
Scalable Machine Learning
6. Kernels

Alex Smola
Yahoo! Research and ANU
http://alex.smola.org/teaching/berkeley2012

Stat 260 SP 12

http://alex.smola.org/teaching/berkeley2012
http://alex.smola.org/teaching/berkeley2012

6. Kernels

Outline
• Kernels

• Hilbert Spaces
• Regularization theory
• Kernels on strings, sets, graphs, images

• Efficient algorithms
• Dual space (using α)
• Reduced dimensionality (low rank expanions)
• Function space (using fast Kα)
• Primal space (hashing & random kitchen sinks)

• Structured estimation
• Sequence annotation and segmentation
• Ranking and graph matching
• Ramp loss, consistency, and invariances

Function classes

Functional Analysis Basics

Functional Analysis 101
• Banach space B

• Normed vector space
• Linear functions on B induce bilinear forms

Express as inner products

• Examples
• l1 (absolutely summable series)
• l∞ (bounded series)
• l2 (square summable series)

f(ax+ b) = af(x) + f(b) and [af + g](x) = af(x) + g(x)

f(x) =: hf, xi

• Dual Norm

Functional Analysis 101

kvk := sup
u:kuk1

hu, vi

Functional Analysis 101
• Operator norm

• For Euclidean space this is the largest singular value
of the matrix.

• Other norms
• Trace norm - sum over singular values
• Frobenius norm - sum over squared singular values

A : B ! B0 hence kAk = sup
u2B,v2B0

hv,Aui

kMk
Trace

= trM for M ⌫ 0 and kMk
Frob

=

⇥
trMM>⇤ 1

2

Duality 101
• Fenchel-Legendre dual

• Connection to dual norm via indicator function

• Dual norm via dual of characteristic function
on unit ball

• Convexity follows via sup over linear functions
• Useful, e.g. for general SVM problems

f⇤(v) = sup
u

hu, vi � f(u)

kvk = sup
u:kuk1

hu, vi = sup
u

hu, vi � ⇠U1(u)

Translation table
vector function

matrix operator

vector space Banach Space (or Hilbert Space)

norm norm

eigenvalue eigenvalue

eigenvector eigenfunction

transpose adjoint

symmetric matrix self-adjoint operator

finite dimensional infinite dimensional

*Terms and conditions apply. Check the theorems.

Kernels

Solving XOR

• XOR not linearly separable
• Mapping into 3 dimensions makes it easily solvable

(x1, x2) (x1, x2, x1x2)

Kernels vs. Features
Problems with Constructing Features

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 38

Problems
Need to be an expert in the domain (e.g. Chinese
characters).
Features may not be robust (e.g. postman drops letter
in dirt).
Can be expensive to compute.

Solution
Use shotgun approach.
Compute many features and hope a good one is
among them.
Do this efficiently.

Feature Space Mapping
• Naive Nonlinearization Strategy

• Express data x in terms of features ɸ(x)
• Solve problem in feature space
• Requires explicit feature computation

• Kernel trick
• Write algorithm in terms of inner products
• Replace by
• Works well for dimension-insensitive methods
• Kernel matrix K is positive semidefinite

hx, x0i k(x, x0) := h�(x),�(x0)i

Quadratic KernelPolynomial Features

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 39

Quadratic Features in R2

�(x) :=

⇣
x

2
1,
p

2x1x2, x
2
2

⌘

Dot Product
h�(x), �(x

0
)i =

D⇣
x

2
1,
p

2x1x2, x
2
2

⌘
,

⇣
x

0
1
2
,

p
2x

0
1x

0
2, x

0
2
2
⌘E

= hx, x

0i2.
Insight
Trick works for any polynomials of order d via hx, x

0id.

Computational EfficiencyKernels

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 40

Problem
Extracting features can sometimes be very costly.
Example: second order features in 1000 dimensions.
This leads to 5005 numbers. For higher order polyno-
mial features much worse.

Solution
Don’t compute the features, try to compute dot products
implicitly. For some features this works . . .

Definition
A kernel function k : X ⇥ X ! R is a symmetric function
in its arguments for which the following property holds

k(x, x

0
) = h�(x), �(x

0
)i for some feature map �.

If k(x, x

0
) is much cheaper to compute than �(x) . . .

Polynomial KernelsPolynomial Kernels in Rn

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 41

Idea
We want to extend k(x, x

0
) = hx, x

0i2 to

k(x, x

0
) = (hx, x

0i + c)

d where c > 0 and d 2 N.

Prove that such a kernel corresponds to a dot product.
Proof strategy
Simple and straightforward: compute the explicit sum
given by the kernel, i.e.

k(x, x

0
) = (hx, x

0i + c)

d

=

mX

i=0

✓
d

i

◆
(hx, x

0i)i cd�i

Individual terms (hx, x

0i)i are dot products for some �

i

(x).

Kernel Conditions
Are all k(x, x

0
) good Kernels?

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 43

Computability
We have to be able to compute k(x, x

0
) efficiently (much

cheaper than dot products themselves).
“Nice and Useful” Functions
The features themselves have to be useful for the learn-
ing problem at hand. Quite often this means smooth
functions.

Symmetry
Obviously k(x, x

0
) = k(x

0
, x) due to the symmetry of the

dot product h�(x), �(x

0
)i = h�(x

0
), �(x)i.

Dot Product in Feature Space
Is there always a � such that k really is a dot product?

Mercer’s TheoremMercer’s Theorem

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 44

The Theorem
For any symmetric function k : X ⇥ X ! R which is
square integrable in X⇥ X and which satisfies

Z

X⇥X

k(x, x

0
)f (x)f (x

0
)dxdx

0 � 0 for all f 2 L2(X)

there exist �
i

: X ! R and numbers �

i

� 0 where
k(x, x

0
) =

X

i

�

i

�

i

(x)�

i

(x

0
) for all x, x

0 2 X.

Interpretation
Double integral is the continuous version of a vector-
matrix-vector multiplication. For positive semidefinite
matrices we haveX

i

X

j

k(x

i

, x

j

)↵

i

↵

j

� 0

PropertiesProperties of the Kernel

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 45

Distance in Feature Space
Distance between points in feature space via

d(x, x

0
)

2
:=k�(x) � �(x

0
)k2

=h�(x), �(x)i � 2h�(x), �(x

0
)i + h�(x

0
), �(x

0
)i

=k(x, x) + k(x

0
, x

0
) � 2k(x, x)

Kernel Matrix
To compare observations we compute dot products, so
we study the matrix K given by

K

ij

= h�(x

i

), �(x

j

)i = k(x

i

, x

j

)

where x

i

are the training patterns.
Similarity Measure
The entries K

ij

tell us the overlap between �(x

i

) and
�(x

j

), so k(x

i

, x

j

) is a similarity measure.

PropertiesProperties of the Kernel Matrix

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 46

K is Positive Semidefinite
Claim: ↵

>
K↵ � 0 for all ↵ 2 Rm and all kernel matrices

K 2 Rm⇥m. Proof:
mX

i,j

↵

i

↵

j

K

ij

=

mX

i,j

↵

i

↵

j

h�(x

i

), �(x

j

)i

=

*
mX

i

↵

i

�(x

i

),

mX

j

↵

j

�(x

j

)

+
=

�����

mX

i=1

↵

i

�(x

i

)

�����

2

Kernel Expansion
If w is given by a linear combination of �(x

i

) we get

hw, �(x)i =

*
mX

i=1

↵

i

�(x

i

), �(x)

+
=

mX

i=1

↵

i

k(x

i

, x).

A CounterexampleA Counterexample

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 47

A Candidate for a Kernel

k(x, x

0
) =

⇢
1 if kx� x

0k 1

0 otherwise
This is symmetric and gives us some information about
the proximity of points, yet it is not a proper kernel . . .

Kernel Matrix
We use three points, x1 = 1, x2 = 2, x3 = 3 and compute
the resulting “kernelmatrix” K. This yields

K =

2

4
1 1 0

1 1 1

0 1 1

3

5 and eigenvalues (

p
2�1)

�1
, 1 and (1�

p
2).

as eigensystem. Hence k is not a kernel.

ExamplesSome Good Kernels

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 48

Examples of kernels k(x, x

0
)

Linear hx, x

0i
Laplacian RBF exp (��kx � x

0k)
Gaussian RBF exp

�
��kx � x

0k2
�

Polynomial (hx, x

0i + ci)d , c � 0, d 2 N
B-Spline B2n+1(x � x

0
)

Cond. Expectation E

c

[p(x|c)p(x

0|c)]
Simple trick for checking Mercer’s condition
Compute the Fourier transform of the kernel and check
that it is nonnegative.

Linear KernelLinear Kernel

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 49

Laplacian KernelLaplacian Kernel

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 50

Gaussian KernelGaussian Kernel

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 51

Polynomial of order 3Polynomial (Order 3)

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 52

B3 Spline Kernel
B

3

-Spline Kernel

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 53

Mini Summary
Mini Summary

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 54

Features
Prior knowledge, expert knowledge
Shotgun approach (polynomial features)
Kernel trick k(x, x

0
) = h�(x), �(x

0
)i

Mercer’s theorem
Applications

Kernel Perceptron
Nonlinear algorithm automatically by query-replace

Examples of Kernels
Gaussian RBF
Polynomial kernels

Regularization

Problems with KernelsProblems with Kernels

Alexander J. Smola: An Introduction to Support Vectors and Regularization, Page 3

Myth
Support Vectors work because they map data into a
high-dimensional feature space.

And your statistician (Bellmann) told you . . .
The higher the dimensionality, the more data you need

Example: Density Estimation
Assuming data in [0, 1]

m, 1000 observations in [0, 1] give
you on average 100 instances per bin (using binsize 0.1

m)
but only 1

100 instances in [0, 1]

5.
Worrying Fact
Some kernels map into an infinite-dimensional space,
e.g., k(x, x

0
) = exp(� 1

2�2kx � x

0k2
)

Encouraging Fact
SVMs work well in practice . . .

Solving the MysterySolving the Mystery

Alexander J. Smola: An Introduction to Support Vectors and Regularization, Page 4

The Truth is in the Margins
Maybe the maximum margin requirement is what saves
us when finding a classifier, i.e., we minimize kwk2.

Risk Functional
Rewrite the optimization problems in a unified form

Rreg[f] =

mX

i=1

c(x

i

, y

i

, f(x

i

)) + ⌦[f]

c(x, y, f (x)) is a loss function and ⌦[f] is a regularizer.
⌦[f] =

�

2kwk
2 for linear functions.

For classification c(x, y, f (x)) = max(0, 1� yf (x)).
For regression c(x, y, f (x)) = max(0, |y � f (x)|� ✏).

Typical SVM lossTypical SVM Loss Functions

Alexander J. Smola: An Introduction to Support Vectors and Regularization, Page 5

Soft Margin Loss "-insensitive Loss

Soft Margin LossSoft Margin Loss

Alexander J. Smola: An Introduction to Support Vectors and Regularization, Page 6

Original Optimization Problem

minimize
w,⇠

1

2

kwk2
+ C

mX

i=1

⇠

i

subject to y

i

f (x

i

) � 1� ⇠

i

and ⇠

i

� 0 for all 1 i m

Regularization Functional

minimize
w

�

2

kwk2
+

mX

i=1

max(0, 1� y

i

f (x

i

))

For fixed f , clearly ⇠

i

� max(0, 1� y

i

f (x

i

)).
For ⇠ > max(0, 1 � y

i

f (x

i

)) we can decrease it such
that the bound is matched and improve the objective
function.
Both methods are equivalent.

Why Regularization?Why Regularization?

Alexander J. Smola: An Introduction to Support Vectors and Regularization, Page 7

What we really wanted . . .
Find some f (x) such that the expected loss
E[c(x, y, f (x))] is small.

What we ended up doing . . .
Find some f (x) such that the empirical average of the
expected loss Eemp[c(x, y, f (x))] is small.

Eemp[c(x, y, f (x))] =

1

m

mX

i=1

c(x

i

, y

i

, f(x

i

))

However, just minimizing the empirical average does not
guarantee anything for the expected loss (overfitting).

Safeguard against overfitting
We need to constrain the class of functions f 2 F some-
how. Adding ⌦[f] as a penalty does exactly that.

Some regularization ideasSome Regularization Terms

Alexander J. Smola: An Introduction to Support Vectors and Regularization, Page 8

Small Derivatives
We want to have a function f which is smooth on the
entire domain. In this case we could use

⌦[f] =

Z

X

k@
x

f (x)k2
dx = h@

x

f, @

x

fi.

Small Function Values
If we have no further knowledge about the domain X,
minimizing kfk2 might be sensible, i.e.,

⌦[f] = kfk2
= hf, fi.

Splines
Here we want to find f such that both kfk2 and k@2

x

fk2

are small. Hence we can minimize
⌦[f] = kfk2

+ k@2
x

fk2
= h(f, @

2
x

f), (f, @

2
x

f)i

RegularizationRegularization

Alexander J. Smola: An Introduction to Support Vectors and Regularization, Page 9

Regularization Operators
We map f into some Pf , which is small for desirable f

and large otherwise, and minimize
⌦[f] = kPfk2

= hPf, Pfi.
For all previous examples we can find such a P .

Function Expansion for Regularization Operator
Using a linear function expansion of f in terms of some
f

i

, that is for f (x) =

X

i

↵

i

f

i

(x) we can compute

⌦[f] =

*
P

X

i

↵

i

f

i

(x), P

X

j

↵

j

f

i

(x)

+
=

X

i,j

↵

i

↵

j

hPf

i

, Pf

j

i.

Regularization and KernelsRegularization and Kernels

Alexander J. Smola: An Introduction to Support Vectors and Regularization, Page 10

Regularization for ⌦[f] =

1
2kwk2

w =

X

i

↵

i

�(x

i

) =) kwk2
=

X

i,j

↵

i

↵

j

k(x

i

, x

j

)

This looks very similar to hPf

i

, Pf

j

i.
Key Idea
So if we could find a P and k such that

k(x, x

0
) = hPk(x, ·), Pk(x

0
, ·)i

we could show that using a kernel means that we are
minimizing the empirical risk plus a regularization term.

Solution: Greens Functions
A sufficient condition is that k is the Greens Function of
P

⇤
P , that is hP ⇤

Pk(x, ·), f(·)i = f (x).
One can show that this is necessary and sufficient.

Building KernelsBuilding Kernels

Alexander J. Smola: An Introduction to Support Vectors and Regularization, Page 11

Kernels from Regularization Operators:
Given an operator P

⇤
P , we can find k by solving the self

consistency equation
hPk(x, ·), Pk(x

0
, ·)i = k

>
(x, ·)(P ⇤

P)k(x

0
, ·) = k(x, x

0
)

and take f to be the span of all k(x, ·).
So we can find k for a given measure of smoothness.

Regularization Operators from Kernels:
Given a kernel k, we can find some P

⇤
P for which the

self consistency equation is satisfied.
So we can find a measure of smoothness for a given k.

Spectrum and KernelsSpectrum and Kernels

Alexander J. Smola: An Introduction to Support Vectors and Regularization, Page 12

Effective Function Class
Keeping ⌦[f] small means that f (x) cannot take on arbi-
trary function values. Hence we study the function class
F

C

=

⇢
f

����
1

2

hPf, Pfi C

�

Example
For f =

X

i

↵

i

k(x

i

, x) this implies 1

2

↵

>
K↵ C.

Kernel Matrix

K =

5 2

2 1

� Coefficients Function Values

Fourier RegularizationFourier Regularization

Alexander J. Smola: An Introduction to Support Vectors and Regularization, Page 13

Goal
Find measure of smoothness that depends on the fre-
quency properties of f and not on the position of f .

A Hint: Rewriting kfk2
+ k@

x

fk2

Notation: ˜

f (!) is the Fourier transform of f .

kfk2
+ k@

x

fk2
=

Z
|f (x)|2 + |@

x

f (x)|2dx

=

Z
| ˜

f (!)|2 + !

2| ˜

f (!)|2d!

=

Z | ˜

f (!)|2

p(!)

d! where p(!) =

1

1 + !

2
.

Idea
Generalize to arbitrary p(!), i.e. ⌦[f] :=

1

2

Z | ˆ

f (!)|2

p(!)

d!

Greens FunctionThe Greens Function

Alexander J. Smola: An Introduction to Support Vectors and Regularization, Page 14

Theorem
For regularization functionals ⌦[f] :=

1

2

Z | ˆ

f (!)|2

p(!)

d! the
self-consistency condition

hPk(x, ·), Pk(x

0
, ·)i = k

>
(x, ·)(P ⇤

P)k(x

0
, ·) = k(x, x

0
)

is satisfied if k has p(!) as its Fourier transform, i.e.,

k(x, x

0
) =

Z
exp(�ih!, (x � x

0
)i)p(!)d!

Consequences
small p(!) correspond to high penalty (regularization).
⌦[f] is translation invariant, that is ⌦[f (·)] = ⌦[f (·�x)].

ExamplesExamples

Alexander J. Smola: An Introduction to Support Vectors and Regularization, Page 15

Laplacian Kernel
k(x, x

0
) = exp(�kx� x

0k)
p(!) / (1 + k!k2

)

�1

Gaussian Kernel
k(x, x

0
) = e

�1
2�

�2kx�x

0k2

p(!) / e

�1
2�

2k!k2

Fourier transform of k shows regularization properties.
The more rapidly p(!) decays, the more high frequencies
are filtered out.

Rules of thumbRules of Thumb

Alexander J. Smola: An Introduction to Support Vectors and Regularization, Page 16

Fourier transform is sufficient to check whether k(x, x

0
)

satisfies Mercer’s condition: only check if ˜

k(!) � 0.
Example: k(x, x

0
) = sinc(x� x

0
).

˜

k(!) = �[�⇡,⇡](!), hence k is a proper kernel.
Width of kernel often more important than type of kernel
(short range decay properties matter).
Convenient way of incorporating prior knowledge, e.g.:
for speech data we could use the autocorrelation func-
tion.
Sum of derivatives becomes polynomial in Fourier
space.

Polynomial KernelsPolynomial Kernels

Alexander J. Smola: An Introduction to Support Vectors and Regularization, Page 17

Functional Form
k(x, x

0
) = (hx, x

0i)

Series Expansion
Polynomial kernels admit an expansion in terms of Leg-
endre polynomials (LN

n

: order n in RN).

k(x, x

0
) =

1X

n=0

b

n

L

n

(hx, x

0i)

Consequence:
L

n

(and their rotations) form an orthonormal basis on the
unit sphere, P

⇤
P is rotation invariant, and P

⇤
P is diago-

nal with respect to L

n

. In other words
(P

⇤
P)L

n

(hx, ·i) = b

�1
n

L

n

(hx, ·i)

Polynomial KernelsPolynomial Kernels II

Alexander J. Smola: An Introduction to Support Vectors and Regularization, Page 18

Decay properties of b

n

determine smoothness of func-
tions specified by k(hx, x

0i).
For N !1 all terms of LN

n

but xn vanish, hence a Taylor
series k(x, x

0
) =

P
i

a

i

hx, x

0ii gives a good guess.
Inhomogeneous Polynomial

k(x, x

0
) = (hx, x

0i + 1)

p

a

n

=

✓
p

n

◆
if n p

Vovk’s Real Polynomial

k(x, x

0
) =

1� hx, x

0ip

1� (hx, x

0i)
a

n

= 1 if n < p

Mini SummarySummary

Alexander J. Smola: An Introduction to Support Vectors and Regularization, Page 19

Regularized Risk Functional
From Optimization Problems to Loss Functions
Regularization
Safeguard against Overfitting

Regularization and Kernels
Examples of Regularizers
Regularization Operators
Greens Functions and Self Consistency Condition

Fourier Regularization
Translation Invariant Regularizers
Regularization in Fourier Space
Kernel is inverse Fourier Transformation of Weight

Polynomial Kernels and Series Expansions

String Kernel (pre)History
B

1
�

1��

�
1��

�

1��

�

�

1��

1��

1

END

AB

START

A

The Kernel Perspective
• Design a kernel implementing good features

• Many variants
• Bag of words (AT&T labs 1995, e.g. Vapnik)
• Matching substrings (Haussler, Watkins 1998)
• Spectrum kernel (Leslie, Eskin, Noble, 2000)
• Suffix tree (Vishwanathan, Smola, 2003)
• Suffix array (Teo, Vishwanathan, 2006)
• Rational kernels (Mohri, Cortes, Haffner, 2004 ...)

k(x, x0) = h⇥(x),⇥(x0)i and f(x) = h⇥(x), wi =
X

i

�ik(xi, x)

Bag of words
• At least since 1995 known in AT&T labs

(to be or not to be) (be:2, or:1, not:1, to:2)

• Joachims 1998: Use sparse vectors
• Haffner 2001: Inverted index for faster training
• Lots of work on feature weighting (TF/IDF)
• Variants of it deployed in many spam filters

k(x, x0) =
X

w

nw(x)nw(x
0) and f(x) =

X

w

�wnw(x
0)

Substring (mis)matching
• Watkins 1998+99 (dynamic alignment, etc)
• Haussler 1999 (convolution kernels)

• In general O(x x’) runtime
(e.g. Cristianini, Shawe-Taylor, Lodhi, 2001)

• Dynamic programming solution for pair-HMM

k(x, x0) =
X

w2x

X

w

02x

0

�(w,w0)

B

1
�

1��

�
1��

�

1��

�

�

1��

1��

1

END

AB

START

A

Spectrum Kernel
• Leslie, Eskin, Noble & coworkers, 2002
• Key idea is to focus on features directly

• Linear time operation to get features
• Limited amount of mismatch

(exponential in number of missed chars)
• Explicit feature construction

(good & fast for DNA sequences)

Suffix Tree Kernel
• Vishwanathan & Smola, 2003 (O(x + x’) time)
• Mismatch-free kernel + arbitrary weights

• Linear time construction
(Ukkonen, 1995)

• Find matches for second
string in linear time
(Chang & Lawler, 1994)

• Precompute weights on path

k(x, x0) =
X

w

�wnw(x)nw(x
0)

Are we done?

• Large vocabulary size
• Need to build dictionary
• Approximate matches are still a problem
• Suffix tree/array is storage inefficient (40-60x)
• Realtime computation
• Memory constraints (keep in RAM)
• Difficult to implement

stay tuned

Graph Kernels
Eigenvectors

Alexander J. Smola: An Introduction to Support Vectors and Regularization, Page 11

GraphsGraphs

Alexander J. Smola: An Introduction to Support Vectors and Regularization, Page 8

Basic Definitions
Connectivity matrix W where
W

ij

= 1 if there is an edge from
vertex i to j (W

ij

= 0 otherwise).
For undirected graphs W

ii

= 0.
In this talk only undirected, un-
weighted graphs:
W

ij

2 {0, 1} instead of R+
0 .

Graph Laplacian
L := W �D and ˜

L := D

�1
2
LD

�1
2

= D

�1
2
WD

�1
2 � 1

where D = diag(L

~

1), i.e., D
ii

=

P
j

W

ij

. This talk only ˜

L

Graph SegmentationGraph Segmentation

Alexander J. Smola: An Introduction to Support Vectors and Regularization, Page 9

Cuts and Associations
cut(A, B) =

X

i2A,j2B

W

ij

cut(A, B) tells us how well A and B are connected.
Normalized Cut

Ncut(A, B) =

cut(A, B)

cut(A, V)

+

cut(A, B)

cut(B, V)

Connection to Normalized Graph Laplacian

min

A[B=V

Ncut(A, B) = min

y2{±1}m

y

>
(D �W)y

y

>
Dy

Proof idea: straightforward algebra
Approximation: use eigenvectors / eigenvalues in-
stead

Eigensystem of the Graph LaplacianEigensystem of ˜

L

Alexander J. Smola: An Introduction to Support Vectors and Regularization, Page 10

The spectrum of ˜

L lies in [0, 2] (via Gerschgorin’s Theo-
rem)
Smallest eigenvalue/vector is (�1, v1) = (0,

~

1)

Second smallest (�2, v2) is Fiedler vector, which seg-
ments graph using approximate min-cut (cf. tutorials).
Larger �

i

correspond to v

i

which vary more clusters.
For grids ˜

L is the discretization of the conventional
Laplace Operator

WVUTPQRS
x� 2�

WVUTPQRS
x� �

ONMLHIJK
x

WVUTPQRS
x + �

Key Idea: use the v

i

to build a hierarchy of increasingly
complex functions on the graph.

EigenvectorsEigenvectors

Alexander J. Smola: An Introduction to Support Vectors and Regularization, Page 11

Regularization operator on graphBuilding P

⇤
P on the Graph

Alexander J. Smola: An Introduction to Support Vectors and Regularization, Page 12

Functions on the Graph
Since we have only exactly n vertices, all f are f 2 Rn.

Regularization Operator
M := P

⇤
P is therefore a matrix M 2 Rn⇥n. Choosing the

v

i

as complexity hierarchy we set M
M =

X

i

r(�

i

)v

i

v

>
i

and hence M = r(

˜

L)

Consequently, for f =

P
i

�

i

v

i

we have Mf =

P
i

r(�

i

)v

i

.
Some Choices for r

r(�) = � + ✏ (Regularized Laplacian)
r(�) = exp(��) (Diffusion on Graphs)
r(�) = (a� �)

�p (p-Step Random Walk)

KernelsKernels

Alexander J. Smola: An Introduction to Support Vectors and Regularization, Page 13

Self Consistency Equation
Matrix notation for k

>
(x, ·)(P ⇤

P)k(x

0
, ·) = k(x, x

0
):

KM

�1
K = K and hence K = M

�1

Here we take the pseudoinverse if M�1 does not exist.
Regularized Laplacian

r(�) = �+✏, hence M =

˜

L+✏1 and K = (

˜

L+✏1)

�1. Work
with K

�1!
Diffusion on Graphs

r(�) = exp(��), hence M = exp(�

˜

L) and K = exp(��

˜

L).
Here K

ij

is the probability of reaching i from j.
p-Step Random Walk
For r(�) = (a� �)

�p we have K = (a1� ˜

L)

p.
Weighted combination over several random walk steps.

Graph Laplacian KernelRegularized Laplacian

Alexander J. Smola: An Introduction to Support Vectors and Regularization, Page 14

Diffusion KernelDiffusion Kernel

Alexander J. Smola: An Introduction to Support Vectors and Regularization, Page 15

4-Step Random Walk4-Step Random Walk

Alexander J. Smola: An Introduction to Support Vectors and Regularization, Page 16

Fast computation

• Primal space computation
• Weisfeiler-Lehman hash
• Heat equation

Watson, Bessel Functions

Midterm Project Presentations
• Midterm project presentations

• March 13, 4-7pm
• Send the PDF (+supporting material) to Dapo by

March 12, midnight
• Questions to answer

• What (you will do, what you have already done)
• Why (it matters)
• How (you’re going to achieve it)

• Rules
• 10 minutes per team (6 slides maximum)
• 10 pages supporting material (maximum)

Regularization Summary

Regularization
• Feature space Expansion

• Kernel Expansion

• Function Expansion

minimize
�

X

i

l (yi, [X�]i) +
�

2
k�k2

minimize
↵

X

i

l
�
yi, [XX>↵]i

�
+

�

2
↵>XX>↵

minimize
↵

X

i

l (yi, fi) +
�

2
f>(XX>)�1f

f = X� = X>X↵

Feature Space Expansion

• Linear methods
• Design feature space
• Solve problem there
• Fast ‘primal space’ methods for SVM solvers
• Stochastic gradient descent solvers

minimize
�

X

i

l (yi, [X�]i) +
�

2
k�k2

Kernel Expansion

• Using the kernel trick

• Optimization via
• Interior point solvers
• Coefficient-wise updates (e.g. SMO)
• Fast matrix vector products in K

minimize
↵

X

i

l
�
yi, [XX>↵]i

�
+

�

2
↵>XX>↵

minimize
↵

X

i

l (yi, [K↵]i) +
�

2
↵>K↵

Function Expansion

• Using the kernel trick yields Gaussian Process

• Inference via
• Fast inverse kernel matrix (e.g. graph kernel)
• Low-rank approximation of K
• Occasionally useful for distributed inference

minimize
↵

X

i

l (yi, fi) +
�

2
f>(XX>)�1f

minimize
↵

X

i

l (yi, fi) +
�

2
f>K�1f

Optimization Algorithms

Efficient Optimization
• Dual Space

Solve the original SVM dual problem efficiently
(SMO, LibLinear, SVMLight, ...)

• Subspace
Find a subspace that contains a good approximation to the
solution
(Nystrom, SGMA, Pivoting, Reduced Set)

• Function values
Explicit expansion of regularization operator
(graphs, strings, Weisfeiler-Lehman)

• Parameter space
Efficient linear parametrization without projection
(hashing, random kitchen sinks, multipole)

Dual Space

Support Vector Machine

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2012/01/14 15:35

12 A Tutorial Introduction

,
w

{x | <w x> + b = 0},

{x | <w x> + b = −1},
{x | <w x> + b = +1},

x2
x1

Note:
<w x1> + b = +1
<w x2> + b = −1

=> <w (x1−x2)> = 2

=> (x1−x2) =w
||w||< >

,
,

,

, 2
||w||

yi = −1

yi = +1❍
❍

❍

❍
❍

◆

◆

◆

◆

Figure 1.5 A binary classification toy problem: separate balls from diamonds. The
optimal hyperplane (1.24) is shown as a solid line. The problem being separable, there
exists a weight vector w and a threshold b such that yi(〈w,xi〉 + b) > 0 (i = 1, . . . ,m).
Rescaling w and b such that the point(s) closest to the hyperplane satisfy | 〈w,xi〉+b| = 1,
we obtain a canonical form (w, b) of the hyperplane, satisfying yi(〈w,xi〉 + b) ≥ 1. Note
that in this case, the margin, measured perpendicularly to the hyperplane, equals 2/‖w‖.
This can be seen by considering two points x1,x2 on opposite sides of the margin, that is,
〈w,x1〉+ b = 1, 〈w,x2〉+ b = −1, and projecting them onto the hyperplane normal vector
w/‖w‖.

of w, as in (1.25). If ‖w‖ were 1, then the left hand side of (1.26) would equal
the distance from xi to the hyperplane (cf. (1.24)). In general, we have to divide
yi(〈w,xi〉 + b) by ‖w‖ to transform it into this distance. Hence, if we can satisfy
(1.26) for all i = 1, . . . ,m with an w of minimal length, then the overall margin
will be maximized.

A more detailed explanation of why this leads to the maximummargin hyperplane
will be given in Chapter 7. A short summary of the argument is also given in
Figure 1.5.

The function τ in (1.25) is called the objective function, while (1.26) are called
inequality constraints. Together, they form a so-called constrained optimization
problem. Problems of this kind are dealt with by introducing Lagrange multipliers
αi ≥ 0 and a Lagrangian7Lagrangian

L(w, b,α) =
1

2
‖w‖2 −

m
∑

i=1

αi (yi(〈xi,w〉+ b)− 1) . (1.27)

The Lagrangian L has to be minimized with respect to the primal variables w and
b and maximized with respect to the dual variables αi (in other words, a saddle
point has to be found). Note that the constraint has been incorporated into the
second term of the Lagrangian; it is not necessary to enforce it explicitly.

7. Henceforth, we use boldface Greek letters as a shorthand for corresponding vectors
α = (α1, . . . ,αm).

dual problem

Kij = yiyj hxi, xji

w =
X

i

↵iyixi

minimize

↵

1

2

↵>K↵� 1

>↵

subject to

X

i

↵iyi = 0

↵i 2 [0, C]

minimize

w,b

1

2

kwk2 + C

X

i

⇠i

subject to yi [hw, xii+ b] � 1� ⇠i and ⇠i � 0

Problems
• Kernel matrix may be huge

• Cannot store it in memory
• Expensive to compute
• Expensive to evaluate linear functions

• Quadratic program is too large
Cubic cost for naive Interior Point solution

• Only evaluate rows
• Cache values
• Cache linear function values
• Solve subsets of the problem and iterate

SubproblemChunking

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 20

Full problem (using ¯Kij := yiyjk(xi, xj))

minimize 1

2

mX

i,j=1

↵i↵j
¯Kij �

mX

i=1

↵i

subject to
mX

i=1

↵iyi = 0 and ↵i 2 [0, C] for all 1 i m

Constrained problem: pick subset S

minimize 1

2

X

i,j2S

↵i↵j
¯Kij �

X

i2S

↵i

2

4
1�

X

j 62S

Kij↵j

3

5
+ const.

subject to
X

i2S

↵iyi = �
X

i 62S

↵iyi and ↵i 2 [0, C] for all i 2 S

Active Set Method

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 18

Active set strategy

solve along this line

Active set strategyActive Set Method

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 19

solve along this line

Subset Selection StrategiesChunking Strategies

Alex J. Smola (Australian National University): Kernel Methods for Large Scale and Online Problems

often fastest

Improved Sequential Minimal Optimization
Dual Cached Loops

Storage Speeds

• Algorithms iterating data from disk are disk bound
• Increasing number of cores makes this worse
• True for full memory hierarchy (10x per level)

Reading Thread Training Thread

Update

RAM

Weight Vector

RAM

Cached Data
(Working Set)

Disk

Dataset

Read

(Random
Access)

Read

(Sequential
Access)

Load

(Random
Access)

Figure 1: Basic data flow diagram of the optimiza-
tion algorithm. A reader keeps on filling the main
memory from disk while the optimization thread(s)
perform updates on the data available in RAM. Both
threads operate asynchronously.

through data from disk should take advantage of the data
they already have in main memory while waiting for more
data to arrive from disk. Obviously, the same rationale ap-
plies to a sequence of storage systems with di↵erent capac-
ity/bandwidth characteristics. To make things somewhat
more explicit we list a range of such systems below:

System Capacity Bandwidth IOP/s
Disk 3TB 150MB/s 102

SSD 256GB 500MB/s 5 · 104
RAM 16GB 30GB/s 108

Cache 16MB 100GB/s 109

In the present paper we focus on two parts of this hierarchy
— disk and memory (see Figure 1). This already a↵ords
quite dramatic improvements in terms of speed relative to
sequential algorithms. In a nutshell our algorithm does the
following:

Iterate over the data in main memory while stream-
ing data from disk. Evict primarily examples
from main memory that are “uninformative”.

A naive approach which takes, e.g. stochastic gradient de-
scent steps based on the importance of examples would likely
run afoul of data weighting problems — informative exam-
ples need not have extended statistical weight but rather
only a higher influence on the choice of objective function.
One way of dealing with this issue is to resort to dual up-
dates. That is, we consider the dual optimization problem
to SVMs (and related problems) and judiciously update the
associated Lagrange multipliers. This leads to the following
algorithm:

Reader
while not converged do

read example (x, y) from disk
if bu↵er full then evict random (x0

, y

0) from memory
insert new (x, y) into ring bu↵er in memory

end while

Trainer
while not converged do

randomly pick example (x, y) from memory
update dual parameter ↵
update weight vector w
if deemed to be uninformative then evict (x, y) from
memory

end while

1.3 Enterprise Scale Solvers
To place our research in perspective note that industrial

datasets regularly exceed the capacities o↵ered by single
computers in terms of both storage and computation. This
means that distributed inference techniques are required.
Unfortunately, large server centers often come with rather
severe restrictions on reliability, inter-machine latency, com-
munication trees, delays, etc. such that it is desirable to find
algorithms which compute estimates using a bare minimum
of communication. Note that not all estimation problems are
amenable to e�cient high-latency scenarios. For instance,
latent variable models typically require excellent communi-
cation and great care needs to be taken to obtain fast esti-
mates [?, 28]. A common attribute of these models is that
they have a large degree of symmetry and non-convexity in
their parametrization.
Fortunately much of what is commonly known as gener-

alized linear models can be addressed with convex solvers.
That is, the estimation problems can be decomposed e�-
ciently into parts which are guaranteed to yield very similar
solutions. In statistical learning terminology this is known
as stability of the solution space and there exists a rich body
of research [5, 32, 7, 12] extolling the desirable theoretical
properties of convexly penalized estimation problems. It is
therefore natural to take advantage of these properties in
terms of implementations. For instance, [35] show that it is
possible to perform stochastic gradient descent on individ-
ual processors independently, using random sub-samples of
the data and to average the parameter estimates afterwards
and simultaneously reaping the benefits of parallelization.
Note that in previous work [?] suggested a similar averag-
ing strategy, however their theoretical analysis only showed
that averaging does not hurt, rather than actually accelerate
convergence. It is in the spirit of [35] that we approach the
problem of estimation:

1. Decompose (possibly with oversampling) the data for
several machines.

2. Solve the estimation problem per machine as e�ciently
as possible.

3. Average the solutions between machines to obtain a
final estimate.

Much work in the analysis of [35] was invested into proving
that the stochastic gradient descent solutions on subsets are
su�ciently independent for averaging to be actually benefi-
cial. If we treat the optimization step as a standard batch
problem this obstacle disappears. In this case we can appeal
directly to the asymptotic analysis of [22] to see that averag-
ing is beneficial: in particular, [22] show that the parameter
distribution of a penalized empirical risk minimizer w⇤|X,Y

conditioned on some data X,Y is asymptotically normal.
This means that if we obtain such estimates based on vari-
ous subsets of data via w⇤|Xi, Yi, we will be able to aggregate
this to an improved joint estimate via 1

n

Pn
i=1

w

⇤|Xi, Yi.
Consequently, in the present paper we are primarily con-

cerned with step 2 of the above approach — to find the most
e�cient way of solving a convex optimization problem on a
single machine. While we primarily focus on linear SVMs in
this paper, our ideas are fairly generic and can be applied
to other convex losses including losses used in structured
prediction [?].
Outline. We will briefly review dual descent algorithms

for linear Support Vector Machines in Section 2. Subse-

Key Idea: recycle data once we load it in memory

Dataflow

Reading Thread Training Thread

Update

RAM

Weight Vector

RAM

Cached Data
(Working Set)

Disk

Dataset

Read

(Random
Access)

Read

(Sequential
Access)

Load

(Random
Access)

Figure 1: Basic data flow diagram of the optimiza-
tion algorithm. A reader keeps on filling the main
memory from disk while the optimization thread(s)
perform updates on the data available in RAM. Both
threads operate asynchronously.

through data from disk should take advantage of the data
they already have in main memory while waiting for more
data to arrive from disk. Obviously, the same rationale ap-
plies to a sequence of storage systems with di↵erent capac-
ity/bandwidth characteristics. To make things somewhat
more explicit we list a range of such systems below:

System Capacity Bandwidth IOP/s
Disk 3TB 150MB/s 102

SSD 256GB 500MB/s 5 · 104
RAM 16GB 30GB/s 108

Cache 16MB 100GB/s 109

In the present paper we focus on two parts of this hierarchy
— disk and memory (see Figure 1). This already a↵ords
quite dramatic improvements in terms of speed relative to
sequential algorithms. In a nutshell our algorithm does the
following:

Iterate over the data in main memory while stream-
ing data from disk. Evict primarily examples
from main memory that are “uninformative”.

A naive approach which takes, e.g. stochastic gradient de-
scent steps based on the importance of examples would likely
run afoul of data weighting problems — informative exam-
ples need not have extended statistical weight but rather
only a higher influence on the choice of objective function.
One way of dealing with this issue is to resort to dual up-
dates. That is, we consider the dual optimization problem
to SVMs (and related problems) and judiciously update the
associated Lagrange multipliers. This leads to the following
algorithm:

Reader
while not converged do

read example (x, y) from disk
if bu↵er full then evict random (x0

, y

0) from memory
insert new (x, y) into ring bu↵er in memory

end while

Trainer
while not converged do

randomly pick example (x, y) from memory
update dual parameter ↵
update weight vector w
if deemed to be uninformative then evict (x, y) from
memory

end while

1.3 Enterprise Scale Solvers
To place our research in perspective note that industrial

datasets regularly exceed the capacities o↵ered by single
computers in terms of both storage and computation. This
means that distributed inference techniques are required.
Unfortunately, large server centers often come with rather
severe restrictions on reliability, inter-machine latency, com-
munication trees, delays, etc. such that it is desirable to find
algorithms which compute estimates using a bare minimum
of communication. Note that not all estimation problems are
amenable to e�cient high-latency scenarios. For instance,
latent variable models typically require excellent communi-
cation and great care needs to be taken to obtain fast esti-
mates [?, 28]. A common attribute of these models is that
they have a large degree of symmetry and non-convexity in
their parametrization.
Fortunately much of what is commonly known as gener-

alized linear models can be addressed with convex solvers.
That is, the estimation problems can be decomposed e�-
ciently into parts which are guaranteed to yield very similar
solutions. In statistical learning terminology this is known
as stability of the solution space and there exists a rich body
of research [5, 32, 7, 12] extolling the desirable theoretical
properties of convexly penalized estimation problems. It is
therefore natural to take advantage of these properties in
terms of implementations. For instance, [35] show that it is
possible to perform stochastic gradient descent on individ-
ual processors independently, using random sub-samples of
the data and to average the parameter estimates afterwards
and simultaneously reaping the benefits of parallelization.
Note that in previous work [?] suggested a similar averag-
ing strategy, however their theoretical analysis only showed
that averaging does not hurt, rather than actually accelerate
convergence. It is in the spirit of [35] that we approach the
problem of estimation:

1. Decompose (possibly with oversampling) the data for
several machines.

2. Solve the estimation problem per machine as e�ciently
as possible.

3. Average the solutions between machines to obtain a
final estimate.

Much work in the analysis of [35] was invested into proving
that the stochastic gradient descent solutions on subsets are
su�ciently independent for averaging to be actually benefi-
cial. If we treat the optimization step as a standard batch
problem this obstacle disappears. In this case we can appeal
directly to the asymptotic analysis of [22] to see that averag-
ing is beneficial: in particular, [22] show that the parameter
distribution of a penalized empirical risk minimizer w⇤|X,Y

conditioned on some data X,Y is asymptotically normal.
This means that if we obtain such estimates based on vari-
ous subsets of data via w⇤|Xi, Yi, we will be able to aggregate
this to an improved joint estimate via 1

n

Pn
i=1

w

⇤|Xi, Yi.
Consequently, in the present paper we are primarily con-

cerned with step 2 of the above approach — to find the most
e�cient way of solving a convex optimization problem on a
single machine. While we primarily focus on linear SVMs in
this paper, our ideas are fairly generic and can be applied
to other convex losses including losses used in structured
prediction [?].
Outline. We will briefly review dual descent algorithms

for linear Support Vector Machines in Section 2. Subse-

no equality constraint

Convex Optimization
• SVM optimization problem (without b)

• Dual problem

• Coordinate descent (SMO style - really simple)

quently Section 3 gives a detailed description of the nested
loop used in traversing through data in core memory and
streaming from disk. Experimental results are provided in
Section 4 and we conclude with a discussion in Section 5.

2. DUAL COORDINATE DESCENT

2.1 Support Vector Classification
In the following we assume that we are given n exam-

ples xi 2 X and labels yi 2 {±1} drawn independently and
identically from some distribution (xi, yi) ⇠ p(x, y). It is
our goal to find some function f : X ! R which minimizes
the misclassification error, e.g. by minimizing the probabil-
ity that yf(x) 0. This constitutes the most basic of all
estimation problems, namely that of binary classification.
We simplify things further by assuming that X = Rd. This
assumption will be relaxed subsequently when we discuss
how to expand features on the fly. The primal formulation
of a linear SVM can be written as follows2 [10]:

minimize
w2Rd

1
2
kwk2 + C

nX

i=1

max{0, 1� w

>
yixi} (1)

Using standard convex optimization tools [6] the above prob-
lem can be rewritten in its dual form

minimize
↵

D(↵) :=
1
2
↵

>
Q↵� ↵

>1 (2a)

subject to 0 ↵ C1. (2b)

Here, Q is an n⇥n matrix whose entries are given by Qij =
yiyjx

>
i xj , and 1 is the vector of all ones. The minimizer w⇤

of (1) and the minimizer ↵⇤ of (2) are related by the primal
dual connection: w

⇤ =
Pn

i=1

↵

⇤
i yixi. The dual problem (2)

is a Quadratic Program (QP) with box constraints, and the
i-th coordinate ↵i corresponds to the i-th example (xi, yi).

2.2 Dual Updates
The following coordinate descent scheme can be used to

minimize the dual [14]:

• Initialize ↵

1 = 0.
• At iteration t select coordinate it

• Update ↵

t to ↵

t+1 via

↵

t+1

it = argmin
0↵itC

D(↵t + (↵it � ↵

t
it)eit) (3a)

↵

t+1

i = ↵

t
i if i 6= it

(3b)

Here, ei denotes the i-th standard basis vector. Since D(↵)
is a QP, the one-variable subproblem (3a) can be solved
exactly (see [14] for details):

↵

t+1

it = min

⇢
max

⇢
0,↵t

it �
ritD(↵t)

Qitit

�
, C

�
. (4)

Here, riD(↵) denotes the i-th coordinate of the gradient.
The above updates are also closely related to implicit up-
dates of [17, 18, 9] and the passive aggressive updates of

2We omit an explicit bias term since this greatly simplifies
the dual problem while remaining entirely general since the
bias can be introduced easily as an additional coordinate in
the data.

[?]. If we maintain w

t :=
Pn

i=1

↵

t
iyixi, then the gradient

ritD(↵) can be computed e�ciently using

ritD(↵) = e>
it(Q↵� 1) = w

t
yitxit � 1. (5)

w

t+1 is kept related to ↵

t+1 by computing

w

t+1 = w

t + (↵t+1

i � ↵

t
i)yixi. (6)

A naive choice for it is to traverse examples periodically,
which means that it = t mod n. We call an iteration from
↵

nk to ↵

n(k+1) an outer iteration, contrasted with an inner
iteration from ↵

t to ↵

t+1. An alternative is to randomly
permute the index and to access examples in arbitrary or-
der. In that case, it = �

k(t mod n) where �

k 2 Sn is a
permutation.

3. PROPOSED METHOD
We assume that the entire dataset cannot fit in RAM,

therefore there must exist an ⌦ < m, which is an upper
bound for the number of training data which can be stored
in the RAM. Our algorithm, StreamSVM, maintains a work-
ing set A corresponding to the indices of the data points in
memory and ensures that |A| ⌦ at all times. The major
challenge is to select the active set carefully. Towards this
end, we use a strategy that is inspired by shrinking.
A remarkable property of the dual problem is that we

can potentially reduce the size of optimization problem by
carefully choosing the subset of the data. This property was
first observed by [15] and is widely used in popular solvers
such as SVMLight[15], LibSVM [8], and Liblinear [13]. We
also aim to utilize the property and solve the entire problem
e�ciently. First we look at the following fact:

Fact 1. Let ↵

⇤ be the optimal solution of (2). Define
A

in and A

bo as {i|↵⇤
i = 0} and {i|↵⇤

i = C} respectively.
Any optimal solution of

minimize
↵

D(↵)

subject to ↵i =

(
0 if i 2 A

in

C if i 2 A

bo

is also an optimal solution of (2).

A

in is called the inactive set, Abo the bound set, and A

ac :=
{i|0 < ↵

⇤
i < C} the active set. If w

⇤ denotes the opti-
mal primal solution corresponding to ↵

⇤, then using the
KKT conditions [6] it follows that [?] i 2 A

in implies that
w

⇤>
yixi > 1. Similarly, w⇤>

yixi < 1 for all i 2 A

bo. Intu-
itively, what this means is that data which is in the inactive
set are well classified and the points in the bound set are
not. Usually A

ac is a small fraction of the original dataset,
and therefore it is advantageous to focus most of the atten-
tion of the solver on identifying the coordinates in A

ac and
optimizing them.
One way to identify the active set is to use projected gra-

dients. For the bound constrained optimization problem (2)
the i-th component of the projected gradient r⇡

i D(↵) can
be computed via

r⇡
i D(↵) :=

8
><

>:

0 if ↵i = 0 and riD(↵) > 0

0 if ↵i = C and riD(↵) < 0

riD(↵) otherwise .

(8)

quently Section 3 gives a detailed description of the nested
loop used in traversing through data in core memory and
streaming from disk. Experimental results are provided in
Section 4 and we conclude with a discussion in Section 5.

2. DUAL COORDINATE DESCENT

2.1 Support Vector Classification
In the following we assume that we are given n exam-

ples xi 2 X and labels yi 2 {±1} drawn independently and
identically from some distribution (xi, yi) ⇠ p(x, y). It is
our goal to find some function f : X ! R which minimizes
the misclassification error, e.g. by minimizing the probabil-
ity that yf(x) 0. This constitutes the most basic of all
estimation problems, namely that of binary classification.
We simplify things further by assuming that X = Rd. This
assumption will be relaxed subsequently when we discuss
how to expand features on the fly. The primal formulation
of a linear SVM can be written as follows2 [10]:

minimize
w2Rd

1
2
kwk2 + C

nX

i=1

max{0, 1� w

>
yixi} (1)

Using standard convex optimization tools [6] the above prob-
lem can be rewritten in its dual form

minimize
↵

D(↵) :=
1
2
↵

>
Q↵� ↵

>1 (2a)

subject to 0 ↵ C1. (2b)

Here, Q is an n⇥n matrix whose entries are given by Qij =
yiyjx

>
i xj , and 1 is the vector of all ones. The minimizer w⇤

of (1) and the minimizer ↵⇤ of (2) are related by the primal
dual connection: w

⇤ =
Pn

i=1

↵

⇤
i yixi. The dual problem (2)

is a Quadratic Program (QP) with box constraints, and the
i-th coordinate ↵i corresponds to the i-th example (xi, yi).

2.2 Dual Updates
The following coordinate descent scheme can be used to

minimize the dual [14]:

• Initialize ↵

1 = 0.
• At iteration t select coordinate it

• Update ↵

t to ↵

t+1 via

↵

t+1

it = argmin
0↵itC

D(↵t + (↵it � ↵

t
it)eit) (3a)

↵

t+1

i = ↵

t
i if i 6= it

(3b)

Here, ei denotes the i-th standard basis vector. Since D(↵)
is a QP, the one-variable subproblem (3a) can be solved
exactly (see [14] for details):

↵

t+1

it = min

⇢
max

⇢
0,↵t

it �
ritD(↵t)

Qitit

�
, C

�
. (4)

Here, riD(↵) denotes the i-th coordinate of the gradient.
The above updates are also closely related to implicit up-
dates of [17, 18, 9] and the passive aggressive updates of

2We omit an explicit bias term since this greatly simplifies
the dual problem while remaining entirely general since the
bias can be introduced easily as an additional coordinate in
the data.

[?]. If we maintain w

t :=
Pn

i=1

↵

t
iyixi, then the gradient

ritD(↵) can be computed e�ciently using

ritD(↵) = e>
it(Q↵� 1) = w

t
yitxit � 1. (5)

w

t+1 is kept related to ↵

t+1 by computing

w

t+1 = w

t + (↵t+1

i � ↵

t
i)yixi. (6)

A naive choice for it is to traverse examples periodically,
which means that it = t mod n. We call an iteration from
↵

nk to ↵

n(k+1) an outer iteration, contrasted with an inner
iteration from ↵

t to ↵

t+1. An alternative is to randomly
permute the index and to access examples in arbitrary or-
der. In that case, it = �

k(t mod n) where �

k 2 Sn is a
permutation.

3. PROPOSED METHOD
We assume that the entire dataset cannot fit in RAM,

therefore there must exist an ⌦ < m, which is an upper
bound for the number of training data which can be stored
in the RAM. Our algorithm, StreamSVM, maintains a work-
ing set A corresponding to the indices of the data points in
memory and ensures that |A| ⌦ at all times. The major
challenge is to select the active set carefully. Towards this
end, we use a strategy that is inspired by shrinking.
A remarkable property of the dual problem is that we

can potentially reduce the size of optimization problem by
carefully choosing the subset of the data. This property was
first observed by [15] and is widely used in popular solvers
such as SVMLight[15], LibSVM [8], and Liblinear [13]. We
also aim to utilize the property and solve the entire problem
e�ciently. First we look at the following fact:

Fact 1. Let ↵

⇤ be the optimal solution of (2). Define
A

in and A

bo as {i|↵⇤
i = 0} and {i|↵⇤

i = C} respectively.
Any optimal solution of

minimize
↵

D(↵)

subject to ↵i =

(
0 if i 2 A

in

C if i 2 A

bo

is also an optimal solution of (2).

A

in is called the inactive set, Abo the bound set, and A

ac :=
{i|0 < ↵

⇤
i < C} the active set. If w

⇤ denotes the opti-
mal primal solution corresponding to ↵

⇤, then using the
KKT conditions [6] it follows that [?] i 2 A

in implies that
w

⇤>
yixi > 1. Similarly, w⇤>

yixi < 1 for all i 2 A

bo. Intu-
itively, what this means is that data which is in the inactive
set are well classified and the points in the bound set are
not. Usually A

ac is a small fraction of the original dataset,
and therefore it is advantageous to focus most of the atten-
tion of the solver on identifying the coordinates in A

ac and
optimizing them.
One way to identify the active set is to use projected gra-

dients. For the bound constrained optimization problem (2)
the i-th component of the projected gradient r⇡

i D(↵) can
be computed via

r⇡
i D(↵) :=

8
><

>:

0 if ↵i = 0 and riD(↵) > 0

0 if ↵i = C and riD(↵) < 0

riD(↵) otherwise .

(8)

quently Section 3 gives a detailed description of the nested
loop used in traversing through data in core memory and
streaming from disk. Experimental results are provided in
Section 4 and we conclude with a discussion in Section 5.

2. DUAL COORDINATE DESCENT

2.1 Support Vector Classification
In the following we assume that we are given n exam-

ples xi 2 X and labels yi 2 {±1} drawn independently and
identically from some distribution (xi, yi) ⇠ p(x, y). It is
our goal to find some function f : X ! R which minimizes
the misclassification error, e.g. by minimizing the probabil-
ity that yf(x) 0. This constitutes the most basic of all
estimation problems, namely that of binary classification.
We simplify things further by assuming that X = Rd. This
assumption will be relaxed subsequently when we discuss
how to expand features on the fly. The primal formulation
of a linear SVM can be written as follows2 [10]:

minimize
w2Rd

1
2
kwk2 + C

nX

i=1

max{0, 1� w

>
yixi} (1)

Using standard convex optimization tools [6] the above prob-
lem can be rewritten in its dual form

minimize
↵

D(↵) :=
1
2
↵

>
Q↵� ↵

>1 (2a)

subject to 0 ↵ C1. (2b)

Here, Q is an n⇥n matrix whose entries are given by Qij =
yiyjx

>
i xj , and 1 is the vector of all ones. The minimizer w⇤

of (1) and the minimizer ↵⇤ of (2) are related by the primal
dual connection: w

⇤ =
Pn

i=1

↵

⇤
i yixi. The dual problem (2)

is a Quadratic Program (QP) with box constraints, and the
i-th coordinate ↵i corresponds to the i-th example (xi, yi).

2.2 Dual Updates
The following coordinate descent scheme can be used to

minimize the dual [14]:

• Initialize ↵

1 = 0.
• At iteration t select coordinate it

• Update ↵

t to ↵

t+1 via

↵

t+1

it = argmin
0↵itC

D(↵t + (↵it � ↵

t
it)eit) (3a)

↵

t+1

i = ↵

t
i if i 6= it

(3b)

Here, ei denotes the i-th standard basis vector. Since D(↵)
is a QP, the one-variable subproblem (3a) can be solved
exactly (see [14] for details):

↵

t+1

it = min

⇢
max

⇢
0,↵t

it �
ritD(↵t)

Qitit

�
, C

�
. (4)

Here, riD(↵) denotes the i-th coordinate of the gradient.
The above updates are also closely related to implicit up-
dates of [17, 18, 9] and the passive aggressive updates of

2We omit an explicit bias term since this greatly simplifies
the dual problem while remaining entirely general since the
bias can be introduced easily as an additional coordinate in
the data.

[?]. If we maintain w

t :=
Pn

i=1

↵

t
iyixi, then the gradient

ritD(↵) can be computed e�ciently using

ritD(↵) = e>
it(Q↵� 1) = w

t
yitxit � 1. (5)

w

t+1 is kept related to ↵

t+1 by computing

w

t+1 = w

t + (↵t+1

i � ↵

t
i)yixi. (6)

A naive choice for it is to traverse examples periodically,
which means that it = t mod n. We call an iteration from
↵

nk to ↵

n(k+1) an outer iteration, contrasted with an inner
iteration from ↵

t to ↵

t+1. An alternative is to randomly
permute the index and to access examples in arbitrary or-
der. In that case, it = �

k(t mod n) where �

k 2 Sn is a
permutation.

3. PROPOSED METHOD
We assume that the entire dataset cannot fit in RAM,

therefore there must exist an ⌦ < m, which is an upper
bound for the number of training data which can be stored
in the RAM. Our algorithm, StreamSVM, maintains a work-
ing set A corresponding to the indices of the data points in
memory and ensures that |A| ⌦ at all times. The major
challenge is to select the active set carefully. Towards this
end, we use a strategy that is inspired by shrinking.
A remarkable property of the dual problem is that we

can potentially reduce the size of optimization problem by
carefully choosing the subset of the data. This property was
first observed by [15] and is widely used in popular solvers
such as SVMLight[15], LibSVM [8], and Liblinear [13]. We
also aim to utilize the property and solve the entire problem
e�ciently. First we look at the following fact:

Fact 1. Let ↵

⇤ be the optimal solution of (2). Define
A

in and A

bo as {i|↵⇤
i = 0} and {i|↵⇤

i = C} respectively.
Any optimal solution of

minimize
↵

D(↵)

subject to ↵i =

(
0 if i 2 A

in

C if i 2 A

bo

is also an optimal solution of (2).

A

in is called the inactive set, Abo the bound set, and A

ac :=
{i|0 < ↵

⇤
i < C} the active set. If w

⇤ denotes the opti-
mal primal solution corresponding to ↵

⇤, then using the
KKT conditions [6] it follows that [?] i 2 A

in implies that
w

⇤>
yixi > 1. Similarly, w⇤>

yixi < 1 for all i 2 A

bo. Intu-
itively, what this means is that data which is in the inactive
set are well classified and the points in the bound set are
not. Usually A

ac is a small fraction of the original dataset,
and therefore it is advantageous to focus most of the atten-
tion of the solver on identifying the coordinates in A

ac and
optimizing them.
One way to identify the active set is to use projected gra-

dients. For the bound constrained optimization problem (2)
the i-th component of the projected gradient r⇡

i D(↵) can
be computed via

r⇡
i D(↵) :=

8
><

>:

0 if ↵i = 0 and riD(↵) > 0

0 if ↵i = C and riD(↵) < 0

riD(↵) otherwise .

(8)

Algorithm - 2 loops

Reading Thread Training Thread

Update

RAM

Weight Vector

RAM

Cached Data
(Working Set)

Disk

Dataset

Read

(Random
Access)

Read

(Sequential
Access)

Load

(Random
Access)

Figure 1: Basic data flow diagram of the optimiza-
tion algorithm. A reader keeps on filling the main
memory from disk while the optimization thread(s)
perform updates on the data available in RAM. Both
threads operate asynchronously.

through data from disk should take advantage of the data
they already have in main memory while waiting for more
data to arrive from disk. Obviously, the same rationale ap-
plies to a sequence of storage systems with di↵erent capac-
ity/bandwidth characteristics. To make things somewhat
more explicit we list a range of such systems below:

System Capacity Bandwidth IOP/s
Disk 3TB 150MB/s 102

SSD 256GB 500MB/s 5 · 104
RAM 16GB 30GB/s 108

Cache 16MB 100GB/s 109

In the present paper we focus on two parts of this hierarchy
— disk and memory (see Figure 1). This already a↵ords
quite dramatic improvements in terms of speed relative to
sequential algorithms. In a nutshell our algorithm does the
following:

Iterate over the data in main memory while stream-
ing data from disk. Evict primarily examples
from main memory that are “uninformative”.

A naive approach which takes, e.g. stochastic gradient de-
scent steps based on the importance of examples would likely
run afoul of data weighting problems — informative exam-
ples need not have extended statistical weight but rather
only a higher influence on the choice of objective function.
One way of dealing with this issue is to resort to dual up-
dates. That is, we consider the dual optimization problem
to SVMs (and related problems) and judiciously update the
associated Lagrange multipliers. This leads to the following
algorithm:

Reader
while not converged do

read example (x, y) from disk
if bu↵er full then evict random (x0

, y

0) from memory
insert new (x, y) into ring bu↵er in memory

end while

Trainer
while not converged do

randomly pick example (x, y) from memory
update dual parameter ↵
update weight vector w
if deemed to be uninformative then evict (x, y) from
memory

end while

1.3 Enterprise Scale Solvers
To place our research in perspective note that industrial

datasets regularly exceed the capacities o↵ered by single
computers in terms of both storage and computation. This
means that distributed inference techniques are required.
Unfortunately, large server centers often come with rather
severe restrictions on reliability, inter-machine latency, com-
munication trees, delays, etc. such that it is desirable to find
algorithms which compute estimates using a bare minimum
of communication. Note that not all estimation problems are
amenable to e�cient high-latency scenarios. For instance,
latent variable models typically require excellent communi-
cation and great care needs to be taken to obtain fast esti-
mates [?, 28]. A common attribute of these models is that
they have a large degree of symmetry and non-convexity in
their parametrization.
Fortunately much of what is commonly known as gener-

alized linear models can be addressed with convex solvers.
That is, the estimation problems can be decomposed e�-
ciently into parts which are guaranteed to yield very similar
solutions. In statistical learning terminology this is known
as stability of the solution space and there exists a rich body
of research [5, 32, 7, 12] extolling the desirable theoretical
properties of convexly penalized estimation problems. It is
therefore natural to take advantage of these properties in
terms of implementations. For instance, [35] show that it is
possible to perform stochastic gradient descent on individ-
ual processors independently, using random sub-samples of
the data and to average the parameter estimates afterwards
and simultaneously reaping the benefits of parallelization.
Note that in previous work [?] suggested a similar averag-
ing strategy, however their theoretical analysis only showed
that averaging does not hurt, rather than actually accelerate
convergence. It is in the spirit of [35] that we approach the
problem of estimation:

1. Decompose (possibly with oversampling) the data for
several machines.

2. Solve the estimation problem per machine as e�ciently
as possible.

3. Average the solutions between machines to obtain a
final estimate.

Much work in the analysis of [35] was invested into proving
that the stochastic gradient descent solutions on subsets are
su�ciently independent for averaging to be actually benefi-
cial. If we treat the optimization step as a standard batch
problem this obstacle disappears. In this case we can appeal
directly to the asymptotic analysis of [22] to see that averag-
ing is beneficial: in particular, [22] show that the parameter
distribution of a penalized empirical risk minimizer w⇤|X,Y

conditioned on some data X,Y is asymptotically normal.
This means that if we obtain such estimates based on vari-
ous subsets of data via w⇤|Xi, Yi, we will be able to aggregate
this to an improved joint estimate via 1

n

Pn
i=1

w

⇤|Xi, Yi.
Consequently, in the present paper we are primarily con-

cerned with step 2 of the above approach — to find the most
e�cient way of solving a convex optimization problem on a
single machine. While we primarily focus on linear SVMs in
this paper, our ideas are fairly generic and can be applied
to other convex losses including losses used in structured
prediction [?].
Outline. We will briefly review dual descent algorithms

for linear Support Vector Machines in Section 2. Subse-

at disk speed

at RAM speed

margin criterion

Advantages
• Extensible to general loss functions

(simply use convex conjugate)
• Extensible to other regularizers

(again using convex conjugate)

• Parallelization by oversample, distribute &
average (Murata, Amari, Yoshizawa theorem)

• Convergence proof via Luo-Tseng

minimize

↵

X

i

l⇤(zi, yi) + �⌦⇤
(↵) for z = X↵

Results
• 12 core Opteron (currently not all cores used)
• Datasets

• Variable amounts of cache
• Comparison to Chih-Jen Lin’s KDD’11 prize winning

LibLinear solver (SBM) and simple block minimization (BM)
• Kyoto cabinet for caching (suboptimal)

Table 1: Summary of the datasets used in our experiments. n is the total # of examples, d is the # of
features, s is the feature density (% of features that are non-zero), n

+

: n� is the ratio of the number of
positive vs negative examples, Datasize is the size of the data file on disk, ⌦ is the number of points in the
RAM, and each Blocks is the data split used for the corresponding method. M denotes a million.

dataset n d s(%) n
+

:n� Datasize ⌦ SBM Blocks BM Blocks
ocr 3.5 M 1156 100 0.96 45.28 GB 150,000 40 20
dna 50 M 800 25 3e�3 63.04 GB 700,000 60 30
webspam-t 0.35 M 16.61 M 0.022 1.54 20.03 GB 15,000 20 10
kddb 20.01 M 29.89 M 1e-4 6.18 4.75 GB 2,000,000 6 3

eventually. Therefore, what we are specifically interested in
is the rate at which the objective function decreases.

4.1 Results

Varying C.
As C increases the e↵ect of the regularizer decreases and

the non-smooth hinge loss dominates the primal objective.
Intuitively, this means that the problem becomes harder to
solve for large values of C. Therefore, it is important to test
an optimization algorithm across a range of C values.

We used C 2 {0.0001, 0.001, . . . , 1000.0} to test the per-
formance of StreamSVM and contrast it with SBM and BM.
For this experiment we set the maximum number of itera-
tions for all algorithms to be 100; for StreamSVM an itera-
tion is defined as one complete pass through the data by the
reader thread. The stopping tolerance was set to be 10�3.
A job is killed by the queue manager on the cluster if it does
not finish within 48hrs. Besides the space required to store
the weight vector w and the coe�cients ↵, both algorithms
were allowed to use up to 2GB of extra RAM.

In Figure 2 we used the dna dataset and plot the rela-
tive function value di↵erence as function of wall clock time
for SBM, BM, and StreamSVM8 The relative function value
di↵erence is defined as (D⇤ �D

t)/D⇤ where D

t is the dual
objective function output by the optimizer at the t-th iter-
ation, and D

⇤ is the largest dual objective function value
produced by either SBM, BM, or StreamSVM for the same
parameter settings. Note that since we are plotting the y-
axis on a log scale some points with relative function value
di↵erence of 0 are not displayed.
In the top three plots in Figure 3 we used the same value

of C = 1.0, and plot the convergence behavior of SBM,
BM, and StreamSVM on kddb, ocr, and webspam-t datasets
respectively.
Note that in almost all cases, StreamSVM outperforms

SBM and BM comprehensively. In particular, on the dna,
ocr and webspam-t datasets, StreamSVM has converged to
a high accuracy solution even before BM and SBM have
managed to read and compress the data during the first
pass. Also, both SBM and BM do not converge for large
values of C on the dna dataset.
On the kddb dataset, StreamSVM does not exhibit any

particular advantage over SBM. We investigated this fur-
ther and found that the major bottleneck here is the need
to frequently access random elements of w (29.89 million en-
tries) and ↵ (20.01 million entries), both of which are stored

8Due to lack of space we plot only a subset of our results
here. Detailed results including the generalization error and
evolution of the gap can be found at http://www.r.dl.itc.
u-tokyo.ac.jp/~masin/Appendix.pdf.

as dense vectors. This causes a number of cache misses and
consequently slows down the trainer. On the other hand,
since the data is very sparse (maximum 200 nonzero entries
per training example) the reader thread is very fast. Conse-
quently StreamSVM is not faster than SBM, although it is
very competitive as compared to BM.

Varying ⌦.
Next we study the e↵ect of varying the RAM size ⌦ on the

performance of StreamSVM. The same setup as the previous
experiment was used here but with two notable changes.
First, we fixed the value of C to be 1.0 for all datasets.
Second, we set the RAM size to 256MB, 1GB, 4GB, and
16GB respectively.
On all datasets, the performance with 256MB RAM was

inferior compared to higher RAM sizes. However, increas-
ing the RAM size beyond 4GB does not help much. In
fact, on the kddb dataset, increasing the size of RAM actu-
ally reduces performance. The reasons are as the same as
above. Even though we can cache a large number of training
points, the bottleneck here is in updating w and ↵. There-
fore, the increase in ⌦ does not significantly improve con-
vergence speed. For the ocr and webspam-t datasets there
is marginal improvement when moving from 4GB to 16GB.
This could potentially be explained by the fact that at the
final solution there were relatively few training examples in
the active set (675 for ocr and 1509 for webspam-t). We
conjecture that large RAM sizes help only if the number of
non-zero entries per training example are large, or of the
dataset is very high dimensional and noisy because of which
a large number of training examples are in the active set.

Expanding Features on the Fly.
In our final experiment, our aim is to show that explicit

feature expansion can be easily incorporated into our frame-
work. We used the dna dataset, and following [?] we com-
puted a feature vector �(x) corresponding to weighted de-
gree kernel of degree 8. Variants of this kernel have been
successfully used for various sequence analysis tasks in bio-
informatics [?]. In a nutshell, to compute this kernel each
training point in the dna dataset is represented as a string
of length 200. For each position i = 1, . . . , 200 we represent
the sub-strings of length j = 1, . . . , 8 that occur at posi-
tion i. This results in a sparse feature vector of 17,476,000
dimensions.
We plot the relative function value di↵erence vs wall clock

time in the bottom plot of Figure 3. The same figure also
shows how the gap is decreasing as a function of wall clock
time. In less than 75 hrs StreamSVM is able to reduce the
gap to approximately 0.47. To put our results in perspective,
contrast this which the recent work of [?] who use a very

Convergence (DNA, different C)

0 1 2 3 4

·104

10�11

10�9

10�7

10�5

10�3

10�1

Wall Clock Time (sec)

R
el
at
iv
e
O
b
je
ct
iv
e
F
u
n
ct
io
n
V
al
u
e

dna C = 1.0
StreamSVM

SBM
BM

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·105

10�11

10�9

10�7

10�5

10�3

10�1

Wall Clock Time (sec)

R
el
at
iv
e
F
u
n
ct
io
n
V
al
u
e
D
i↵
er
en

ce

dna C = 10.0
StreamSVM

SBM
BM

0 0.5 1 1.5

·105

10�2

10�1

100

Wall Clock Time (sec)

R
el
at
iv
e
F
u
n
ct
io
n
V
al
u
e
D
i↵
er
en

ce

dna C = 100.0
StreamSVM

SBM
BM

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·105

10�1

100

Wall Clock Time (sec)

R
el
at
iv
e
O
b
je
ct
iv
e
F
u
n
ct
io
n
V
al
u
e

dna C = 1000.0
StreamSVM

SBM
BM

Figure 2: Relative function value di↵erence vs wall
clock time on the dna dataset for various values of C

0 1 2 3 4

·104

10�6

10�5

10�4

10�3

10�2

10�1

100

Wall Clock Time (sec)

R
el
at
iv
e
F
u
n
ct
io
n
V
al
u
e
D
i↵
er
en

ce

kddb C = 1.0
StreamSVM

SBM
BM

0 1 2 3 4

·104

10�9

10�7

10�5

10�3

10�1

Wall Clock Time (sec)

R
el
at
iv
e
F
u
n
ct
io
n
V
al
u
e
D
i↵
er
en

ce

ocr C = 1.0
StreamSVM

SBM
BM

0 0.5 1 1.5 2

·104

10�7

10�6

10�5

10�4

10�3

10�2

10�1

100

Wall Clock Time (sec)

R
el
at
iv
e
F
u
n
ct
io
n
V
al
u
e
D
i↵
er
en

ce

webspam-t C = 1.0
StreamSVM

SBM
BM

0 0.5 1 1.5 2 2.5

·105

10�5

10�4

10�3

10�2

10�1

100

Wall Clock Time (sec)

R
el
at
iv
e
F
u
n
ct
io
n
V
al
u
e
D
i↵
er
en

ce

dna expanded C = 1.0

0

2

4

6

8

G
ap

(M
+

�
M

�
)

Figure 3: Top three figures: Relative function value
vs wall clock time on the kddb, ocr, and webspam-t

datasets for C = 1.0. The red solid curve in the
bottom figure is the relative function value vs wall
clock time and the blue dashed curve is the gap vs
wall clock time on the dna dataset expanded using
the weighted degree kernel of degree 8 with C = 1.0.
Note that some points on the plot are interpolated
because the server disk quota exceeded when run-
ning this experiment.

0 1 2 3 4

·104

10�11

10�9

10�7

10�5

10�3

10�1

Wall Clock Time (sec)

R
el
at
iv
e
O
b
je
ct
iv
e
F
u
n
ct
io
n
V
al
u
e

dna C = 1.0
StreamSVM

SBM
BM

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·105

10�11

10�9

10�7

10�5

10�3

10�1

Wall Clock Time (sec)

R
el
at
iv
e
F
u
n
ct
io
n
V
al
u
e
D
i↵
er
en

ce

dna C = 10.0
StreamSVM

SBM
BM

0 0.5 1 1.5

·105

10�2

10�1

100

Wall Clock Time (sec)

R
el
at
iv
e
F
u
n
ct
io
n
V
al
u
e
D
i↵
er
en

ce

dna C = 100.0
StreamSVM

SBM
BM

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·105

10�1

100

Wall Clock Time (sec)

R
el
at
iv
e
O
b
je
ct
iv
e
F
u
n
ct
io
n
V
al
u
e

dna C = 1000.0
StreamSVM

SBM
BM

Figure 2: Relative function value di↵erence vs wall
clock time on the dna dataset for various values of C

0 1 2 3 4

·104

10�6

10�5

10�4

10�3

10�2

10�1

100

Wall Clock Time (sec)

R
el
at
iv
e
F
u
n
ct
io
n
V
al
u
e
D
i↵
er
en

ce

kddb C = 1.0
StreamSVM

SBM
BM

0 1 2 3 4

·104

10�9

10�7

10�5

10�3

10�1

Wall Clock Time (sec)

R
el
at
iv
e
F
u
n
ct
io
n
V
al
u
e
D
i↵
er
en

ce

ocr C = 1.0
StreamSVM

SBM
BM

0 0.5 1 1.5 2

·104

10�7

10�6

10�5

10�4

10�3

10�2

10�1

100

Wall Clock Time (sec)

R
el
at
iv
e
F
u
n
ct
io
n
V
al
u
e
D
i↵
er
en

ce

webspam-t C = 1.0
StreamSVM

SBM
BM

0 0.5 1 1.5 2 2.5

·105

10�5

10�4

10�3

10�2

10�1

100

Wall Clock Time (sec)

R
el
at
iv
e
F
u
n
ct
io
n
V
al
u
e
D
i↵
er
en

ce

dna expanded C = 1.0

0

2

4

6

8

G
ap

(M
+

�
M

�
)

Figure 3: Top three figures: Relative function value
vs wall clock time on the kddb, ocr, and webspam-t

datasets for C = 1.0. The red solid curve in the
bottom figure is the relative function value vs wall
clock time and the blue dashed curve is the gap vs
wall clock time on the dna dataset expanded using
the weighted degree kernel of degree 8 with C = 1.0.
Note that some points on the plot are interpolated
because the server disk quota exceeded when run-
ning this experiment.

much better
for large C

70h on
1machine

Convergence (C=1, different datasets)

0 1 2 3 4

·104

10�11

10�9

10�7

10�5

10�3

10�1

Wall Clock Time (sec)

R
el
at
iv
e
O
b
je
ct
iv
e
F
u
n
ct
io
n
V
al
u
e

dna C = 1.0
StreamSVM

SBM
BM

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·105

10�11

10�9

10�7

10�5

10�3

10�1

Wall Clock Time (sec)

R
el
at
iv
e
F
u
n
ct
io
n
V
al
u
e
D
i↵
er
en

ce

dna C = 10.0
StreamSVM

SBM
BM

0 0.5 1 1.5

·105

10�2

10�1

100

Wall Clock Time (sec)

R
el
at
iv
e
F
u
n
ct
io
n
V
al
u
e
D
i↵
er
en

ce

dna C = 100.0
StreamSVM

SBM
BM

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·105

10�1

100

Wall Clock Time (sec)

R
el
at
iv
e
O
b
je
ct
iv
e
F
u
n
ct
io
n
V
al
u
e

dna C = 1000.0
StreamSVM

SBM
BM

Figure 2: Relative function value di↵erence vs wall
clock time on the dna dataset for various values of C

0 1 2 3 4

·104

10�6

10�5

10�4

10�3

10�2

10�1

100

Wall Clock Time (sec)

R
el
at
iv
e
F
u
n
ct
io
n
V
al
u
e
D
i↵
er
en

ce

kddb C = 1.0
StreamSVM

SBM
BM

0 1 2 3 4

·104

10�9

10�7

10�5

10�3

10�1

Wall Clock Time (sec)

R
el
at
iv
e
F
u
n
ct
io
n
V
al
u
e
D
i↵
er
en

ce

ocr C = 1.0
StreamSVM

SBM
BM

0 0.5 1 1.5 2

·104

10�7

10�6

10�5

10�4

10�3

10�2

10�1

100

Wall Clock Time (sec)

R
el
at
iv
e
F
u
n
ct
io
n
V
al
u
e
D
i↵
er
en

ce

webspam-t C = 1.0
StreamSVM

SBM
BM

0 0.5 1 1.5 2 2.5

·105

10�5

10�4

10�3

10�2

10�1

100

Wall Clock Time (sec)

R
el
at
iv
e
F
u
n
ct
io
n
V
al
u
e
D
i↵
er
en

ce

dna expanded C = 1.0

0

2

4

6

8

G
ap

(M
+

�
M

�
)

Figure 3: Top three figures: Relative function value
vs wall clock time on the kddb, ocr, and webspam-t

datasets for C = 1.0. The red solid curve in the
bottom figure is the relative function value vs wall
clock time and the blue dashed curve is the gap vs
wall clock time on the dna dataset expanded using
the weighted degree kernel of degree 8 with C = 1.0.
Note that some points on the plot are interpolated
because the server disk quota exceeded when run-
ning this experiment.

0 1 2 3 4

·104

10�11

10�9

10�7

10�5

10�3

10�1

Wall Clock Time (sec)

R
el
at
iv
e
O
b
je
ct
iv
e
F
u
n
ct
io
n
V
al
u
e

dna C = 1.0
StreamSVM

SBM
BM

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·105

10�11

10�9

10�7

10�5

10�3

10�1

Wall Clock Time (sec)

R
el
at
iv
e
F
u
n
ct
io
n
V
al
u
e
D
i↵
er
en

ce

dna C = 10.0
StreamSVM

SBM
BM

0 0.5 1 1.5

·105

10�2

10�1

100

Wall Clock Time (sec)

R
el
at
iv
e
F
u
n
ct
io
n
V
al
u
e
D
i↵
er
en

ce

dna C = 100.0
StreamSVM

SBM
BM

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·105

10�1

100

Wall Clock Time (sec)

R
el
at
iv
e
O
b
je
ct
iv
e
F
u
n
ct
io
n
V
al
u
e

dna C = 1000.0
StreamSVM

SBM
BM

Figure 2: Relative function value di↵erence vs wall
clock time on the dna dataset for various values of C

0 1 2 3 4

·104

10�6

10�5

10�4

10�3

10�2

10�1

100

Wall Clock Time (sec)

R
el
at
iv
e
F
u
n
ct
io
n
V
al
u
e
D
i↵
er
en

ce

kddb C = 1.0
StreamSVM

SBM
BM

0 1 2 3 4

·104

10�9

10�7

10�5

10�3

10�1

Wall Clock Time (sec)

R
el
at
iv
e
F
u
n
ct
io
n
V
al
u
e
D
i↵
er
en

ce

ocr C = 1.0
StreamSVM

SBM
BM

0 0.5 1 1.5 2

·104

10�7

10�6

10�5

10�4

10�3

10�2

10�1

100

Wall Clock Time (sec)

R
el
at
iv
e
F
u
n
ct
io
n
V
al
u
e
D
i↵
er
en

ce

webspam-t C = 1.0
StreamSVM

SBM
BM

0 0.5 1 1.5 2 2.5

·105

10�5

10�4

10�3

10�2

10�1

100

Wall Clock Time (sec)

R
el
at
iv
e
F
u
n
ct
io
n
V
al
u
e
D
i↵
er
en

ce

dna expanded C = 1.0

0

2

4

6

8

G
ap

(M
+

�
M

�
)

Figure 3: Top three figures: Relative function value
vs wall clock time on the kddb, ocr, and webspam-t

datasets for C = 1.0. The red solid curve in the
bottom figure is the relative function value vs wall
clock time and the blue dashed curve is the gap vs
wall clock time on the dna dataset expanded using
the weighted degree kernel of degree 8 with C = 1.0.
Note that some points on the plot are interpolated
because the server disk quota exceeded when run-
ning this experiment.

Faster on all datasets

Effect of caching

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·104

10�6

10�5

10�4

10�3

10�2

10�1

100

Wall Clock Time (sec)

R
el
at
iv
e
F
u
n
ct
io
n
V
al
u
e
D
i↵
er
en

ce

dna C = 1.0
256 MB
1 GB
4 GB
16 GB

0 0.5 1 1.5 2 2.5

·104

10�7

10�6

10�5

10�4

10�3

10�2

10�1

100

Wall Clock Time (sec)

R
el
at
iv
e
F
u
n
ct
io
n
V
al
u
e
D
i↵
er
en

ce

kddb C = 1.0
256 MB
1 GB
4 GB
16 GB

0 0.5 1 1.5 2

·104

10�6

10�5

10�4

10�3

10�2

10�1

100

Wall Clock Time (sec)

R
el
at
iv
e
F
u
n
ct
io
n
V
al
u
e
D
i↵
er
en

ce

ocr C = 1.0
256 MB
1 GB
4 GB
16 GB

0 1,000 2,000 3,000 4,000 5,000

10�5

10�4

10�3

10�2

10�1

100

Wall Clock Time (sec)

R
el
at
iv
e
F
u
n
ct
io
n
V
al
u
e
D
i↵
er
en

ce

webspam-t C = 1.0
256 MB
1 GB
4 GB
16 GB

Figure 4: Relative objective function value as a func-
tion of wall clock time for various datasets as the
RAM size ⌦ is varied.

similar (but not the same) feature representation as ours
and train using LBFGS. Their algorithm requires around 30
iterations with each iteration requiring approximately 1 hr
when distributed across 100 machines (total of 3000 CPU
hours).

5. DISCUSSION
To conclude we would like to discuss some related work

and place our contributions in perspective. Perhaps the clos-
est in spirit to our work is the online version of SBM de-
scribed by [?]. Here, data is assumed to arrive in a stream-
ing fashion, and a dual coordinate descent procedure is used
on blocks of data. However, there are some important dif-
ferences between the two methods. First, online SBM only
looks at the data once, while our algorithm StreamSVM
performs multiple passes through the data. Second, the
reading and the training in SBM happen in a synchronous
fashion, while our reader thread asynchronously reads and
caches data. In our experiments, StreamSVM also achieves
near-optimal generalization performance after just one or
two passes through the data.
In order to speed up linear VMs where the feature map-

ping can be computed explicitly, [?] introduced a compu-
tational framework for linear SVMs (COFFIN). Along the
same lines, one can use hash functions to map sparse high-
dimensional features into dense low-dimensional features.
This idea, first described in [27] and improved upon in [33] is
one of the important reasons why the Vowpal Wabbit learn-
ing framework9 is fast. These techniques are very naturally
incorporated into our framework as demonstrated in our ex-
periments.
A closely related alternative to dual coordinate descent is

stochastic gradient descent (SGD). Recently there have been
numerous variants of which have been studied both theoret-
ically [3, 26] as well as empirically [4]. However, SGD in
its most basic form is inherently serial, and therefore there
is a recent flurry of activity on developing parallel stochas-
tic gradient descent solvers [19, 35, 11]. As explained in
Section 1.3 we view our research as complimentary.
Our long term research goal is to design, analyze, and im-

plement novel optimization algorithms that take advantage
of modern hardware to enable learning on and mining of
massive datasets. With the increasing availability of many-
core processors, general-purpose graphics processing units,
and solid-state drives, we are witnessing a hardware revolu-
tion. The next generation of systems-aware, e�cient, scal-
able machine learning algorithms need to take advantage of
these emerging computing paradigms. We view this paper
as a step towards that direction.

6. REFERENCES
[1] A. Ahmed, M. Aly, J. Gonzalez, S. Narayanamurthy,

and A.J. Smola. Scalable inference in latent variable
models. In Web Science and Data Mining (WSDM),
2012.

[2] Antoine Bordes, Seyda Ertekin, Jason Weston, and
Léon Bottou. Fast kernel classifiers with online and
active learning. Journal of Machine Learning
Research, 6:1579–1619, September 2005.

[3] L. Bottou and O. Bousquet. The tradeo↵s of large
scale learning. In J. C. Platt, D. Koller, Y. Singer, and

9http://hunch.net/~vw/

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·104

10�6

10�5

10�4

10�3

10�2

10�1

100

Wall Clock Time (sec)

R
el
at
iv
e
F
u
n
ct
io
n
V
al
u
e
D
i↵
er
en

ce

dna C = 1.0
256 MB
1 GB
4 GB
16 GB

0 0.5 1 1.5 2 2.5

·104

10�7

10�6

10�5

10�4

10�3

10�2

10�1

100

Wall Clock Time (sec)

R
el
at
iv
e
F
u
n
ct
io
n
V
al
u
e
D
i↵
er
en

ce

kddb C = 1.0
256 MB
1 GB
4 GB
16 GB

0 0.5 1 1.5 2

·104

10�6

10�5

10�4

10�3

10�2

10�1

100

Wall Clock Time (sec)

R
el
at
iv
e
F
u
n
ct
io
n
V
al
u
e
D
i↵
er
en

ce

ocr C = 1.0
256 MB
1 GB
4 GB
16 GB

0 1,000 2,000 3,000 4,000 5,000

10�5

10�4

10�3

10�2

10�1

100

Wall Clock Time (sec)

R
el
at
iv
e
F
u
n
ct
io
n
V
al
u
e
D
i↵
er
en

ce

webspam-t C = 1.0
256 MB
1 GB
4 GB
16 GB

Figure 4: Relative objective function value as a func-
tion of wall clock time for various datasets as the
RAM size ⌦ is varied.

similar (but not the same) feature representation as ours
and train using LBFGS. Their algorithm requires around 30
iterations with each iteration requiring approximately 1 hr
when distributed across 100 machines (total of 3000 CPU
hours).

5. DISCUSSION
To conclude we would like to discuss some related work

and place our contributions in perspective. Perhaps the clos-
est in spirit to our work is the online version of SBM de-
scribed by [?]. Here, data is assumed to arrive in a stream-
ing fashion, and a dual coordinate descent procedure is used
on blocks of data. However, there are some important dif-
ferences between the two methods. First, online SBM only
looks at the data once, while our algorithm StreamSVM
performs multiple passes through the data. Second, the
reading and the training in SBM happen in a synchronous
fashion, while our reader thread asynchronously reads and
caches data. In our experiments, StreamSVM also achieves
near-optimal generalization performance after just one or
two passes through the data.
In order to speed up linear VMs where the feature map-

ping can be computed explicitly, [?] introduced a compu-
tational framework for linear SVMs (COFFIN). Along the
same lines, one can use hash functions to map sparse high-
dimensional features into dense low-dimensional features.
This idea, first described in [27] and improved upon in [33] is
one of the important reasons why the Vowpal Wabbit learn-
ing framework9 is fast. These techniques are very naturally
incorporated into our framework as demonstrated in our ex-
periments.
A closely related alternative to dual coordinate descent is

stochastic gradient descent (SGD). Recently there have been
numerous variants of which have been studied both theoret-
ically [3, 26] as well as empirically [4]. However, SGD in
its most basic form is inherently serial, and therefore there
is a recent flurry of activity on developing parallel stochas-
tic gradient descent solvers [19, 35, 11]. As explained in
Section 1.3 we view our research as complimentary.
Our long term research goal is to design, analyze, and im-

plement novel optimization algorithms that take advantage
of modern hardware to enable learning on and mining of
massive datasets. With the increasing availability of many-
core processors, general-purpose graphics processing units,
and solid-state drives, we are witnessing a hardware revolu-
tion. The next generation of systems-aware, e�cient, scal-
able machine learning algorithms need to take advantage of
these emerging computing paradigms. We view this paper
as a step towards that direction.

6. REFERENCES
[1] A. Ahmed, M. Aly, J. Gonzalez, S. Narayanamurthy,

and A.J. Smola. Scalable inference in latent variable
models. In Web Science and Data Mining (WSDM),
2012.

[2] Antoine Bordes, Seyda Ertekin, Jason Weston, and
Léon Bottou. Fast kernel classifiers with online and
active learning. Journal of Machine Learning
Research, 6:1579–1619, September 2005.

[3] L. Bottou and O. Bousquet. The tradeo↵s of large
scale learning. In J. C. Platt, D. Koller, Y. Singer, and

9http://hunch.net/~vw/

Subspace

• Solution lies is in low-dimensional
subspace of data (approximately)

• Find a sparse linear expansion
• Before solving the problem

(Sparse greedy, pivoting)
Find solution in low-dimensional subspace

• After solving the problem
(Reduced set)
Need to sparsify existing solution

Basic Idea

Linear Approximation
• Project data into lower-dimensional space

• Data in feature space
• Set of basis functions
• Projection problem

• Solution
• Residual

x ! �(x)

{�(x1), . . .�(xn)}

minimize
�

������(x)�
nX

i=1

�(xi)

�����

2

� = K(X,X)�1
K(X,x)

������(x)�
nX

i=1

�(xi)

�����

2

= k�(x)k2 �

�����

nX

i=1

�(xi)

�����

2

= k(x, x)�K(x,X)K(X,X)�1
K(X,x)

Subspace Finding
• Incomplete Cholesky factorization

K = [�(x1), . . . ,�(xm)]> [�(x1), . . . ,�(xm)]

⇡ K

>
mnK

�1
nnKmn

=
⇥
K

�1
nnKmn

⇤>
Knn

⇥
K

�1
nnKmn

⇤

Subspace Finding

K = [�(x1), . . . ,�(xm)]> [�(x1), . . . ,�(xm)]

⇡ K

>
mnK

�1
nnKmn

=
⇥
K

�1
nnKmn

⇤>
Knn

⇥
K

�1
nnKmn

⇤

=
h
K

� 1
2

nn Kmn

i> h
K

� 1
2

nn Kmn

i

• Incomplete Cholesky factorization

Picking the Subset
• Variant 1 (‘Nystrom’ Method)

Pick random directions (not so great accuracy)
• Variant 2 (Brute force)

Try out all directions (very expensive)
• Variant 3 (Tails)

Pick 59 random candidates. Keep best (better)
• Variant 4 (Positive diagonal pivoting)

Pick term with largest residual. As good (or
better) than 59 random terms, much chaper

Function values

Basic Idea
• Exploit matrix vector operations

• In some kernels is cheap
• In others kernel inverse is easy to compute

(e.g. inverse graph Laplacian)
• Variable substitution in terms of y
• Solve decomposing optimization problem

(this can be orders of magnitude faster)
• Example - spam filtering on webgraph.

Assume that linked sites have related spam scores.

K↵

K�1y

Motivation: Multitask Learning

Classifier ClassifierClassifier Classifier

Spam Classification

1: donut?
0: not-
spam!1: spam! ?

maliciouseducated misinformed confused silent

0: quality

Classifier ClassifierClassifier Classifier

Spam Classification

Classifier

maliciouseducated misinformed confused silent

Classifier ClassifierClassifier Classifier

Spam Classification

Classifier Classifier Classifier Classifier Classifier

maliciouseducated misinformed confused silent

Global
Classifier

Multitask Learning

Collaborative Classification

• Primal representation

Kernel representation

Multitask kernel (e.g. Pontil & Michelli, Daume). Usually does not scale well ...
• Problem - dimensionality is 1013. That is 40TB of space

f(x, u) = ⇤�(x), w⌅+ ⇤�(x), wu⌅ = ⇤�(x)⇥ (1� eu), w⌅

k((x, u), (x�, u�)) = k(x, x�)[1 + �u,u�]

Collaborative Classification

email

w
wuser

• Primal representation

Kernel representation

Multitask kernel (e.g. Pontil & Michelli, Daume). Usually does not scale well ...
• Problem - dimensionality is 1013. That is 40TB of space

f(x, u) = ⇤�(x), w⌅+ ⇤�(x), wu⌅ = ⇤�(x)⇥ (1� eu), w⌅

k((x, u), (x�, u�)) = k(x, x�)[1 + �u,u�]

Collaborative Classification

email

w
wuser

email (1 + euser)

w + euser

• Primal representation

Kernel representation

Multitask kernel (e.g. Pontil & Michelli, Daume). Usually does not scale well ...
• Problem - dimensionality is 1013. That is 40TB of space

f(x, u) = ⇤�(x), w⌅+ ⇤�(x), wu⌅ = ⇤�(x)⇥ (1� eu), w⌅

k((x, u), (x�, u�)) = k(x, x�)[1 + �u,u�]

Hashing

Hash Kernels

Hash Kernels

Hey,

please mention
subtly during
your talk that
people should
use Yahoo mail
more often.
Thanks,

Someone

instance: dictionary:

1

2

1

1

task/user
(=barney):

sparse

Hash Kernels

Hey,

please mention
subtly during
your talk that
people should
use Yahoo mail
more often.
Thanks,

Someone

instance: dictionary:

1

2

1

1

task/user
(=barney):

sparse

1

3

2
1

Rm

hash
function:

h()

sparse

Hash Kernels

Hey,

please mention
subtly during
your talk that
people should
use Yahoo mail
more often.
Thanks,

Someone

instance:

task/user
(=barney):

⇥xi � RN�(U+1)

1

3

2
-1

h()

h(‘mention’)

h(‘mention_barney’)

s(m_b)

s(m)

{-1, 1}

Similar to count hash
(Charikar, Chen, Farrach-Colton, 2003)

X

i

w̄[h(i)]�(i)xi

Advantages of hashing

Advantages of hashing

• No dictionary!
• Content drift is no problem
• All memory used for classification
• Finite memory guarantee (with online

learning)

Advantages of hashing

• No dictionary!
• Content drift is no problem
• All memory used for classification
• Finite memory guarantee (with online

learning)
• No Memory needed for projection. (vs LSH)

Advantages of hashing

• No dictionary!
• Content drift is no problem
• All memory used for classification
• Finite memory guarantee (with online

learning)
• No Memory needed for projection. (vs LSH)
• Implicit mapping into high dimensional space!

Advantages of hashing

• No dictionary!
• Content drift is no problem
• All memory used for classification
• Finite memory guarantee (with online

learning)
• No Memory needed for projection. (vs LSH)
• Implicit mapping into high dimensional space!
• It is sparsity preserving! (vs LSH)

Inner product preserving
• Unhashed inner product

• Hashed inner product

• Taking expectations

hence inner product is preserved in expectation

hw, xi =
X

i

wixi

hw̄, x̄i =
X

j

2

4
X

i:h(i)=j

wi�(i)

3

5

2

4
X

i:h(i)=j

xi�(i)

3

5

E�[�(i)�(i
0)] = �ii0

Approximate Orthogonality

Rsmall

We can do multi-task learning!

�()
h()

Rlarge
Rsmall

Guarantees
• For a random hash function the inner product vanishes with

high probability via

• We can use this for multitask learning

• The hashed inner product is unbiased
Proof: take expectation over random signs

• The variance is O(1/n)
Proof: brute force expansion

• Restricted isometry property (Kumar, Sarlos, Dasgupta 2010)

Pr{|⌅wv, hu(x)⇧| > �} � 2e�C�2m

Direct sum in
Hilbert Space

Sum in
Hash Space

Spam classification results
!"#$%

!"#&% !"##% !"##% !%

!"!'%

#"$'%

#"(#%

#")$% #")(%

#"##%

#"'#%

#"*#%

#")#%

#"$#%

!"##%

!"'#%

!$% '#% ''% '*% ')%

!"
#
$
%$

&!
!'
(#
)*
%+
(*
,#
-
.
*
%)
/
%0
#
!*
,&
1
*
2%

0%0&)!%&1%3#!3')#0,*%

+,-./,01/2134%

5362-7/,8934%

./23,873%

N=20M, U=400K

Lazy users ...

1 

10 

100 

1000 

10000 

100000 

1000000 

0
 

1
3
 

2
6
 

3
9
 

5
2
 

6
5
 

7
8
 

9
1
 

1
0
4
 

1
1
7
 

1
3
0
 

1
4
3
 

1
5
6
 

1
6
9
 

1
8
2
 

1
9
7
 

2
1
1
 

2
2
8
 

2
4
4
 

2
6
1
 

2
8
8
 

3
1
7
 

3
7
0
 

5
2
3
 

n
u
m
b
e
r 
o
f 
u
se
rs
 

number of labels 

Labeled emails per user 

Results by user group

Results by user group

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

(#%"

('" $!" $$" $%" $&"

!"
#
$
%$

&!
!'
(#
)*
%+
(*
,#
-
.
*
%)
/
%0
#
!*
,&
1
*
2%

0%0&)!%&1%3#!3')#0,*%

)!*"

)(*"

)$+,*"

)%+-*"

)'+(.*"

)(&+,(*"

),$+&%*"

)&%+/0"

12345674"

labeled emails:

Results by user group

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

(#%"

('" $!" $$" $%" $&"

!"
#
$
%$

&!
!'
(#
)*
%+
(*
,#
-
.
*
%)
/
%0
#
!*
,&
1
*
2%

0%0&)!%&1%3#!3')#0,*%

)!*"

)(*"

)$+,*"

)%+-*"

)'+(.*"

)(&+,(*"

),$+&%*"

)&%+/0"

12345674"

labeled emails:

Approximate String Matches
• General idea

Berkeley
B3rkeley
Berkely
8erkeley
Berkley
Berke1ey

k(x, x0
) =

X

w2x

X

w

02x

0

⇥(w,w0
) for |w � w0| ⇥ �

gotta catch them all

Approximate String Matches
• General idea

• Simplification
• Weigh by mismatch amount |w-w’|
• Map into fragments: dog -> (*og, d*g, do*)
• Hash fragments and weigh them based on

mismatch amount
• Exponential in amount of mismatch

But not in alphabet size

k(x, x0
) =

X

w2x

X

w

02x

0

⇥(w,w0
) for |w � w0| ⇥ �

Approximate String Matches
• General idea

Berkeley
B3rkeley
Berkely
8erkeley
Berkley
Berke1ey

k(x, x0
) =

X

w2x

X

w

02x

0

⇥(w,w0
) for |w � w0| ⇥ �

B*rkeley
Berkel*y
*erkeley
Berk*ley
Berke*ey

• Cache size is a few MBs
Very fast random memory access

• RAM (DDR3 or better) is GBs
• Fast sequential memory access (burst read)
• CPU caches memory read from RAM
• Random memory access is very slow
• CPU caches memory read from RAM

Memory access patterns

vector

hashed sequence

Speeding up access
• Key idea - bound the range of h(i,j)
• Linear offset

bad collisions in i
• Sum of hash functions

bad collisions in j
• Optimal Golomb Ruler (Langford)

NP hard in general
• Feistel Network / Cryptography (new)

for j=1 to n access h(i,j)

h(i, j) = h(i) + j

h(i, j) = h(i) + h0(j)

h(i, j) = h(i) + OGR(j)

h(i, j) = h(i) + crypt(j|i)

Structured Estimation

Large Margin Classifiers
• Large Margin without rescaling (convex)

(Guestrin, Taskar, Koller)

• Large Margin with rescaling (convex)
(Tsochantaridis, Hofmann, Joachims, Altun)

• Both losses majorize misclassification loss

• Proof by plugging argmax into the definition

l(x, y, f) = sup
y02Y

[f(x, y0)� f(x, y) +�(y, y0)]

l(x, y, f) = sup
y02Y

[f(x, y0)� f(x, y) + 1]�(y, y0)

�

✓
y, argmax

y0
f(x, y

0
)

◆

Recipe
1. Identify estimation problem with structured y
2.Design function f(x,y) efficiently maximized in y
3.Design linear function space for f
4.Design tractable loss Δ(y,y’)

5.Solve optimization problem

6.Write a paper ...
argmax

y0
f(x, y

0
) +�(y, y

0
)

Graph Matching

Graph Matching
Graph Matching

Chemistry and Biology
Molecules stored in database
Regulatory networks
Function estimation for proteins

Computer Vision
Object matching (e.g. wide baseline match)
Preprocessing for camera calibration
3D reconstruction
Match maps to aerial photographs (automatic map
updates)

Alexander J. Smola: Learning Graph Matching 3 / 35

Identical GraphsTwo identical graphs

Alexander J. Smola: Learning Graph Matching 4 / 35

AmbiguitiesAmbiguities

6

1 2

3

5 4

1

2 3

4

6 5

Alexander J. Smola: Learning Graph Matching 5 / 35

Computer vision
Large baseline (bad match)

Alexander J. Smola: Learning Graph Matching 6 / 35

• Graph matching via quadratic assignment is NP hard
• Can we learn a linear assignment function?

Computer vision

• Graph matching via quadratic assignment is NP hard
• Can we learn a linear assignment function?

Large baseline (better match)

Alexander J. Smola: Learning Graph Matching 7 / 35

Recipe
1. Identify estimation problem with structured y

Graph Matching

ProblemsProblems

Hardness
No currently known polynomial time algorithm for matching.
Checking is linear in the number of edges.

Completeness
The graphs may not be identical
We just may want to find a “best match”
Problem often ill-defined (e.g. largest common subgraph,
best matches overall, etc.)

Attributes
SIFT features — unlikely to be identical at all
Different image resolutions (e.g. different cameras)
Different image content (e.g. black and white vs. color)
Different representation (e.g. pixels vs. symbolic)

Size
For very large graphs heuristics are popular.

Alexander J. Smola: Learning Graph Matching 8 / 35

Good NewsGood News

Key observation
Graph matching often needed only for a restricted domain.

Idea
Graph matching on restricted subset of graphs is often
much easier.
Attributes in graphs can help a lot (e.g. Bunke’s work for
uniquely attributed vertices — matching becomes trivial)
Local neighborhood may be sufficient for matching.

Strategy
Use examples of matched graphs. Trivial if both graphs
are of the same type: only need collection of graphs, no
labeling needed.
For corresponding objects of different representations
training data is needed. Also if we want system to have a
robust attribute matching function.

Alexander J. Smola: Learning Graph Matching 9 / 35

Linear AssignmentLinear Assignment

Notation
Graphs G and G0 with vertices V , V 0 and edges E , E 0.
We use Gij = 1 to denote presence of an edge between i
and j (and Gij = 0 to denote its absence).
Vi denotes vertex i (and its attributes)
Permutation matrix ⇧ describing match between G and
G0 with ⇧ij 2 {0; 1} and ⇧1 = ⇧>1 = 1.

Objective Function
Score Cij for match between vertex Vi and V 0

j .
Best assignment by solving

minimize
⇧

X

i,j

⇧ijCij

For uniquely attributed graphs (trivial) we set Cij = �Vi ,V 0
j
.

Alexander J. Smola: Learning Graph Matching 11 / 35

Linear AssignmentHungarian Marriage

Integer Program

minimize
⇧

X

i,j

⇧ijCij subject to ⇧ij 2 {0; 1} and ⇧1 = ⇧>1 = 1

Linear Programming Relaxation

minimize
⇧

X

i,j

⇧ijCij subject to ⇧ij 2 [0, 1] and ⇧1 = ⇧>1 = 1

Properties
Can be solved in polynomial time (e.g. interior point)
All vertices are integral, hence the two problems are
equivalent.
Fast shortest path solvers available.
Adding prior knowledge is easy — clamp ⇧ij to 0 or 1.

Alexander J. Smola: Learning Graph Matching 13 / 35

Recipe
1. Identify estimation problem with structured y
2.Design function f(x,y) efficiently maximized in y

3. Linear function space is trivial
(functions for entries of C)

maximize trC⇡

subject to

X

i

⇡ij =

X

j

⇡ij = 1 and ⇡ij � 0

Failure modesWhen Linear Assignment Fails

6

1 2

3

5 4

2

1 3

4

6 5

Alexander J. Smola: Learning Graph Matching 14 / 35

DiagnosisFailure Diagnosis

Why?
Graph matching is hard, so the Hungarian method
(polynomial time algorithm) must fail.

What went wrong?
Local features insufficient for matching.
Symmetries create long range dependencies.
Maybe we used the wrong matching score Cij?

How bad is it really?
Fails on degenerate problems with lots of symmetry.
Works fine on graphs with enough characteristic
features.
We should engineer Cij for specific problems.

Alexander J. Smola: Learning Graph Matching 15 / 35

Not a fix - Quadratic AssignmentQuadratic Assignment

Key Idea
Use edge features for match.

Optimization Problem

minimize
⇧

X

i,j

Cij⇧ij +
X

i,j,u,v

Qij,uv⇧ij⇧uv

Properties
Cij describes vertex feature match (as before)
Qij,uv describes agreement between (potential) edges
(i , u) and (j , v).
For Qij,uv = 1� �Giu ,G0

jv
we have exact matching.

Problem is NP hard to solve.

Alexander J. Smola: Learning Graph Matching 16 / 35

Tools of the tradeSome Algorithms

Genetic algorithms
Tabu search
Ant colony systems
Any other really really desparate heuristic . . .
Graduated Assignment

First order Taylor approximation of Quadratic
Assignment problem is Linear Assignment problem.
Take small steps.
Iterative procedure (Sinkhorn, 1964) for small steps.

Semidefinite Relaxations
Not very scalable, O(m4) storage and O(m6) computation.

In practice . . .
Can only solve problems of size < 100.

Alexander J. Smola: Learning Graph Matching 17 / 35

actual name
of algorithm!

Changing the questionChanging the Question

Key Idea
Exact graph matching is too expensive.
Linear assignment works if matching scores are good.
Use data to learn matching scores Cij .

Bottom line
Work hard to ask the right question not to find the answer for
the wrong question. Use structured estimation.
We get problem dependent scores.

Alexander J. Smola: Learning Graph Matching 19 / 35

Optimization ProblemLearning Problem

Optimization Problem

minimize
C(·,·)

mX

i=1

�(⇧i , 1) where ⇧i = argmin
⇧

X

uv

⇧uvC(V i
u, V i

v)

The goal is to find a compatibility function C(·, ·) such that
graphs are perfectly matched. Obvious extensions for inexact
matches — replace 1 by optimal match.

Loss Function

�(⇧, ⇧0) = k⇧� ⇧0k2 = 2(n � tr ⇧>⇧0)

Obviously other loss functions are possible.
Problem

The optimization is nonconvex. Even worse, it is piecewise
constant. Risk of overfitting.

Alexander J. Smola: Learning Graph Matching 21 / 35

Recipe
1. Identify estimation problem with structured y
2.Design function f(x,y) efficiently maximized in y
3.Design linear function space for f
4.Design tractable loss Δ(y,y’)

�(⇧,⇧0) = k⇧�⇧0k2 = 2
�
n� tr⇧>⇡0�

RegularizationRegularization

Parametric Model for C

C(Vu, Vj) = h�(Vu, Vj), wi

Regularizer
Assume that small kwk corresponds to smooth functions C.
Hence minimize regularized risk functional

minimize
w

mX

i=1

�(⇧i , 1) + � kwk2

Alexander J. Smola: Learning Graph Matching 22 / 35

Structured EstimationStructured Estimation

Original Objective Function

�(⇧, 1) subject to ⇧ = argmin
⇧

⇧>C

Convex Upper Bound

⇠ where ⇠ � tr(1� ⇧0)>C + �(⇧0, 1) for all ⇧0.

To see that this is an upper bound, plug in ⇧0 = ⇧. The
problem is convex in ⇠ and C.

Optimization Problem

minimize
w

mX

i=1

⇠i + � kwk2

subject to ⇠i � tr(1� ⇧0)>C(Gi , Gi) + 2(n � tr ⇧0
i) for all ⇧0.

Alexander J. Smola: Learning Graph Matching 23 / 35

Optimization

Issues
Convex problem but . . .
Exponential number of constraints
Need to find most violated constraints efficiently

Column Generation
Maximizing the constraint is linear assignment problem

maximize
⇧0

� tr ⇧0>[C(Gi , Gi) + 2 · 1]

Recall that C(Gi , Gi) is a compatibility score.
Problem made harder by adding 2 · 1 to enforce margin.

Algorithm
Minimize w for given set of constraints
Find next set of worst constraints

Alexander J. Smola: Learning Graph Matching 24 / 35

Optimization

Recipe
1. Identify estimation problem with structured y
2.Design function f(x,y) efficiently maximized in y
3.Design linear function space for f
4.Design tractable loss Δ(y,y’)

5.Solve optimization problem

(this is a linear assignment problem again)
argmax

y0
f(x, y

0
) +�(y, y

0
)

Experiments
Large baseline (no learning)

Alexander J. Smola: Learning Graph Matching 26 / 35

Large baseline (with learning)

Alexander J. Smola: Learning Graph Matching 27 / 35

no
learning

learning

AccuracyMatching Performance

Alexander J. Smola: Learning Graph Matching 28 / 35

SpeedRuntime

Alexander J. Smola: Learning Graph Matching 29 / 35

BeyondCollaborative Ranking

Setting
Internet retailer (e.g. Netflix) sells movies M to users U.
Users rate movies if they liked them.
Retailer wants to suggest some more movies which
might be interesting for users.

Goal
Suggest movies that user will like. Pointless to recommend
movies that users do not like since they are unlikely to rent.

Problems with Netflix contest
Error criterion is uniform over all movies.
Can only recommend a small number of movies at a
time (probably no more than 10).
Need to do well only on top scoring movies.

Insight
We can use linear assignment / sorting for ranking.

Alexander J. Smola: Learning Graph Matching 33 / 35

Sequence Annotation

Sequence Annotation
• Simple classification

• What if adjacent labels are correlated?
• Can we exploit this for estimation?

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

Sequence Annotation
• Labeling problem

• Define f(x,y) on sequence

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

f(x, y) =

mX

i=1

yif(xi) classification

f(x, y) =

mX

i=1

yif(xi) + f(yi, yi+1) sequence labeling

Dynamic Programming
• Clique Potential

• Forward pass (solve and backsubstitute)

f(x, y) =
mX

i=1

yif(xi) + f(yi, yi+1)| {z }
:=g(yi,yi+1)

=
mX

i=1

g(yi, yi+1)

max

y

mX

i=1

g(yi, yi+1) = max

y2,...,ym

h
max

y1

g(y1, y2)
| {z }

:=h2(y2)

+

mX

i=2

g(yi, yi+1)

i

= max

y3,...,ym

h
max

y2

h2(y2) + g(y2, y3)
| {z }

:=h3(y3)

+

mX

i=3

g(yi, yi+1)

i

= . . . = max

ym

hm(ym)

Dynamic Programming
• Backward pass

(run same recursion from the end)
• Pairwise clique potential measures affinity

between labels
• Loss function

• Computing loss gradient is dynamic program
• Solve by distributed subgradient procedure

(we could also use kernels if we wanted to)

�(y, y0) =
mX

i=1

|yi � y0i|

Loss function
• Structured large margin

• Need to solve argmax to compute gradient in f
• Iterate to solve convex program

l(x, y, f) = max

y0
f(x, y

0
)� f(x, y) +�(y, y

0
)

= max

y0

mX

i=1

�
y

0
if(xi) + f(y

0
i, y

0
i+1)

+

mX

i=1

|yi � y

0
i|

�
mX

i=1

�
y

0
if(xi) + f(y

0
i, y

0
i+1)

Extensions

Structured Ramp Loss
• Binary ramp loss

• upper bound on error
• solve by iterative Concave Convex Procedure

• Multiclass ramp loss

• upper bound bound on error
• tighter bound than structured loss

l(x, y, f) = clip {[0, 1], 1� yf(x)}

l(x, y, f) = max

y0
[f(x, y

0
) +�(y, y

0
)]�max

y0
f(x, y

0
)

Invariances
• Data
• Set of invariance transforms

(e.g. shift, slant, stroke, size, rotation for OCR)
• Not necessarily in group
• Not necessaritly absolute (with degradation)

l(x, y, f) = sup
y0

[f(x, y0)� f(x, y) +�(y, y0)]

l(x, y, f) = sup
y0,g

[f(g � x, g � y0)� f(g � x, g � y) +�(y, y0, g)]

Pitching
• http://blogs.wsj.com/venturecapital/

2010/01/11/how-to-pitch-a-venture-capitalist-on-a-
napkin/

• http://en.wikipedia.org/wiki/
George_H._Heilmeier#Heilmeier.27s_Catechism

• http://www.slideshare.net/dmc500hats/how-to-
pitch-a-vc-aka-startup-viagra

• http://research.microsoft.com/en-us/um/people/
simonpj/papers/proposal.html

• Practice, Practice, Practice

http://blogs.wsj.com/venturecapital/2010/01/11/how-to-pitch-a-venture-capitalist-on-a-napkin/
http://blogs.wsj.com/venturecapital/2010/01/11/how-to-pitch-a-venture-capitalist-on-a-napkin/
http://blogs.wsj.com/venturecapital/2010/01/11/how-to-pitch-a-venture-capitalist-on-a-napkin/
http://blogs.wsj.com/venturecapital/2010/01/11/how-to-pitch-a-venture-capitalist-on-a-napkin/
http://blogs.wsj.com/venturecapital/2010/01/11/how-to-pitch-a-venture-capitalist-on-a-napkin/
http://blogs.wsj.com/venturecapital/2010/01/11/how-to-pitch-a-venture-capitalist-on-a-napkin/
http://en.wikipedia.org/wiki/George_H._Heilmeier#Heilmeier.27s_Catechism
http://en.wikipedia.org/wiki/George_H._Heilmeier#Heilmeier.27s_Catechism
http://en.wikipedia.org/wiki/George_H._Heilmeier#Heilmeier.27s_Catechism
http://en.wikipedia.org/wiki/George_H._Heilmeier#Heilmeier.27s_Catechism
http://www.slideshare.net/dmc500hats/how-to-pitch-a-vc-aka-startup-viagra
http://www.slideshare.net/dmc500hats/how-to-pitch-a-vc-aka-startup-viagra
http://www.slideshare.net/dmc500hats/how-to-pitch-a-vc-aka-startup-viagra
http://www.slideshare.net/dmc500hats/how-to-pitch-a-vc-aka-startup-viagra
http://research.microsoft.com/en-us/um/people/simonpj/papers/proposal.html
http://research.microsoft.com/en-us/um/people/simonpj/papers/proposal.html
http://research.microsoft.com/en-us/um/people/simonpj/papers/proposal.html
http://research.microsoft.com/en-us/um/people/simonpj/papers/proposal.html

Further reading
• Girosi - Equivalence between sparse approximation and SVM

ftp://publications.ai.mit.edu/ai-publications/pdf/AIM-1606.pdf
• Smola, Schölkopf, Müller - Kernels and Regularization

http://alex.smola.org/teaching/berkeley2012/slides/Smola1998connection.pdf
• Aronszajn - RKHS paper (the one that started it all)

http://www.ams.org/journals/tran/1950-068-03/S0002-9947-1950-0051437-7/home.html
• Schölkopf, Herbrich, Smola - Generalized Representer Theorem

http://alex.smola.org/papers/2001/SchHerSmo01.pdf
• Hofmann, Scholkopf, Smola - Kernel Methods in Machine Learning

http://alex.smola.org/papers/2008/HofSchSmo08.pdf
• Teo, Globerson, Roweis and Smola - Convex learning with Invariances

http://books.nips.cc/papers/files/nips20/NIPS2007_1047.pdf
• Caetano, McAuley, Le, Smola - Learning Graph Matching

http://alex.smola.org/papers/2009/Caetanoetal09.pdf
• Keshet and McAllester - Tighter bounds for ramp loss

http://ttic.uchicago.edu/~jkeshet/papers/McAllesterKe11.pdf
• Chapelle, Do, Le, Smola, Teo - Ramp loss examples

http://alex.smola.org/papers/2009/Chapelleetal09.pdf
• Platt - Sequential Minimal Optimization

http://research.microsoft.com/en-us/um/people/jplatt/smoTR.pdf
• Joachims - Multivariate performance measures

http://www.cs.cornell.edu/people/tj/svm_light/svm_perf.html

http://www.ams.org/journals/tran/1950-068-03/S0002-9947-1950-0051437-7/home.html
http://www.ams.org/journals/tran/1950-068-03/S0002-9947-1950-0051437-7/home.html
http://books.nips.cc/papers/files/nips20/NIPS2007_1047.pdf
http://books.nips.cc/papers/files/nips20/NIPS2007_1047.pdf
http://ttic.uchicago.edu/~jkeshet/papers/McAllesterKe11.pdf
http://ttic.uchicago.edu/~jkeshet/papers/McAllesterKe11.pdf
http://research.microsoft.com/en-us/um/people/jplatt/smoTR.pdf
http://research.microsoft.com/en-us/um/people/jplatt/smoTR.pdf
http://www.cs.cornell.edu/people/tj/svm_light/svm_perf.html
http://www.cs.cornell.edu/people/tj/svm_light/svm_perf.html

