. This talk only L

Graph Segmentation

Cuts and Associations
CUt(A, B) — Z Wz’j

cut(A, B) tells us how well A and B are connected.
Normalized Cut

cut(A, B) ~ cut(A, B)
cut(A, V) cut(B,V)
Connection to Normalized Graph Laplacian

"(D-W
min Ncut(A, B) = min y)y
AUB=V ye{x1}m y' Dy

Ncut(A, B) =

® Proof idea: straightforward algebra
® Approximation: use eigenvectors / eigenvalues In-
stead

Eigensystem of the Graph Laplacian

® The spectrum of L lies in [0, 2] (via Gerschgorin’s Theo-
rem)

® Smallest eigenvalue/vector is (A1, v;) = (0, 1)

® Second smallest (X, o) is Fiedler vector, which seg-
ments graph using approximate min-cut (cf. tutorials).

® Larger \; correspond to v; which vary more clusters.

® For grids L is the discretization of the conventional
Laplace Operator

Key ldea: use the v; to build a hierarchy of increasingly
complex functions on the graph.

igenvectors

Regularization operator on graph

Functions on the Graph
Since we have only exactly n vertices, all f are f € R".

Regularization Operator
M = P*P is therefore a matrix M € R"*". Choosing the
v; as complexity hierarchy we set M

M = r(\)vw, and hence M = r(L)

Consequently, for f =) . B;u; we have M f =) . r(\)v;.
Some Choices for r
® r(\) = A+ € (Regularized Laplacian)
® r()\) = exp(o) (Diffusion on Graphs)
® r()\) = (a— NP (p-Step Random Walk)

Kernels

Self Consistency Equation
Matrix notation for k' (z, -)(P*P)k(x’,) = k(z, 2'):

KM 'K =K and hence K = M ™!
Here we take the pseudoinverse if M/ ~! does not exist.

Regularized Laplacian i
r(A) = A+e,hence M = L+eland K = (L+¢1)'. Work
with K1

Diffusion on Graphs i i
r(A) = exp(og)), hence M = exp(cL) and K = exp(—ocl).
Here K; is the probability of reaching ¢ from ;.

p-Step Random Walk
For r(\) = (a — \)? we have K = (al — L)?.

Weighted combination over several random walk steps.

KRAAAAH A

LYY
ARAMARA R
ARRARAA R

Diffusion Kernel

AKX IIAIE
IR E
A XA XA XA XA A XA XA
A XA XA RA RS XA R EA

RAKAARA&

6% & 6% A 2 M
AR Ak A

ARRARAA R

Fast computation

* Primal space computation

e Weisfeiler-Lehman hash

* Heat equation

Woatson, Bessel Functions

PREFACE TO THE SECOND EDITION

To incorporate in this work the discoveries of the last twenty years would
necessitate the rewriting of at least Chapters XII—XIX; my interest in
Bessal functions, however, has waned since 1922, and I am consequently not
prepared to undertake such a task to the detriment of my other activities,
In the preparation of this new edition I have therefore limited myself to the
correction of minor errors and misprints and to the emendation of a few
assertions (such as those about the unproven character of Bourget’s hypo-
thesis) which, though they may have been true in 1922, would have been
definitely false had they been made in 1941,

My thanks are due to many friends for their kindness in informing me of
errors which they had noticed; in particular, I cannot miss this opportunity
of expressing my gratitude to Professor J. R. Wilton for the vigilance which
he must have exercised in the compilation of his list of corrigenda.

G.N. W.
March 31, 1941.

Midterm Project Presentations

* Midterm project presentations
* March 13, 4-7pm

e Send the PDF (+supporting material) to Dapo by
March 12, midnight

* Questions to answer
* What (you will do, what you have already done)
* Why (it matters)
* How (you’re going to achieve it)
* Rules
* 10 minutes per team (6 slides maximum)
* 10 pages supporting material (maximum)

Regularization Summary

Regularization

* Feature space Expansion

A
miniﬁmize Zl(y@', X3l + 5 Hﬁ”z

* Kernel Expansion

minimize Zl (i, [XX "al;) + %(XTXXT&

* Function Expansion
minimize Zl (yi’ fz) + %fT(XXT)—lf

f=X8=X"Xa

Feature Space Expansion

A
minimize Zl(yi, XB)i) + 5 Hﬁ”z

B

* Linear methods
* Design feature space
* Solve problem there
* Fast ‘primal space’ methods for SVM solvers

e Stochastic gradient descent solvers

Kernel Expansion

minimize Zl (i, [XX "a];) + %aTXXToz

* Using the kernel trick
minimize Z L (ys, [Kal;) + %CVTKCV

* Optimization via
* Interior point solvers
* Coefficient-wise updates (e.g. SMO)
* Fast matrix vector products in K

Function Expansion

A
miniamize Zl(waz) 4 §fT(XXT)_1f

e Using the kernel trick yields Gaussian Process

A
minimize Zl (yi, f;) + §fTK_1f

* Inference via
* Fast inverse kernel matrix (e.g. graph kernel)
* Low-rank approximation of K

* Occasionally useful for distributed inference

Optimization Algorithms

Etficient Optimization

* Dual Space
Solve the original SYM dual problem efficiently
(SMO, LiblLinear, SYMLight, ...}

e Subspace

Find a subspace that contains a good approximation to the
solution

(Nystrom, SGMA, Pivoting, Reduced Set)

* Function values
Explicit expansion of regularization operator
(graphs, strings, Weisfeiler-Lehman)

* Parameter space
Efficient linear parametrization without projection
(hashing, random kitchen sinks, multipole)

Dual Space

Support Vector Machine

dual problem

1

minimize ~a' Ko —1"a

ey [{x [<waxs+b = 0}

\ \
\ N w = E QY

minimize — HwH +CZ€Z

w,b

subject to y; [(w, x;) + b] >1—-¢&and & >0

Problems

e Kernel matrix may be huge
* Cannot store it in memory
* Expensive to compute
* Expensive to evaluate linear functions

* Quadratic program is too large
Cubic cost for naive Interior Point solution

e Only evaluate rows
e Cache values
e Cache linear function values

e Solve subsets of the problem and iterate

Subproblem

Full problem (using K, := y;yk(z;, z;))

minimize — Z&Z&]Kw Zozz

231

subject to Zoziyi —0and o; € [0,C]forall 1 <i <m
1=1
Constrained problem: pick subset S

.] _
minimize 5 Z CViOéjKij — Z a; | 1— Z Kij@j + const.
1,JE€S €S i 7€58 1
subject to Z oY = —Z ay; and o; € [0,C) foralli € S
€S €S

Active set strategy

Active set strategy

Subset Selection Strategies

!

Improved Sequential Minimal Optimization

Dual Cached Loops

Storage Speeds

System | Capacity | Bandwidth | IOP/s
Disk 3TB | 150MB/s 10°
SSD 256GB | 500MB/s | 5-10*
RAM 16GB 30GB/s 10°
Cache 16MB 100GB/s 10”

* Algorithms iterating data from disk are disk bound
* Increasing number of cores makes this worse

* True for full memory hierarchy (10x per level)

Key Idea: recycle data once we load it in memory

Dataflow

Reading Thread Training Thread

Read Load Read
(Sequential (Random (Random
Access) Access) Access)

Update

i

Cached Data
Dataset (Working Set)

Weight Vector

Convex Optimization

* SVM optimization problem (without b)

1 n
minimize 5 |wl||? + C Z max{0,1 —w ' y;z;}

d
wek i—1

no equality constraint

* Dual problem

minimize D (&) := 5 Qa—a 1
87

subject to 0 < a < (1.
* Coordinate descent (SMO style - really simple)

o)t = argmin D(a’ + (as, — o},)ei,)

¢
0<a;, <C

Algorithm - 2 loops

Reader

while not converged do
read example (x,y) from disk
if buffer full then evict random (z’,vy’) from memory
insert new (x,y) into ring buffer in memory

end while

Trainer
at RAM speed
while not converged do

randomly pick example (z,y) from memory
update dual parameter o

update weight vector w

if deemed to be uninformative then evict (x,y) from

memory . . .
end while margin criterion

at disk speed

Advantages

* Extensible to general loss functions
(simply use convex conjugate)

* Extensible to other regularizers
(again using convex conjugate)

minimize Z " (25, 9:) + AQ" () for z = Xa

* Parallelization by oversample, distribute &
average (Murata, Amari, Yoshizawa theorem)

* Convergence proof via Luo-Tseng

* 12 core Opteron (currently not all cores used)

* Datasets
dataset n d s(%) | ny:n_ | Datasize (2 | SBM Blocks | BM Blocks
ocr 3.0 M 1156 100 0.96 | 45.28 GB 150,000 40 20
dna 50 M 300 25 Je—3 | 63.04 GB 700,000 60 30
webspam-t 0.35 M | 16.61 M | 0.022 1.54 | 20.03 GB 15,000 20 10
kddb 20.01 M | 29.89 M le-4 6.18 4.75 GB | 2,000,000 6 3

e Variable amounts of cache

* Comparison to Chih-Jen Lin’s KDD’11 prize winning

LibLinear solver (SBM) and simple block minimization (BM)
* Kyoto cabinet for caching (suboptimal)

Convergence (DNA, different C)

Relative Objective Function Value

Relative Function Value Difference

1079

—
O
|

—

—

1071

1073

107°

10~7

1079

1071

—
A

|

dna C =1.0

StreamSVM
SBM
BM

dna C' = 10.0
—#— StreamSVM
—A— SBM
—t— BM
\ \ \ \ \ \ \ A
0.2 04 0.6 0.8 1 1.2 14 1.6
-10°

Wall Clock Time (sec)

Relative Function Value Difference

Relative Objective Function Value

1071

1072

101

e
A

—

dna C' = 100.0
StreamSVM
SBM
BM

|
0.5 1
Wall Clock Time (sec)

A Y AN AT A T s AR e R A R A A A A A AR A NN NNNNEEE
XONCANNNSANNINA AN

—
A

—t

dna C' = 1000.0
StreamSVM
SBM
BM

0 0.2

| | |
04 06 08 1 1.2
Wall Clock Time (sec)

| |
1.4 1.6
-10°

much better
for large C

70h on

Imachine

Convergence (C=1, different datasets

Relative Function Value Difference

Relative Function Value Difference

107t

1073

107°

10~ 7

‘ E
kddb C = 1.0 ;
a8 —w— StreamSVM g
i —s+— SBM 1
S — BM i
0 2 3 4
Wall Clock Time (sec) -10*
I I I
ocrC=1.0 i
—i— StreamSVM
—a— SBM
— BM

A
AAN
AN

AT
AAAAAA
SAMAAL

AAA
AAA
SO
SRR
AAAAAAAAAA
AA

AAAAAAAAAAAA

Wall Clock Time (sec) -10*

Relative Function Value Difference

10044 ‘ .
webspam-t C=10 [

107 8 —h— StreamSVM -
: —A— SBM R

1072 g BM !
1073 g E
1074 g E
10—5 § \‘\N—‘ AAAA é
10_6 § NN("A‘A‘A""é“""-‘-‘-‘-‘eeg_ﬁ ““““““““““““ é
107 g ‘ \ \ E
0 0.5 1 1.5 2

-10%

Wall Clock Time (sec)

Faster on all datasets

Relative Function Value Difference

Relative Function Value Difference

Etfect of caching

10°® ‘ ‘ .
E dna C =1.0 ;

107 | —+— 256 MB]
- s~ 1GB]
1072 —— 4GB |
g —— 16GB |]

107% ¢ A 2
1074 f f
107° - E
107° - E
i ‘ | | LN | | i

0 02 04 06 08 1 12 14 1.6
Wall Clock Time (sec) -10*

10° ‘ %
A kddb C' = 1.0 |

107" F 256 MB |-
; —A— 1 GB ;

1072 | —— 4GB g
g | —e— 16 GB .
1073 - e .
1074 | :
107° f A 9 7
i N

10_6 ? é
10_7 ; | | | é
0 0.5 1 1.5 9 95

Wall Clock Time (sec)

o
(@)
S

Relative Function Value Difference

Relative Function Value Difference

botd

ocr C=1.0
256 MB
1 GB
4 GB
16 GB

L

0.5

1
Wall Clock Time (sec)

\
1.5

\}
—_
(@)
™

—
—A—
+
——

webspam-t C' = 1.0
256 MB

1 GB
4 GB
16 GB

)

|
1,000

\
2,000

|
3,000

|
4,000

5,000

Wall Clock Time (sec)

e Solution lies is in low-dimensional
subspace of data (approximately) /

* Find a sparse linear expansion

* Before solving the problem
(Sparse greedy, pivoting)
Find solution in low-dimensional subspace

 After solving the problem
(Reduced set)
Need to sparsify existing solution

Linear Approximation

* Project data into lower-dimensional space
* Data in feature space = — ¢(z)

e Set of basis functions {¢(z1),... ¢(z,)}
* Projection problem

n

miniﬁmize p(x) — ; P(x;)

e Solution B=K(X,X)"'K(X,z)

2 2

* Residual |lo@) -)| = o) - |Y o)

= k(z,z) — K(z, X)K(X, X)) 'K (X, x)

Subspace Finding

* Incomplete Cholesky factorization

K =[¢(x1),. .., ¢(xm)] [d(x1),s. .., d(xm))
NKT K~ 1Kmn

mmn nn

AN

Subspace Finding

* Incomplete Cholesky factorization

K =[¢(1),. ... 0(@n)] [d(z1),. .., d(zm)]
~K' K 1K,.,

- 1 T _1
— Knn2 Kmn} [Knn2 Kmn}

/ N

Picking the Subset

e Variant 1 (‘Nystrom’ Method)
Pick random directions (not so great accuracy)

* Variant 2 (Brute force)
Try out all directions (very expensive)

e Variant 3 (Tails)
Pick 59 random candidates. Keep best (better)

* Variant 4 (Positive diagonal pivoting)

Function values

Basic Idea

* Exploit matrix vector operations
* In some kernels - is cheap

* In others kernel inverse is easy to compute
(e.g. inverse graph Laplacian) Ky
* Variable substitution in terms of y

* Solve decomposing optimization problem
(this can be orders of magnitude faster)

e Example - spam filtering on webgraph.
Assume that linked sites have related spam scores.

Motivation: Multitask Learning

Spam Classification

From: bat<kilian@gmail.com:
Subject: hey whats up check this meds place out
Date: April 6 2009 10:50:13 PM PDT
To: Kilian Weinberger
Reply-To: bat <kilian@gmail.com=

Your friend (kilian @gmail.com) has sent you a link to the following Scout.com story:
Savage Hall Ground-Breaking Celebration

Get Vicodin, Valium, Xanax, Viagra, Oxycontin, and much more. Absolutely No Prescription Bequired.

Owver Night Shipping! Why should you be risking dealing with shady people. Check us out today!
ittp Henkinste 32 + 3.bloaspot.com

The University of Toledo will hold a ground-breaking celebration to kick-off the UT Athletics Complex and
Savage Hall renovation project on Wednesday, December 12th at Savage Hall.

To read the rest of this story, go here:
http Jtoledo. scout.comd2/7 08390, hitml

4 |

Spam Classification

From: bat<kilian@gmail.com:
Subject: hey whats up check this meds place out
Date: April 6 2009 10:50:13 PM PDT
To: Kilian Weinberger
Reply-To: bat <kilian@gmail.com=

Your friend (kilian @gmail.com) has sent you a link to the following Scout.com story:
Savage Hall Ground-Breaking Celebration

Get Vicodin, Valium, Xanax, Viagra, Oxycontin, and much more. Absolutely No Prescription Required.
Owver Night Shipping! Why should you be risking dealing with shady people. Check us out today!
ittp Henkinste 32 + 3.bloaspot.com

The University of Toledo will hold a ground-breaking celebration to kick-off the UT Athletics Complex and
Savage Hall renovation project on Wednesday, December 12th at Savage Hall.

To read the rest of this story, go here:
http Jtoledo. scout.comd2/7 08390, hitml

4 |

0: not- s

1: spam! 0: quality 1: donut? spam! :

-

educated misinformed confused malicious silent

Spam Classification

Multitask Learning

Collaborative Classification

e Primal representation

f(x,u) = (o(x),w) + (¢(x), wy) = (P(x) @ (1 D ey),w)
Kernel representation
k((x,u), (2 u') = k(x, 2")[1 4+ dy 0]

Multitask kernel (e.g. Pontil & Michelli, Daume). Usually does not scale well ...
e Problem - dimensionality is 10'S. That is 40TB of space

Collaborative Classification

e Primal representation

f(x,u) = (o(x),w) + (¢(x), wy) = (P(x) @ (1 D ey),w)
Kernel representation
k((x,u), (2 u') = k(x, 2")[1 4+ dy 0]

Multitask kernel (e.g. Pontil & Michelli, Daume). Usually does not scale well ...
e Problem - dimensionality is 10'S. That is 40TB of space

Collaborative Classification

email (1 + eyser)

W T eyser

e Primal representation

f(x,u) = (o(x),w) + (¢(x), wy) = (P(x) @ (1 D ey),w)
Kernel representation
k((x,u), (2 u') = k(x, 2")[1 4+ dy 0]

Multitask kernel (e.g. Pontil & Michelli, Daume). Usually does not scale well ...
e Problem - dimensionality is 10'S. That is 40TB of space

Hash Kernels

Hash Kernels

iInstance: dictionary:

Hey,

please mentio
subtly during
your talk that
people should
use Yahoo mail
more often.
Thanks,

Someone

task/user
(=barney):

sparse

Hash Kernels

Instance: dictionary:
1 hash

Hey, function:

please mentiop 2

subtly during L

your talk that L

people should 3

use Yahoo mail

more often.

Thanks, 2

1
Someone
sparse
task/user
(=barney): 1
sparse

Hash Kernels

instance:
> " @[h(i)]o(i)z;
Hey, ’
{'] ’] }
please mentio h(‘mention’)
subtly during s(m_bjeit
your talk that
people should i
use Yahoo mail
more often.
Thanks, h(‘mention_barney’) s(m) ?'
Someone
task/user Similar to count hash
(=barney): (Charikar, Chen, Farrach-Colton, 2003)

Advantages of hashing

Advantages of hashing

* No dictionary! i
e Content drift is no problem

* All memory used for classification

* Finite memory guarantee (with online
learning)

Advantages of hashing

* No dictionary! i
e Content drift is no problem

* All memory used for classification

* Finite memory guarantee (with online
learning)

* No Memory needed for projection. (vs LSH)

Advantages of hashing

* No dictionary! i
e Content drift is no problem

* All memory used for classification

* Finite memory guarantee (with online
learning)

* No Memory needed for projection. (vs LSH)
 Implicit mapping into high dimensional space!

Advantages of hashing

* No dictionary! i
e Content drift is no problem

* All memory used for classification

* Finite memory guarantee (with online
learning)

* No Memory needed for projection. (vs LSH)
 Implicit mapping into high dimensional space!
* It is sparsity preserving! (vs LSH)

Inner product preserving

e Unhashed inner product

<w7 ‘/E> — Z Wiy

* Hashed inner product

(w,2) = | > wol@)| | > zo(i)

i |ih(i)=j | [ah(i)=]

e Taking expectations
B, [o(i)o(i')] = ;i

hence inner product is preserved in expectation

Approximate Orthogonality

We can do multi-task learning!

Guarantees

For a random hash function the inner product vanishes with
high probability via .
Pr{|(wy, hy(z))| > €} < 2e-C€™

We can use this for multitask learning

Direct sum in Sum in
Hilbert Space Hash Space

The hashed inner product is unbiased
Proof: take expectation over random signs

The variance is O(1/n)
Proof: brute force expansion

Restricted isometry property (Kumar, Sarlos, Dasgupta 2010)

Spam classification results

1.20

1.00 -

0.80

0.60 - =#—global-hashed
0.68 0.67

=&-personalized

0.40
e==haseline

0.20

0.00

spam miss-rate (relative to baseline)

18 20 22 24 26
b bits in hash-table

N=20M, U=400K

Lazy users ...

number of users

1000000

100000

10000

1000

100

10

Labeled emails per user

VAN M

" YINIALT

N O O NN OO A < INO MmO AN DN 00 < 1 0 S
—A NN N OM™N OO A N < 1N OO0 O 1 N < O 0
I 1 = v A AN AN AN AN AN

number of labels

A

370
523

Results by user group

Results by user group

1.4
M labeled emails:
= 1.2
g ——[0]
8 1 - N — -
o —-[1]
¢ 0.8 ——[2,3]
5
L O
v 0.6 4,7]
E 02 —#=[8,15]
. ~0-[16,31]
(7]
g 02 32,64]
g 0 I I l ! . T [64,00)
73

18 20 22 24 26 ==haseline
b bits in hash-table

Results by user group

1.4
M) labeled emails:
= 1.2
g =—[0]
(¢°]
o 1 - .
o —-[1]
¢ 0.8 ——[2,3]
5
L) O
v 0.6 4,7]
E 04 —#=[8,15]
. ~0-[16,31]
(7]
g 0.2 32,64]
g 0 I I l | . T [64,00)
>

18 20 22 24 26 ==h3aseline
b bits in hash-table

Approximate String Matches

e General idea

ZZ%) for lw —w'| <6

wexr w' ex’

Berkeley

B3rkeley
Berkely gotta catch them all

8erkeley
Berkley
Berkeley

Approximate String Matches

e General idea

ZZ) for lw—w'| <6

wex w' Ex’

. Simpllf'cahon
* Weigh by mismatch amount |w-w’']
* Map into fragments: dog -> (*og, d*g, do*)

* Hash fragments and weigh them based on
mismatch amount

e Exponential in amount of mismatch
But not in alphabet size

Approximate String Matches

e General idea

ZZ%) for lw —w'| <6

wex w' Ex’

Berkeley

B3rkeley p*rkeley
Berkely Berkel*y

8erke|ey *erkeley
Berkley Berk*ley

Berkeley Berkeey

Memory access patterns

e Cache size is a few MBs

Very fast random memory access

e RAM (DDRS3 or better) is GBs

* Fast sequential memory access (burst read)

 CPU caches memory read from RAM

* Random memory access is very slow

 CPU caches memory read from RAM

‘ s

vector

hashed sequence

Speeding up access

Key idea - bound the range of h{i,j) for i=‘| to n access h('zl)

Linear offset
bad collisions in i

h(i,j) = h(i) +J

Sum of hash functions . . .
bad collisions in j h(i,7) = h(i) + R (j)

Optimal Golomb Ruler (Langford) h(i,§) = h(i) + OGR(j)
NP hard in general |

Feistel Network / Cryptography (new) h(i, 7) = h(i) + crypt(j]7)

Structured Estimation

Large Margin Classifiers

* Large Margin without rescaling (convex)

(Guestrin, Taskar, Koller)
l(ilf,y, f) — Sup [f(xvy/) — f(xvy) + A(yay/)]

y' ey
* Large Margin with rescaling (convex)

(Tsochantaridis, Hofmann, Joachims, Altun)
l(z,y, f) = sup [f(z,y') — f(z,y) + 1] Ay, y')

y'ey
* Both losses majorize misclassification loss
A (y argmax f(m/))

Yy

* Proof by plugging argmax into the definition

1. Identify estimation problem with structured y

2. Design function f(x,y) efficiently maximized in y
3. Design linear function space for f
4. Design tractable loss A(y,y’)

5. Solve optimization problem
argmax f(z,y") + Ay, ')
Y
6. Write a paper ...

Graph Matching

Graph Matching

Chemistry and Biology

@ Molecules stored in database
@ Regulatory networks
@ Function estimation for proteins

Computer Vision

@ Object matching (e.g. wide baseline match)

@ Preprocessing for camera calibration

@ 3D reconstruction

@ Match maps to aerial photographs (automatic map
updates)

ldentical Graphs

PaaNVaaNVaa

Computer vision

* Graph matching via quadratic assignment is NP hard

* Can we learn a linear assignment function?

Computer vision

* Graph matching via quadratic assignment is NP hard

* Can we learn a linear assignment function?

1. Identify estimation problem with structured y
Graph Matching

Problems

Hardness
No currently known polynomial time algorithm for matching.
Checking is linear in the number of edges.
Completeness
@ The graphs may not be identical
@ We just may want to find a “best match”
@ Problem often ill-defined (e.g. largest common subgraph,
best matches overall, etc.)
Attributes
@ SIFT features — unlikely to be identical at all
@ Different image resolutions (e.g. different cameras)
@ Different image content (e.g. black and white vs. color)
@ Different representation (e.g. pixels vs. symbolic)
Size
For very large graphs heuristics are popular.

Good News

Key observation
Graph matching often needed only for a restricted domain.

Idea
@ Graph matching on restricted subset of graphs is often
much easier.
@ Attributes in graphs can help a lot (e.g. Bunke’s work for
uniquely attributed vertices — matching becomes trivial)
@ Local neighborhood may be sufficient for matching.
Strategy
@ Use examples of matched graphs. Trivial if both graphs
are of the same type: only need collection of graphs, no
labeling needed.
@ For corresponding objects of different representations
training data is needed. Also if we want system to have a

robust attribute matching function. B

Linear Assignment

Notation
@ Graphs G and G’ with vertices V, V' and edges E, E'.
@ We use G; = 1 to denote presence of an edge between j
and j (and G; = 0 to denote its absence).
@ V; denotes vertex i (and its attributes)
@ Permutation matrix 1 describing match between G and
G with; € {0;1}and N1 =N"1=1.
Objective Function
@ Score Cj for match between vertex V; and V).

@ Best assignment by solving
minimize Z M;C;
IJ

@ For uniquely attributed graphs (trivial) we set Cj; = dy, v/

Linear Assignment

Integer Program

minirrlnizez M;C; subjectto M; € {0;1}and N1 =N"1 =1
I

Linear Programming Relaxation

miniénizez M;C; subjectto M; € [0,1]and M1 =N"1 =1
)

Properties
@ Can be solved in polynomial time (e.g. interior point)
@ All vertices are integral, hence the two problems are
equivalent.
@ Fast shortest path solvers available.
@ Adding prior knowledge is easy — clamp [1; to O or 1.

1. Identify estimation problem with structured y

2. Design function f(x,y) efficiently maximized in y

maximize tr C'm

subject to Zﬂ'ij — Zﬂ'z‘j — 1 and TG4 Z 0

J

3. Linear function space is trivial
(functions for entries of C)

Diagnosis

Why?
Graph matching is hard, so the Hungarian method
(polynomial time algorithm) must fail.

What went wrong?

@ Local features insufficient for matching.
@ Symmetries create long range dependencies.
@ Maybe we used the wrong matching score C;?

How bad is it really?

@ Fails on degenerate problems with lots of symmetry.

@ Works fine on graphs with enough characteristic
features.

@ We should engineer C; for specific problems.

Not a fix - Quadratic Assignment

Key Idea
Use edge features for match.

Optimization Problem

mlnlmlzez C,,I'I,, + Z Qlj av i gy

i,j,u,v

Properties

@ (C; describes vertex feature match (as before)

@ Qj; . describes agreement between (potential) edges
(7, u) and (j, v).

® For Qjuw =1—dg, g, We have exact matching.

@ Problem is NP hard to solve.

Tools of the trade

Genetic algorithms

Tabu search

Ant colony systems

Any other really really desparate heuristic ...

Graduated Assignment

@ First order Taylor approximation of Quadratic
Assignment problem is Linear Assignment problem.

@ Take small steps.

@ lterative procedure (Sinkhorn, 1964) for small steps.

Semidefinite Relaxations
Not very scalable, O(m*) storage and O(m®°) computation.

In practice ...
Can only solve problems of size < 100.

Changing the question

Key Idea

@ Exact graph matching is too expensive.
@ Linear assignment works if matching scores are good.
@ Use data to learn matching scores C;.

Bottom line
Work hard to ask the right question not to find the answer for
the wrong question. Use structured estimation.
We get problem dependent scores.

Optimization Problem

Optimization Problem

m

minimize Y A(M’,1) where N’ = argmin Z Ny C(VE V)
C() j—1 I uv

The goal is to find a compatibility function C(-, -) such that
graphs are perfectly matched. Obvious extensions for inexact
matches — replace 1 by optimal match.

Loss Function
AN =|N=TF=2(n—trN" M)

Obviously other loss functions are possible.

Problem
The optimization is nonconvex. Even worse, it is piecewise
constant. Risk of overfitting.

1. Identify estimation problem with structured y

2. Design function f(x,y) efficiently maximized in y
3. Design linear function space for f

4.Design tractable loss Aly,y’)

ALIY) = [T -1 =2 (n — tr ")

Regularization

Parametric Model for C
C(Vu, Vi) = (6(Va, Vi), w)

Regularizer
Assume that small ||w/|| corresponds to smooth functions C.
Hence minimize regularized risk functional

m
C e i 2
minimize .E_* A1)+ A jw|

Structured Estimation

Original Objective Function

A(N, 1) subject to M = argminN'C
[

Convex Upper Bound
¢ where ¢ > tr(1 — M) C+ A(I,1) for all "

To see that this is an upper bound, plug in [T =T1. The
problem is convex in £ and C.

Optimization Problem

m
minimize) &+ A|w|
w
=1

subjectto & > tr(1 — ') C(G', G') +2(n — tr M%) for all "

Optimization

Issues

@ Convex problem but ...
@ Exponential number of constraints
@ Need to find most violated constraints efficiently

Column Generation
@ Maximizing the constraint is linear assignment problem
maximize —tr "' [C(G', G') + 2 - 1]

I_I/

@ Recall that C(G', G') is a compatibility score.
@ Problem made harder by adding 2 - 1 to enforce margin.

Algorithm

@ Minimize w for given set of constraints
@ Find next set of worst constraints

1. Identify estimation problem with structured y

2. Design function f(x,y) efficiently maximized in y
3. Design linear function space for f
4. Design tractable loss A(y,y’)

5. Solve optimization problem
argmax f(z,y") + Ay, y')
Y

(this is a linear assignment problem again)

=R

no
learning

3‘
learning k i

Accuracy

non-learning vs. learning with Linear Assignment and Graduated Assignment

50

LA

GA

GA normalization 100
GA normalization 0.1

GA normalization 0.0001
LA learning

GA learning

5!1{15 8/103 12/99 23/88 37/74 56/55 55/56 74/37 88/23 99/12 103/8 106/5
training size/ test size

45}

40r

4 i

[W]
=

Error (%6)
o

Fd
=

5
LN

5
=

LN

Speed

time and accuracy of methods

35
LA
GA
GA normalization 100 il
20 -] GA normalization 0.1
® > GA normalization 0.0001
LA learning
GA learming
25
=
S
L]
20
15 .
93'3 107 10t 10" 10t 10<

time (=), logscalea

Setting
@ Internet retailer (e.g. Netflix) sells movies M to users U.
@ Users rate movies if they liked them.
@ Retailer wants to suggest some more movies which
might be interesting for users.

Goal
Suggest movies that user will like. Pointless to recommend
movies that users do not like since they are unlikely to rent.
Problems with Netflix contest
@ Error criterion is uniform over all movies.
@ Can only recommend a small number of movies at a
time (probably no more than 10).
@ Need to do well only on top scoring movies.
Insight
We can use linear assignment / sorting for ranking.

Sequence Annotation

Sequence Annotation

e Simple classification

* What if adjacent labels are correlated?

* Can we exploit this for estimation?

Sequence Annotation

* Labeling problem

* Define f(x,y) on sequence

flz,y) = Z yi f(x;) classification
i=1

flz,y) = Z yif (xi) + f(Yi, Yitr1) sequence labeling
i—1

Dynamic Programming

. Clique Potential

m

Zyz 372 _I_f(yzayz+1) Zg(yiayi—l—l)

1=1

=g (Vi Yit+1)

* Forward pass (solve and backsubstitute)

maXZg Yi yz+1) — ym&uy({I%?Xg(yl Y2 —I—ZQ Yis yz—H)}

1=1 S — 1=2
—h2(y2)

— IHax {max ha(y2) + 9(y2,ys) + 9(Yi> Yit+1 }

Ys3,.--y Ym Y2

A\ _J/

&Mﬁ

-~

:=h3(y3)

= ... =max hy, (Ym)

m

Dynamic Programming

e Backward pass
(run same recursion from the end)

* Pairwise clique potential measures affinity
between labels

* Loss function
Z ‘y’b yz
e Computing loss gradlent is dynamic program

* Solve by distributed subgradient procedure
(we could also use kernels if we wanted to)

Loss function

* Structured large margin

l(z,y, f) = maxf(x,y') — f(z,y) + Ay, y)

Yy

= maxd_ {110+ Fhvha)} + 3l =
1=1

_Z{yz 'ZEZ _I_f yzvyz—l—l)}

* Need to solve argmax to compute gradient in f

* lterate to solve convex program

Extensions

Structured Ramp Loss

* Binary ramp loss

l(z,y, f) = clip{[0,1],1 =y f(z)}
e upper bound on error

* solve by iterative Concave Convex Procedure

* Multiclass ramp loss

(z,y, f) = max f(x,y') + Ay, y')] — Hze}Xf(x, y')

e upper bound bound on error

* tighter bound than structured loss

Invariances

e Data

e Set of invariance transforms
(e.g. shift, slant, stroke, size, rotation for OCR)

* Not necessarily in group

* Not necessaritly absolute (with degradation)

l(il?,y, f) — Su/p [f(xvy/) — f(xvy) + A(yay/)]

Yy

I, y, [) =sup[f(gox,goy) = flgox,goy) +Aly,y',9)]
Yy.,9

e http://blogs.wsj.com/venturecapital/

2010/01/11/how-to-pitch-a-venture-capitalist-on-a-
napkin/
* http://en.wikipedia.org/wiki/
George H. Heilmeier#Heilmeier.27s Catechism
 http://www.slideshare.net/dmc500hats/how-to-

pitch-a-vc-aka-startup-viagra

e http://research.microsoft.com/en-us/um/people/
simonpj/papers/proposal.html

* Practice, Practice, Practice

http://blogs.wsj.com/venturecapital/2010/01/11/how-to-pitch-a-venture-capitalist-on-a-napkin/
http://blogs.wsj.com/venturecapital/2010/01/11/how-to-pitch-a-venture-capitalist-on-a-napkin/
http://blogs.wsj.com/venturecapital/2010/01/11/how-to-pitch-a-venture-capitalist-on-a-napkin/
http://blogs.wsj.com/venturecapital/2010/01/11/how-to-pitch-a-venture-capitalist-on-a-napkin/
http://blogs.wsj.com/venturecapital/2010/01/11/how-to-pitch-a-venture-capitalist-on-a-napkin/
http://blogs.wsj.com/venturecapital/2010/01/11/how-to-pitch-a-venture-capitalist-on-a-napkin/
http://en.wikipedia.org/wiki/George_H._Heilmeier#Heilmeier.27s_Catechism
http://en.wikipedia.org/wiki/George_H._Heilmeier#Heilmeier.27s_Catechism
http://en.wikipedia.org/wiki/George_H._Heilmeier#Heilmeier.27s_Catechism
http://en.wikipedia.org/wiki/George_H._Heilmeier#Heilmeier.27s_Catechism
http://www.slideshare.net/dmc500hats/how-to-pitch-a-vc-aka-startup-viagra
http://www.slideshare.net/dmc500hats/how-to-pitch-a-vc-aka-startup-viagra
http://www.slideshare.net/dmc500hats/how-to-pitch-a-vc-aka-startup-viagra
http://www.slideshare.net/dmc500hats/how-to-pitch-a-vc-aka-startup-viagra
http://research.microsoft.com/en-us/um/people/simonpj/papers/proposal.html
http://research.microsoft.com/en-us/um/people/simonpj/papers/proposal.html
http://research.microsoft.com/en-us/um/people/simonpj/papers/proposal.html
http://research.microsoft.com/en-us/um/people/simonpj/papers/proposal.html

Further reading

Girosi - Equivalence between sparse approximation and SVM
ftp://publications.ai.mit.edu/ai-publications/pdf/AIM-1606.pdf
. Smola, Schélkopf, Miller - Kernels and Regularization

hitp://alex.smola.org/teaching/berkeley2012/slides/Smola1998connection.pdf

* Aronszajn - RKHS paper (the one that started it all)
http://www.ams.org/journals/tran/1950-068-03/S0002-9947-1950-0051437-7 /home.html

. Schélkopf, Herbrich, Smola - Generalized Representer Theorem
hitp://alex.smola.org/papers/2001/SchHerSmoO01.pdf

. Hofmann, Scholkopf, Smola - Kernel Methods in Machine Learning
hitp://alex.smola.org/papers/2008/HofSchSmo08.pdf

. Teo, Globerson, Roweis and Smola - Convex learning with Invariances

http://books.nips.cc/papers/files/nips20/NIPS2007 1047.pdf

. Caetano, McAuley, Le, Smola - Learning Graph Matching
hitp://alex.smola.org/papers/2009/Caetanoetal09.pdf

Keshet and McAllester - Tighter bounds for ramp loss
http://ttic.uchicago.edu/~ jkeshet/papers/McAllesterKe 11.pdf

. Chapelle, Do, Le, Smola, Teo - Ramp loss examples
hitp://alex.smola.org/papers/2009/Chapelleetal09.pdf
* Platt - Sequential Minimal Optimization

http://research.microsoft.com/en-us/um/people/jplatt/smoTR.pdf

. Joachims - Multivariate performance measures
http://www.cs.cornell.edu/people/ti/svm_light/svm_perf.html

http://www.ams.org/journals/tran/1950-068-03/S0002-9947-1950-0051437-7/home.html
http://www.ams.org/journals/tran/1950-068-03/S0002-9947-1950-0051437-7/home.html
http://books.nips.cc/papers/files/nips20/NIPS2007_1047.pdf
http://books.nips.cc/papers/files/nips20/NIPS2007_1047.pdf
http://ttic.uchicago.edu/~jkeshet/papers/McAllesterKe11.pdf
http://ttic.uchicago.edu/~jkeshet/papers/McAllesterKe11.pdf
http://research.microsoft.com/en-us/um/people/jplatt/smoTR.pdf
http://research.microsoft.com/en-us/um/people/jplatt/smoTR.pdf
http://www.cs.cornell.edu/people/tj/svm_light/svm_perf.html
http://www.cs.cornell.edu/people/tj/svm_light/svm_perf.html

