MACHINE LEARNING DEPARTMENT

8.1 Neighbors
 8 Recommender Systems

Alexander Smola
Introduction to Machine Learning 10-701 http://alex.smola.org/teaching/10-701-15

Significant content courtesy of Yehuda Koren
Carnegie Mellon University

Thousands of movies and TV episodes including these:
New Arrivals in TV

TV Drama

WORKAHOLICS

TV Comedy

Children \& Family

Thousands of movies and TV episodes including these:
New Arrivals in TV

TV Drama

TV Comedy

Children \& Family

Thousands of movies and TV episodes including these:
New Arrivals in TV

TV Drama

TV Comedy

Children \& Family

N

amazon．com

Amazon Instant Video	Most Popular	Getting Started	Watch Anywhere	Prime Instant Videos	Your Video Library	Passes and Pre－orders	Get Help	DVD \＆Blu－ray

KiPES

Three Kings
 R

George Clooney，Mark Wahlberg，Ice Cube conspire to steal a huge cache of gold hidden near their desert base．

Starring：George Clooney，Mark Wahlberg
Directed by：David O．Russell
Runtime： 1 hour 56 minutes
Release year： 1999
Studio：Warner Bros．

Also available in HD with Amazon Instant Video on Your TV

Dorime

Your Amazon Prime membership now includes unlimited，commercial－ free，instant streaming of thousands of movies and TV shows at no additional cost．

amazon

instant video
Prime instant videos

48 hour rental

Buy movie
（4）1－Click 59.99
Learn more about renting and buying

Add to Wish List
［Send us Feedback］

Customers Who Bought This Item Also Bought

Tower Heist Amazon
Instant Video \sim Eddie
Murphy
\＄3．99（42）
\＄hat

Syriana Amazon Instant Video～George Clooney
 \＄2．99

Five Minutes of Heaven Amazon Instant Video～ Liam Neeson
领城领（70） \＄2．99

Foolproof Amazon Instant Video～Ryan Reynolds

\＄2．99

The Recruit Amazon Instant Video～Al Pacino

\＄1．99

Alexander's Amazon.com > Recommended for You (If you're not Alexander Smola, click here.)

Just For Today
Browse Recommended
Recommendations
Amazon Instant Video
Appstore for Android
Baby
Beauty
Books
Books on Kindle
Camera \& Phote
Clothing \& Accessories
Computers \& Accessories Electronics
Grocery \& Gourmet Food Health \& Personal Care Home Improvement Industrial \& Scientific Jewelry
Kitchen \& Dining
MP3 Downloads
Magazine Subscriptions
Movies \& TV
Music
Musical Instruments office \& School Supplies
Patio, Lawn \& Garden
Shoes
Software
Sports \& Outdoors
Toys \& Games
Video Games
Watches

These recommendations are based on items you own and more.
view: All | New Releases I Coming Soon
More results
1.

Convex Optimization

by Stephen Boyd (March 8, 2004)

In Stock

List Price: $\$ 84.00$

Price: $\$ 68.13$
Add to Cart Add to Wish List
44 used \& new from \$61.32

Recommended because you purchased Nonlinear Programming and more (Fix this)
2.

Probabilistic Graphical Models: Principles and Techniques (Adaptive Computation and Machine Learning series)
by Nir Friedman (July 31, 2009)

In Stock
List Price: $\$ 95.00$
Price: $\$ 93.55$
Add to Cart Add to Wish List
47 used \& new from $\$ 91.33$

Recommended because you purchased Nonlinear Programming and more (Fix this)
3. LOKK INSDE: Doing Bayesian Data Analysis: A Tutorial with R and BUGS
by John K. Kruschke (November 10, 2010)

In Stock
List Price: $\$ 89.95$
Price: $\$ 77.98$ Add to Cart Add to Wish List
44 used \& new from $\$ 68.40$

Recommended because you purchased Bayesian Nonparametrics and more (Fix this)

Parallel and Distributed Computation: Numerical Methods (Optimization and Neural Computation) by Dimitri P. Bertsekas (January 1, 1997)
Average Customer Review: x) (1)
In Stock

Price: $\$ 49.50$

15 used \& new from $\$ 45.49$
Add to Cart

Add to Wish List

Recommended because you purchased Nonlinear Programming (Fix this)
\square

Top Stories
Mitt Romney
Starbucks
Crystal Cathedral
Tonga
Syria
Bali
Dave Bing
Vladimir Putin
Matt Flynn
Iran
San Francisco Bay Area
Social Networking
World
Sci/Tech
Business
Elections
U.S.

Health
Spotlight
Deutschland
Technology
Science

U.S. edition * Modern

Top Stories

Romney wins big in Puerto Rico primary

Reuters - 50 minutes ago $(\mathbb{3}+1]$ If B
| SAN JUAN (Reuters) - Republican presidential hopeful Mitt Romney was sweeping to victory in his party's primary in Puerto Rico on Sunday, bolstering his position as front-runner in the race to determine who will face Democratic President Barack Obama ...

Romney Wins Primary in Puerto Rico Wall Street Journal
Romney Says He Expects to Be Nominee as Santorum Calls Hi BusinessWeek

Related

Your preferred source: Romney appeals to women on campaign trail in
Mitt Romney is
Rick Santorum n Puerto Rico \% Illinois Washington Post
Highly Cited: Romney will win Puerto Rico's GOP primary, CNN projects CNN International Opinion: 'This Week' Transcript: GOP Candidate Rick Santorum ABC News
In Depth: Romney wins Puerto Rico, GOP campaign continues The Associated Press
See all 1,419 sources \%

Peace March in Damascus Is Cut Short by Authorities

New York Times - 12 minutes ago
BEIRUT, Lebanon - The Syrian authorities briefly detained 11 members of one of Syria's most moderate opposition groups during a demonstration in central Damascus on Sunday.

As Questions Mount, Soldier Faces Charges in Killing of 16

Wall Street Journal - 1 hour ago
Staff Sgt. Robert Bales, the Army soldier who is set to be charged in the killings of 16 Afghan civilian men, women and children, spent the weekend in pretrial isolation as military prosecutors prepared a case that may carry the death penalty.

Apple to Announce Plan for Its Cash

New York Times - 51 minutes ago
Apple has finally decided what to do with its cash hoard of nearly $\$ 100$ billion. The company issued an unusual media alert on Sunday evening saying it planned to announce on Monday morning the long-awaited outcome to a discussion by its board about ...

Joachim Gauck: Gauck mit rund 80 Prozent zum

Bundespräsidenten gewählt

ZEIT ONLINE - 1 hour ago
Berlin (dpa) - Der neue Bundespräsident Joachim Gauck hat versichert, sein neues Amt mit allen Krāften und mit ganzem Herzen ausfüllen zu wollen. «lch werde mit all meinen Kräften
" Recent

Cuban opposition activists arrested in Havana
BBC News - 8 minutes ago
Online, virtual officer answers nonemergency crime reports
USA TODAY - 5 minutes ago
Shares rise, investors see brighter US economy
Reuters - 7 minutes ago

San Francisco Bay Area » - Edit

Police: Search called off for missing Gilroy woman likely slain by son
San Jose Mercury News - 2 hours ago
Whitman steadies HP but big challenges remain
San Jose Mercury News - 7 hours ago
Once-venerable Los Gatos saloon, stained by a murder plot, gets a fresh beginning San Jose Mercury News - 2 hours ago

Google News Badges

Industry

Apple

Android

+ See more

Recommended Sections

Mobile and Wireless x

Research firm: New iPad more... Lake Count.
Dissected iPad reveals Samsung,... Reuters
Casey Anthony trial
'Caylee's Law' praised, panned Apploton P
Apple w
Single-core A5 CPU in new 1080p... Apple Insider

Personalized Content

Entire Arena Football team fired at dinner
Pittsburgh's players are enjoying a meal at an - Top 100 NFL free agents
Olive Garden in Florida when they get .NFL punishes two teams
stunning news. Furious reactions »

- Complete NFL coverage

adapt to general popularity pick based on user preferences

Carnegie Mellon University

Spam Filtering

A more formal view

- User (requests content)
- Objects (that can be displayed)
- Context (device, location, time)
- Interface (mobile browser, tablet, viewport)

Examples

- Movie recommendation (Netflix)
- Related product recommendation (Amazon)
- Web page ranking (Google)
- Social recommendation (Facebook)
- News content recommendation (Yahoo)
- Priority inbox \& spam filtering (Google)
- Online dating (OK Cupid)
- Computational Advertising (Yahoo)

Running Example

Training data

user	movie	date	score
1	21	$5 / 7 / 02$	1
1	213	$8 / 2 / 04$	5
2	345	$3 / 6 / 01$	4
2	123	$5 / 1 / 05$	4
2	768	$7 / 15 / 02$	3
3	76	$1 / 22 / 01$	5
4	45	$8 / 3 / 00$	4
5	568	$9 / 10 / 05$	1
5	342	$3 / 5 / 03$	2
5	234	$12 / 28 / 00$	2
6	76	$8 / 11 / 02$	5
6	56	$6 / 15 / 03$	4

user	movie	date	score
1	62	$1 / 6 / 05$	$?$
1	96	$9 / 13 / 04$	$?$
2	7	$8 / 18 / 05$	$?$
2	3	$11 / 22 / 05$	$?$
3	47	$6 / 13 / 02$	$?$
3	15	$8 / 12 / 01$	$?$
4	41	$9 / 1 / 00$	$?$
4	28	$8 / 27 / 05$	$?$
5	93	$4 / 4 / 05$	$?$
5	74	$7 / 16 / 03$	$?$
6	69	$2 / 14 / 04$	$?$
6	83	$10 / 3 / 03$	$?$

Challenges

- Scalability
- Millions of objects
- 100s of millions of users
- Cold start
- Changing user base
- Changing inventory (movies, stories, goods)
- Attributes
- Imbalanced dataset

User activity / item reviews are power law distributed

Number of ratings per movie

Netilix competition yardstick

- Least mean squares prediction error
- Easy to define

$$
\operatorname{rmse}(S)=\sqrt{|S|^{-1} \sum_{(i, u) \in S}\left(\hat{r}_{u i}-r_{u i}\right)^{2}}
$$

- Wrong measure for composing sessions!

- Consistent (in large sample size limit this will converge to minimizer)

Basic Idea

ellon University

Basic Idea

- (user,user) similarity to recommend items
- good if item base is smaller than user base
- good if item base changes rapidly
- traverse bipartite similarity graph
- (item,item) similarity to recommend new items that were also liked by the same users
- good if the user base is small is small
- Oldest known CF method

Neighborhood based CF

users

	1	2	3	4	5	6	7	8	9	10	11	12
1	1		3			5			5		4	
2			5	4			4			2	1	3
$\stackrel{\text { F }}{ }$	2	4		1	2		3		4	3	5	
4		2	4		5			4			2	
5			4	3	4	2					2	5
6	1		3		3			2			4	

\square - unknown rating

- rating between 1 to 5

Neighborhood based CF

users

		1	2	3	4	5	6	7	8	9	10	11	12
	1	1		3		?	5			5		4	
	2			5	4			4			2	1	3
$\stackrel{\vec{\oplus}}{\vec{\omega}}$	3	2	4		1	2		3		4	3	5	
	4		2	4		5			4			2	
	5			4	3	4	2					2	5
6		1		3		3			2			4	

\square - unknown rating

- rating between 1 to 5

Neighborhood based CF

users

	1	2	3	4	5	6	7	8	9	10	11	12
1	1		3		?	5			5		4	
2			5	4			4			2	1	3
$\stackrel{\text { F }}{ }$	2	4		1	2		3		4	3	5	
4		2	4		5			4			2	
5			4	3	4	2					2	5
6	1		3		3			2			4	

legie Mellon University

Neighborhood based CF

users

	1	2	3	4	5	6	7	8	9	10	11	12	similarity$\begin{aligned} & s 13=0.2 \\ & s 16=0.3 \end{aligned}$
1	1		3		?	5			5		4		
2			5	4			4			2	1	3	
$\stackrel{\text { Fin }}{\text { ¢ }}$	2	4		1	2		3		4	3	5		
4		2	4		5			4			2		
5			4	3	4	2					2	5	
6	1		3		3			2			4		

\square - unknown rating \square - rating between 1 to 5

Neighborhood based CF

users

	1	2	3	4	5	6	7	8	9	10	11	12		
1	1		3		2.6	5			5		4			
2			5	4			4			2	1	3		similarity
:---:														
s $13=0.2$														
s $16=0.3$														

\square - unknown rating \quad - rating between 1 to 5
regie Mellon University

Properties

- Intuitive

- No (substantial) training
- Handles new users / items
- Easy to explain to user

Recommended for you

Casually Introducing Walter Smith III Similar to Eric Harland

Companeros De Mi
Vida
Eliades Ochoa
Similar to Cachao and
Irakere

Tibiri Tabara Sierra Maestra

You've scrobbled Sierra Maestra, but not this
release

New York Ska-Jazz Ensemble
New York Ska-Jazz Ensemble

You've scrobbled New York Ska-Jazz Ensemble,

More Late Night Transmissions With... Jaya the Cat
You've scrobbled Jaya the Cat, but not this release

Appetite For Destruction Guns N' Roses You've scrobbled Guns N Roses, but not this

Accuracy \& scalability questionable
Carnegie Mellon University

Normalization / Bias

- Problem
- Some items are significantly higher rated
- Some users rate substantially lower
- Ratings change over time
- Bias correction is crucial for nearest neighborhood recommender algorithm
- Offset per user
- Offset per movie
- Time effects
- Global bias

Baseline estimation

- Mean rating is 3.7
- Troll Hunter is 0.7 above mean
- User rates 0.2 below mean
- Baseline is 4.2 stars
- Least mean squares problem

$$
\underset{b}{\operatorname{minimize}} \sum_{(u, i)}\left(r_{u i}-\mu-b_{u}-b_{i}\right)^{2}+\lambda\left[\sum_{u} b_{u}^{2}+\sum_{i} b_{i}^{2}\right]
$$

- Jointly convex. Alternatively remove mean \& iterate

$$
b_{i}=\frac{\sum_{u \in R(i)}\left(r_{u i}-\mu-b_{u}\right)}{\lambda+|R(i)|} \text { and } b_{u}=\frac{\sum_{i \in R(u)}\left(r_{u i}-\mu-b_{i}\right)}{\lambda+|R(u)|}
$$

Parzen Windows style CF

- Similarity measure s_{ij} between items
- Find set $\mathrm{s}_{\mathrm{k}}(\mathrm{i}, \mathrm{u})$ of k-nearest neighbors to movie i that were rated by user u
- Weighted average over the set

$$
\hat{r}_{u i}=b_{u i}+\frac{\sum_{j \in s_{k}(i, u)} s_{i j}\left(r_{u j}-b_{u j}\right)}{\sum_{j \in s_{k}(i, u)} s_{i j}} \text { where } b_{u i}=\mu+b_{u}+b_{i}
$$

- How to compute s_{ij} ?

(item,item) similarity measures

User ratings for item i:

1	$?$	$?$	5	5	3	$?$	$?$	$?$	4	2	$?$	$?$	$?$	$?$	4	$?$	5	4	1	$?$

User ratings for item j :

$?$	$?$	4	2	5	$?$	$?$	1	2	5	$?$	$?$	2	$?$	$?$	3	$?$	$?$	$?$	5	4

- Pearson correlation coefficient
- nonuniform support $\quad s_{i j}=\frac{\operatorname{Cov}\left[r_{u i}, r_{u j}\right]}{\operatorname{Std}\left[r_{u i}\right] \operatorname{Std}\left[r_{u j}\right]}$
- compute only over shared support
- shrinkage towards 0 to address problem of small support (typically few items in common)

(item,item) similarity measures

- Empirical Pearson correlation coefficient

$$
\hat{\rho}_{i j}=\frac{\sum_{u \in U(i, j)}\left(r_{u i}-b_{u i}\right)\left(r_{u j}-b_{u j}\right)}{\sqrt{\sum_{u \in U(i, j)}\left(r_{u i}-b_{u i}\right)^{2} \sum_{u \in U(i, j)}\left(r_{u j}-b_{u j}\right)^{2}}}
$$

- Smoothing towards 0 for small support

$$
s_{i j}=\frac{|U(i, j)|-1}{|U(i, j)|-1+\lambda} \hat{\rho}_{i j}
$$

- Make neighborhood more peaked $s_{i j} \rightarrow s_{i j}^{2}$
- Shrink towards baseline for small neighborhood

$$
\hat{r}_{u i}=b_{u i}+\frac{\sum_{j \in s_{k}(i, u)} s_{i j}\left(r_{u j}-b_{u j}\right)}{\lambda+\sum_{j \in s_{k}(i, u)} s_{i j} \text { Carnegie Mellon University }}
$$

Similarity for binary data

- Pearson correlation meaningless
- Views
- Purchase behavior
m_{i} users acting on i
$m_{i j}$ users acting on both i and j
- Clicks
m total number of users
- Jaccard similarity (intersection vs. joint)

$$
s_{i j}=\frac{m_{i j}}{\alpha+m_{i}+m_{j}-m_{i j}}
$$

- Observed/expected ratio Improve by counting $s_{i j}=\frac{\text { observed }}{\text { expected }} \approx \frac{m_{i j}}{\alpha+m_{i} m_{j} / m}$ per user (many users better than heavy users)

MACHINE LEARNING DEPARTMENT

8.2 Matrix Factorization
 8 Recommender Systems

Alexander Smola

Introduction to Machine Learning 10-701 http://alex.smola.org/teaching/10-701-15

Significant content courtesy of Yehuda Koren
Carnegie Mellon University

Basic Idea

h_{1}	w_{1}		s^{1}				
h_{2}	w_{3}		s^{2}				
h_{3}	w_{3}		s^{3}				$M \approx U$
h_{4}	w_{4}		s^{4}				
h_{5}	w_{5}		s^{5}				
h_{6}	w_{6}		s^{6}				

Carnegie Mellon University

Latent variable view

Basic matrix factorization

users

A rank-3 SVD approximation

Estimate unknown ratings

users

A rank-3 SVD approximation

Estimate unknown ratings

users

A rank-3 SVD approximation

Estimate unknown ratings

users

A rank-3 SVD approximation

Properties

1		3			5			5		4					
		5	4			4			2	1	3				
2	4		1	2		3		4	3	5					
	2	4		5			4			2					
		4	3	4	2					2	5				
1		3		3			2			4		$\quad \sim$.1	-.4	.2
:---	:---	:---	:---												
-.5	.6	.5													
-.2	.3	.5													
1.1	2.1	.3													
-1	2.1	-2	$\quad .7$												

1.1	-.2	.3	.5	-2	-.5	.8	-.4	.3	1.4	2.4	-.9
-.8	.7	.5	1.4	.3	-1	1.4	2.9	-.7	1.2	-.1	1.3
2.1	-.4	.6	1.7	2.4	.9	-.3	.4	.8	.7	-.6	.1

- SVD is undefined for missing entries
- stochastic gradient descent (faster)
- alternating optimization
- Overfitting without regularization particularly if fewer reviews than dimensions
- Very popular on Netflix

Netflix: 0.9514
Factor models: Error vs. \#parameters

Risk Minimization View

- Objective Function
$\underset{p, q}{\operatorname{minimize}} \sum_{(u, i) \in S}\left(r_{u i}-\left\langle p_{u}, q_{i}\right\rangle\right)^{2}+\lambda\left[\|p\|_{\text {Frob }}^{2}+\|q\|_{\text {Frob }}^{2}\right]$
- Alternating least squares

$$
\begin{aligned}
& p_{u} \leftarrow\left[\lambda \mathbf{1}+\sum_{i \mid(u, i) \in S} q_{i} q_{i}^{\top}\right]^{-1} \sum_{i} q_{i} r_{u i} \\
& q_{i} \leftarrow\left[\lambda \mathbf{1}+\sum_{u \mid(u, i) \in S} p_{u} p_{u}^{\top}\right]^{-1} \sum_{i} p_{u} r_{u i}
\end{aligned}
$$

good for
 MapReduce

Risk Minimization View

- Objective Function

$$
p, q \quad \sum_{(u, i) \in S}
$$

- Stochastic gradient descent

$$
\begin{aligned}
p_{u} & \leftarrow\left(1-\lambda \eta_{t}\right) p_{u}-\eta_{t} q_{i}\left(r_{u i}-\left\langle p_{u}, q_{i}\right\rangle\right) \\
q_{i} & \leftarrow\left(1-\lambda \eta_{t}\right) q_{i}-\eta_{t} p_{u}\left(r_{u i}-\left\langle p_{u}, q_{i}\right\rangle\right)
\end{aligned}
$$

- No need for locking
- Multicore updates asynchronously (Recht, Re, Wright, 2012 - Hogwild)
- 20 minutes on a laptop for 1000+ dimensions

deFinetti Theorem

- Independent random variables

$$
p(X)=\prod_{i=1}^{m} p\left(x_{i}\right)
$$

- Exchangeable random variables

$$
p(X)=p\left(x_{1}, \ldots, x_{m}\right)=p\left(x_{\pi(1)}, \ldots, x_{\pi(m)}\right)
$$

- There exists a conditionally independent representation of exchangeable r.v.

$$
p(X)=\int d p(\theta) \prod_{i=1}^{m} p\left(x_{i} \mid \theta\right)
$$

This motivates latent variable models

Aldous Hoover Factorization

- Matrix-valued set of random variable Example - Erdos Renyi graph model

$$
p(E)=\prod_{i, j} p\left(V_{i j}\right)
$$

- Independently exchangeable on matrix
$p(E)=p\left(E_{11}, E_{12}, \ldots, E_{m n}\right)=p\left(E_{\pi(1) \rho(1)}, E_{\pi(1) \rho(2)}, \ldots, E_{\pi(m) \rho(n)}\right)$
- Aldous Hoover Theorem

$$
p(E)=\int d p(\theta) \int \prod_{i=1}^{m} d p\left(u_{i}\right) \prod_{j=1}^{n} d p\left(v_{j}\right) \prod_{i, j} p\left(E_{i j} \mid u_{i}, v_{j}, \theta\right)
$$

Aldous Hoover Factorization

- Rating matrix is (row, column) exchangeable
- Draw latent variables per row and column
- Draw matrix entries independently given pairs
- Absence / presence of rating is a signal
- Can be extended to graphs with vertex attributes

Aldous Hoover variants

- Jointly exchangeable matrix
- Social network graphs
- Draw vertex attributes first, then edges
- Cold start problem
- New user appears
- Attributes (age, location, browser)
- Can estimate latent variables from that
- User and item factors in matrix factorization problem can be viewed as AH-factors

Netflix: 0.9514

Factor models: Error vs. \#parameters

Carnegie Mellon University

Bias

- Objective Function $\underset{p, q}{\operatorname{minimize}} \sum_{(u, i) \in S}\left(r_{u i}-\left(\mu+b_{u}+b_{i}+\left\langle p_{u}, q_{i}\right\rangle\right)\right)^{2}+$

$$
\lambda\left[\|p\|_{\text {Frob }}^{2}+\|q\|_{\text {Frob }}^{2}+\left\|b_{\mathrm{users}}\right\|^{2}+\left\|b_{\text {items }}\right\|^{2}\right]
$$

- Stochastic gradient descent

$$
\begin{aligned}
p_{u} & \leftarrow\left(1-\lambda \eta_{t}\right) p_{u}-\eta_{t} q_{i} \rho_{u i} \\
q_{i} & \leftarrow\left(1-\lambda \eta_{t}\right) q_{i}-\eta_{t} p_{u} \rho_{u i} \\
b_{u} & \leftarrow\left(1-\lambda \eta_{t}\right) b_{u}-\eta_{t} \rho_{u i} \\
b_{i} & \leftarrow\left(1-\lambda \eta_{t}\right) b_{i}-\eta_{t} \rho_{u i} \\
\mu & \leftarrow\left(1-\lambda \eta_{t}\right) \mu-\eta_{t} \rho_{u i}
\end{aligned}
$$

where $\rho_{u i}=\left(r_{u i}-\left(\mu+b_{i}+b_{u}+\left\langle p_{u}, q_{i} \mathcal{C}_{\text {it }}\right)\right)_{n e g i e}\right.$ Mellon University

Factor models: Error vs. \#parameters

100010000
 100000 Millions of Parameters

Ratings are not given at random

Yahoo! music ratings

Yahoo! survey answers

- Marlin et al. "Collaborative Filtering and the Missing at Random Assumption" UAI 2007

Movie rating matrix

users											
	1		3			5		5		4	
			5	4		4			2	1	3
	2	4		1	2	3		4	3	5	
			4		5		4			2	
			4	3		2				2	5
	1		3		3		2			4	

users

$$	1	0	1	0	0		1	0	0	1	0		1	0
	0	0	1	1	0	0	0	1	0	0	1		1	1
	1	1	0	1	1	O	0	1	0	1	1		1	0
	0	1	1	0	1		0	0	-	0	0		1	0
	0	0	1	1	1		1	0	0	0	0		1	1
		0	1	0	1		0	0	1	0	0		1	0

Cui

- Characterize users by which movies they rated Edge attributes (observed, rating)
- Adding features to recommender system

$$
r_{u i}=\mu+b_{u}+b_{i}+\left\langle p_{u}, q_{i}\right\rangle+\left\langle c_{u}, x_{i}\right\rangle
$$

Alternative integration

- Key idea - use related ratings to average
- Salakhudtinov \& Mnih, 2007

$$
q_{i} \leftarrow q_{i}+\sum_{u} c_{u i} p_{u}
$$

- Koren et al., 2008

$$
q_{i} \leftarrow q_{i}+\sum_{u} c_{u i} x_{j}
$$

Overparametrize items by q and x

Carnegie Mellon University

Something Happened in Early 2004...

Netflix ratings by date

Are movies getting better with time?

Sources of temporal change

- Items
- Seasonal effects
(Christmas, Valentine's day, Holiday movies)
- Public perception of movies (Oscar etc.)
- Users
- Changed labeling of reviews
- Anchoring (relative to previous movie)
- Change of rater in household
- Selection bias for time of viewing

Modeling temporal change

- Time-dependent bias
- Time-dependent user preferences

$$
r_{u i}(t)=\mu+b_{u}(t)+b_{i}(t)+\left\langle q_{i}, p_{u}(t)\right\rangle
$$

- Parameterize functions b and p
- Slow changes for items
- Fast sudden changes for users
- Good parametrization is key

Koren et al., KDD 2009 (CF with temporal dynamics)

Bias matters

Sources of Variance in Netflix data

Netflix: 0.9514
Factor models: Error vs. \#parameters

More ideas

- Explain factorizations
- Cold start (new users)
- Different regularization for different parameter groups / different users
- Sharing of statistical strength between users
- Hierarchical matrix co-clustering / factorization

MACHINE LEARNING DEPARTMENT

8.3 Session Modeling
 8 Recommender Systems

Alexander Smola
Introduction to Machine Learning 10-701 http://alex.smola.org/teaching/10-701-15

Significant content courtesy of Yehuda Koren
Carnegie Mellon University

Session Modeling
 "You Can Look at Models, Or You Can Be One", with this Fun Kids Modeling Program For Boys and Girls Ages 3-5

Summer Session

Good Grooming

Fashion Shows

Manners
T.V. Commercials

Bring out your child's personality-

(6) day modeling program covers it all!

CAMP	DAYS	FASHION SHOW *
1	$6 / 25-6 / 28$	$6 / 29$
2	$7 / 08-7 / 12$	$7 / 13$
3	$7 / 22-7 / 26$	$7 / 27$
4	$8 / 05-8 / 09$	$8 / 10$

User interaction

- Explicit search query
- Search engine
- Genre selection on movie site
- Implicit search query
- News site
- Priority inbox
- Comments on article
- Viewing specific movie (see also ...)
- Sponsored search (advertising)

Search

Everything
Images
Maps
Videos
News
Shopping
More

Mountain View, CA
Change location

Show search tools

Sessions Modeling Studio
 \section*{www.sessionsmodeling.com/}

Sessions modeling studio is a licensed agency. We offer print modeling, promotions, fashion shows, movies, tv commercials, and more. Locates in Jacksonville ...

+ Show map of 12627 San Jose Blvd \# 401, Jacksonville, FL 32223

Super Models
The Campbell Soup Company hired Sessions models for a ...

Model Search
 Contact Us. Sessions Modeling Studio 12627 San Jose Blvd ...

Child Sessions
Contact Us. Sessions Modeling Studio. 12627 San Jose Blvd ...

Contact Us

Contact Us. Sessions Modeling Studio 12627 San Jose Blvd ...

Why Sessions
 For 27 years SESSIONS MODELING STUDIO has ...

Teen Sessions

Contact Us. Sessions Modeling Studio. 12627 San Jose Blvd ...

More results from sessionsmodeling.com »
Sessions Modeling Studio - Local Business - Jacksonville, FL ... www.facebook.com/pages/Sessions-Modeling-Studio/99577445805
Sessions Modeling Studio - Sessions Modeling Studio is a licensed agency. ... To interact with Sessions Modeling Studio you need to sign up for Facebook first.

+ Show map of 12627 San Jose Blvd \# 401, Jacksonville, FL 32223

Rethinking Modeling Sessions

www.agilemodeling.com/essays/modelingSessions.htm
Recently reviewed, A modeling session is an activity where one or more people focus on the development of one or more models. Modeling sessions are an ...

Session W25: Focus Session: Modeling of Rare Events

meetings.aps.org/Meeting/MAR12/SessionIndex2/?SessionEventID..
Mar 2, 2012 - Session W25: Focus Session: Modeling of Rare Events: Methods and Annlications I Show Ahstracts Snonsorina Units : DCOMP Chair Weinan
session modeling

Search

session? models?

Everything
Images
Maps
Videos
News
Shopping
More

Mountain View, CA
Change location

Show search tools

Sessions Modeling Studio
 www.sessionsmodeling.com/

Sessions modeling studio is a licensed agency. We offer print modeling, promotions, fashion shows, movies, tv commercials, and more. Locates in Jacksonville ...

+ Show map of 12627 San Jose Blvd \# 401, Jacksonville, FL 32223

Super Models
The Campbell Soup Company hired Sessions models for a ...

Model Search
 Contact Us. Sessions Modeling Studio 12627 San Jose Blvd ...

Child Sessions
Contact Us. Sessions Modeling Studio. 12627 San Jose Blvd ...

Contact Us

Contact Us. Sessions Modeling Studio 12627 San Jose Blvd ...

Why Sessions
 For 27 years SESSIONS MODELING STUDIO has ...

Teen Sessions

Contact Us. Sessions Modeling Studio. 12627 San Jose Blvd ...

More results from sessionsmodeling.com »
Sessions Modeling Studio - Local Business - Jacksonville, FL ... www.facebook.com/pages/Sessions-Modeling-Studio/99577445805
Sessions Modeling Studio - Sessions Modeling Studio is a licensed agency. ... To interact with Sessions Modeling Studio you need to sign up for Facebook first.

+ Show map of 12627 San Jose Blvd \# 401, Jacksonville, FL 32223

Rethinking Modeling Sessions

www.agilemodeling.com/essays/modelingSessions.htm
Recently reviewed, A modeling session is an activity where one or more people tocus on the development of one or more models. Modeling sessions are an ...

Session W25: Focus Session: Modeling of Rare Events

meetings.aps.org/Meeting/MAR12/SessionIndex2/?SessionEventID..
Mar 2, 2012 - Session W25: Focus Session: Modeling of Rare Events: Methods and Annlications I Shrw Ahstracts Snonsoring I Inits" DCOMP Chair Weinan
[PDF Sagan Workshop Hands-on Sessions (Modeling) At present ... nexsci.caltech.edu/workshop/2011/Tues_HandsOn.pdf
File Format: PDF/Adobe Acrobat - Quick View
Sagan Workshop Hands-on Sessions (Modeling). At present, searching for planets with microlensing requires selecting a few targets out of hundreds discovered ...

GIS and Agent-Based Modelling: AAG SPECIAL SESSION ...

 gisagents.blogspot.com/../aag-special-session-modeling-geographic....Sep 3, 2009 - AAG SPECIAL SESSION: Modeling Geographic Complexity. For those interested we are organizing a special session(s) at the forthcoming ...

Technical Session 31: Modeling \& Control for Renewable Energy

www.apec-conf.org/2011/conference-at-a-glance/337?task=view
Title. Author(s). Fault Impacts on Solar Power Unit Reliability. Ali Bazzi, Katherine Kim, Brian Johnson, Philip Krein, Alejandro Do... Analysis of Boundary Control ...

Plenary Session: Modeling Social Behavior with Aggregated ...
video.mit.edu/.../plenary-session-modeling-social-behavior-with-aggr...
Ted Morgan, CEO, Skyhook Wireless; Kipp Jones, Chief Architect, Skyhook Wireless. 10/12/2009.

Did the user SCROLL DOWN?

[PDF Case Based Session Modeling and Personalization in a Travel ... www.inf.unibz.it/~ricci/papers/07-arslan.pdf
File Format: PDF/Adobe Acrobat - Quick View
by B Arslan - Cited by 5 - Related articles
Knowledge intensive session modeling and mixed initiative recommendation are introduced in the CBR framework. The advantages of this approach, with ...

Sessions modeling studio-YouTube
www.youtube.com/watch?v=eD1KJHwLxVY
Mar 30, 2011 - Trainer Davey at Fitness America Weekend 2010 Las Vegasby TrainerDavey177 views; Studio Modeling session swimsuit model \& ...

Advanced search Search Help Give us feedback
Google Home Advertising Programs Business Solutions Privacy About Google

Bad ideas ...

- Show items based on relevance

- Yes, this user likes Die Hard.
- But he likes other movies, too
- Show items only for majority of users ‘apple' vs. 'Apple’

User response

Feds to investigate death of Florida teen

USA TODAY - 59 minutes ago $\mathbb{Q}+1$ B \square
ORLANDO, Florida (AP) - Following a day of protests calling for the arrest of a Florida neighborhood watch captain who fatally shot an unarmed black teen, the USJustice Department announced late Monday it will investigate the case.

Feds to investigate fatal shooting of Fla. teen Boston.com
Black teen's slaying spur calls for man's arrest San Francisco Chronicle
Your preferred source: Federal agencies to open investigation into black teen's death Washington Post
From Florida: US Department of Justice, FBI and FDLE to probe Trayvon Martin killing MiamiHerald.com
Opinion: Trayvon Martin and a vigilante's deadly zeal Pittsburgh Post Gazette
Wikipedia: Trayvon Martin
See all 1,241 sources »

Feds to investigate death of Florida teen

log it!
USA TODAY - 59 minutes ago
ORLANDO, Florida (AP) - Following a day of protests calling for the arrest of a Florida neighborhood watch captain who fatally shot an unarmed black teen, the USJustice Department announced late Monday it will investigate the case.
-
\square

Related

Trayvon Martin 》 George Zimmerman » Neighborhood watch >

bing
 Web

RELATED SEARCHES
Justin Bieber Justin Bieber Games Justin Bieber Cuts His Hair
Justin Bieber New Haircut
Justin Bieber Nail Polish
Justin Bieber Kissing Justin Bieber Hair Justin Bieber Selena Gomez Kiss

SEARCH HISTORY
user
user response
See all
Clear all - Turn off

4 NARROW BY DATE

All results

Past 24 hours
Past week
Past month

bieber

Web News Music Images Videos Morev

ALL RESULTS

1-10 of 209,000,000 results • Advanced

Justin Bieber - Wikipedia, the free encyclopedia
Life and career - Image - Discography - Tours
Justin Drew Bieber is a Canadian pop/ R\&B singer, songwriter and actor. Bieber was discovered in 2008 by Scooter Braun, who came across Bieber's videos on YouTube and ... en.wikipedia.org/wiki/Justin_Bieber

Justin Bieber

Official site of Justin Bieber. Includes news and blog, webshop and online video. www.justinbiebermusic.com
bieber - Bing News

Justin Bieber gets beaten bloody in the boxing ring for Complex, talks about his 'feminine qualities'
Justin Bieber plans on being very open about his love for girlfriend Selena Gomez but he won't let her get in the way of his music. In an interview with...
New York Daily News • 11 hours ago
Justin Bieber gets bloody for 'Complex' magazine AZCentral.com Justin Bieber Takes A Few Punches For Complex MTV

Bieber Tours - Home

Fuel Surcharge - diesel fuel prices continue to climb, no increase for March ticket prices: Read More...
www.biebertourways.com

Bieber, California - Wikipedia, the free encyclopedia

History • Demographics - Politics
Bieber (formerly, Chalk Ford) is a census-designated place (CDP) in Lassen County, California. It is located on the Pit River 55 miles (89 km) north-northwest of ...
en.wikipedia.org/wiki/Bieber,_California
Bieber by Adam - Bing Music

Album: Bieber - Single
hover on link

PAGE SECTIONS

1. History

The settlement sprang up at the F 1877. [3] The first post office at

2 Demegrophics
The 2010 United States Census [More on this page had a population of 3
3. Politics
int the state legislature Bieber is I 1st Senate District, represented
4. References

Search within wikipedia.org

Response is conditioned on available options

- User search for 'chocolate'

user picks this

- What the user realiy would have wanted
- User can only pick from available items
- Preferences are often relative

Independent click model

- Each object has click probability
- Object is viewed independently
- Used in computational advertising (with some position correction)
- Horribly wrong assumption
- OK if probability is very small (OK in ads)

$$
p(x \mid s)=\prod_{i=1}^{n} \frac{1}{1+e^{-x_{i} s_{i}}}
$$

Logistic click model

- User picks at most one object
- Exponential family model for click

$$
p(x \mid s)=\frac{e^{s_{x}}}{e^{s_{0}}+\sum_{x^{\prime}} e^{s_{x^{\prime}}}}=\exp \left(s_{x}-g(s)\right)
$$

no click

Ignores order of objects

- Assumes that the user looks at all before taking action

Sequential click model

- User traverses list
click
- At each position some probability of clicking
- When user reaches end of the list he aborts

$$
p(x=j \mid s)=\left[\prod_{i=1}^{j-1} \frac{1}{1+e^{s_{i}}}\right] \frac{1}{1+e^{-s_{j}}}
$$

- This assumes that a patient user viewed all items

Skip click model

- User traverses list
- At each position some probability of clicking
- At each position the user may abandon the process
- This assumes that user traverses list sequentially

Context skip click model

views

clicks docs

- User traverses list
- At each position some probability of clicking which depends on previous content
- At each position the user may abandon the process
- User may click more than once

Context skip click model

Context skip click model

- Viewing probability

user is gone

$$
\begin{aligned}
p\left(v_{i}=1 \mid v_{i-1}=0\right) & =0 \\
p\left(v_{i}=1 \mid v_{i-1}=1, c_{i-1}=0\right) & =\frac{1}{1+e^{-\alpha_{i}}} \\
p\left(v_{i}=1 \mid v_{i-1}=1, c_{i-1}=1\right) & =\frac{1}{1+e^{-\beta_{i}}} \quad \text { User returns }
\end{aligned}
$$

- Click probability (only if viewed)
prior context

$$
p\left(c_{i}=1 \mid v_{i}=1, c^{i-1}, d^{i}\right)=\frac{1}{\left.1+e^{-f\left(\left|c^{i-1}\right|, d_{i}, d^{i-1}\right.}\right)}
$$

$p(v, c \mid d)=\prod_{i=1}^{n}\left[p\left(v_{i} \mid v_{i-1}, c_{i-1}\right) p\left(c_{i} \mid v_{i}, c^{i-1}, d^{i}\right)\right]$

Incremental gains score

$$
\begin{aligned}
& f\left(\left|c^{i-1}\right|, d_{i}, d^{i-1}\right) \\
:= & \rho\left(S, d^{i} \mid a, b\right)-\rho\left(S, d^{i-1} \mid a, b\right)+\gamma_{\left|c^{i-1}\right|}+\delta_{i} \\
:= & \sum_{s \in S} \sum_{j}[s]_{j}\left(a_{j} \sum_{d \in d^{i}}[d]_{j}+b_{j}\left(\rho_{j}\left(d^{i}\right)-\rho_{j}\left(d^{i-1}\right)\right)\right) \\
& +\gamma_{\left|c^{i-1}\right|}+\delta_{i}
\end{aligned}
$$

- Submodular gain per additional document
- Relevance score per document
- Coverage over different aspects
- Position dependent score
- Score dependent on number of previous clicks

Optimization

- Latent variables

$$
p(v, c \mid d)=\prod_{i=1}^{n}\left[p\left(v_{i} \mid v_{i-1}, c_{i-1}\right) p\left(c_{i} \mid v_{i}, c^{i-1}, d^{i}\right)\right]
$$

We don't know v whether user viewed result

- Use variational inference to integrate out v (more next week in graphical models)

$$
\begin{aligned}
-\log p(c) & \leq-\log p(c)+D(q(v) \| p(v \mid c)) \\
& =\mathbf{E}_{v \sim q(v)}[-\log p(c)+\log q(v)-\log p(v \mid c)] \\
& =\mathbf{E}_{v \sim q(v)}[-\log p(c, v)]-H(q(v)) .
\end{aligned}
$$

Optimization

- Compute latent viewing probability given clicks
- Easy since we only have one transition from views to no views (no DP needed)
- Expected log-likelihood under viewing model
- Convex expected log-likelihood
- Stochastic gradient descent
- Parametrization uses personalization, too (user, position, viewport, browser)

MACHINE LEARNING DEPARTMENT

8.4 Feature Representation 8 Recommender Systems

Alexander Smola
Introduction to Machine Learning 10-701 http://alex.smola.org/teaching/10-701-15

Significant content courtesy of Yehuda Koren
Carnegie Mellon University
(s)

Statistical Model

- Aldous-Hoover factorization
- normal distribution for user and item attributes
- rating given by inner product
- Ratings

$$
p\left(R_{i j} \mid U_{i}, V_{j}, \sigma^{2}\right)=\mathcal{N}\left(R_{i j} \mid U_{i}^{T} V_{j}, \sigma^{2}\right)
$$

- Latent factors

$$
p\left(U \mid \sigma_{U}^{2}\right)=\prod_{i=1}^{N} \mathcal{N}\left(U_{i} \mid 0, \sigma_{U}^{2} \mathbf{I}\right), \quad p\left(V \mid \sigma_{V}^{2}\right)=\prod_{j=1}^{M} \mathcal{N}\left(V_{j} \mid 0, \sigma_{V}^{2} \mathbf{I}\right)
$$

Salakhudtinov \& Mnih, ICML 2008 $\mathbf{a}_{\text {andepmeilon Uniersity }}$

Details

- Priors on all factors
- Wishart prior is conjugate to Gaussian, hence use it
- Allows us to adapt the variance automatically
- Inference (Gibbs sampler)
- Sample user factors (parallel)
- Sample movie factors (parallel)

Making it fancier

Results (Mnih \& Salakthudtinov)

Multiple Sources

Carnegie Mellon University

Social Network Data

Data: users, connections, features
Goal: suggest connections

Social Network Data

Data: users, connections, features
Goal: suggest connections

Social Network Data

Data: users, connections, features Goal: suggest connections

Social Network Data

Data: users, connections, features Goal: model/suggest connections

$$
p(x, y, e)=\prod_{i \in \mathrm{Users}} p\left(y_{i}\right) p\left(x_{i} \mid y_{i}\right) \prod_{i, j \in \mathrm{Users}} p\left(e_{i j} \mid x_{i}, y_{i}, x_{j}, y_{j}\right)
$$

Direct application of the Aldous-Hoover theorem. Edges are conditionally independent.

Applications

Applications

social network = friendship + interests

Carnegie Mellon University

Applications

social network $=$ friendship + interests

recommend users based on friendship \& interests

recommend apps based on friendship \& interests

Social Recommendation

recommend users based on friendship \& interests

- boost traffic
- make the user graph more dense
- increase user population
- stickiness

recommend apps based on friendship \& interests

- boost traffic
- increased revenue
- increased user participation
- make app graph more dense
... usually addressed by separate tools ...

Homophily

recommend users based on friendship \& interests

- users with similar interests are more likely to connect

recommend apps based on friendship \& interests

- friends install similar applications

Highly correlated. Estimate both jointly

Model

Carnegie Mellon University

Model

- Social interaction

$$
\begin{aligned}
x_{i} & \sim p\left(x \mid y_{i}\right) \\
x_{j} & \sim p\left(x \mid y_{j}\right) \\
e_{i j} & \sim p\left(e \mid x_{i}, y_{i}, x_{j}, y_{j}, \Phi\right)
\end{aligned}
$$

- App install

$$
\begin{aligned}
x_{i} & \sim p\left(x \mid y_{i}\right) \\
v_{j} & \sim p\left(v \mid u_{j}\right) \\
a_{i j} & \sim p\left(a \mid x_{i}, y_{i}, u_{j}, v_{j}, \Phi\right)
\end{aligned}
$$

Model

- Social interaction

$$
\begin{aligned}
x_{i} & \sim p\left(x \mid y_{i}\right) \\
x_{j} & \sim p\left(x \mid y_{j}\right) \\
e_{i j} & \sim p\left(e \mid x_{i}, y_{i}, x_{j}, y_{j}, \Phi\right)
\end{aligned}
$$

cold start

latent features

$$
\begin{aligned}
x_{i} & =A y_{i}+\epsilon_{i} \\
v_{j} & =B u_{j}+\tilde{\epsilon}_{j}
\end{aligned}
$$

- App install

$$
\begin{aligned}
x_{i} & \sim p\left(x \mid y_{i}\right) \\
v_{j} & \sim p\left(v \mid u_{j}\right) \\
a_{i j} & \sim p\left(a \mid x_{i}, y_{i}, u_{j}, v_{j}, \Phi\right)
\end{aligned}
$$

$$
\begin{aligned}
e_{i j} & \sim p\left(e \mid x_{i}^{\top} x_{j}+y_{i}^{\top} W y_{j}\right) \\
a_{i j} & \sim p\left(a \mid x_{i}^{\top} v_{j}+y_{i}^{\top} M u_{j}\right)
\end{aligned}
$$

bilinear features

Optimization Problem

minimize $\quad \lambda_{e} \sum l\left(e_{i j}, x_{i}^{\top} x_{j}+y_{i}^{\top} W y_{j}\right)+$ (i, j)

Optimization Problem

minimize $\quad \lambda_{e} \sum l\left(e_{i j}, x_{i}^{\top} x_{j}+y_{i}^{\top} W y_{j}\right)+\quad$ social

Optimization Problem

minimize $\quad \lambda_{e} \sum l\left(e_{i j}, x_{i}^{\top} x_{j}+y_{i}^{\top} W y_{j}\right)+\quad$ social

$$
\lambda_{a} \sum_{(i, j)} l\left(a_{i j}, x_{i}^{\top} v_{j}+y_{i}^{\top} M u_{j}\right)+\quad \text { app }
$$

Optimization Problem

minimize $\quad \lambda_{e} \sum l\left(e_{i j}, x_{i}^{\top} x_{j}+y_{i}^{\top} W y_{j}\right)+\quad$ social

reconstruction

$$
\begin{aligned}
& \lambda_{a} \sum_{(i, j)} l\left(a_{i j}, x_{i}^{\top} v_{j}+y_{i}^{\top} M u_{j}\right)+ \\
& \lambda_{x} \sum \gamma\left(x_{i} \mid y_{i}\right)+\lambda_{v} \sum \gamma\left(v_{i} \mid u_{i}\right)+
\end{aligned}
$$

Optimization Problem

minimize $\quad \lambda_{e} \sum l\left(e_{i j}, x_{i}^{\top} x_{j}+y_{i}^{\top} W y_{j}\right) \downarrow$ social

Loss Function

Loss

- Much more evidence of application non-install (i.e. many more negative examples)
- Few links between vertices in friendship network (even within short graph distance)
- Generate ranking problems (link, non-link) with non-links drawn from background set

Loss

- Much more evidence of application non-install

> non-links drawn application recommendation

Optimization

- Nonconvex optimization problem
- Large set of variables

$$
\begin{aligned}
x_{i} & =A y_{i}+\epsilon_{i} \\
v_{j} & =B u_{j}+\tilde{\epsilon}_{j}
\end{aligned}
$$

- Stochastic gradient descent on $\mathrm{x}, \mathrm{v}, \varepsilon$ for speed
- Use hashing to reduce

$$
\begin{aligned}
& e_{i j} \sim p\left(e \mid x_{i}^{\top} x_{j}+y_{i}^{\top} W y_{j}\right) \\
& a_{i j} \sim p\left(a \mid x_{i}^{\top} v_{j}+y_{i}^{\top} M u_{j}\right)
\end{aligned}
$$ memory load, i.e.

$$
x_{i j}=\sigma(i, j) X[h(i, j)]
$$

Y! Pulse

1.2M users, 386 items

6.1M friend connections

29M interest indicationss ise sion in mep

YAHOO!, PULSE

Sign In Find People

Y! Pulse Data

1.2M users, 386 items

 6.1M friend connections 29M interest indications

App Recommendation

Models	loss	$\Omega[\cdot]$	MAP@5	MAR@5	nDCG@5
SIM			0.630	0.186	0.698
RLFM			0.729	0.211	0.737
NLFM			0.748	0.222	0.761
FIP	ℓ_{2}	ℓ_{2}	0.768	0.228	0.774
FIP	lazy ℓ_{2}	ℓ_{2}	0.781	0.232	0.790
FIP	logistic	ℓ_{2}	0.781	0.232	0.793
FIP	Huber	ℓ_{2}	0.781	0.232	0.794
FIP	Ψ	ℓ_{2}	0.777	0.231	0.771
FIP	ℓ_{2}	ℓ_{1}	0.778	0.231	0.787
FIP	lazy ℓ_{2}	ℓ_{1}	0.780	0.231	0.791
FIP	logistic	ℓ_{1}	0.779	0.231	0.792
FIP	Huber	ℓ_{1}	$\mathbf{0 . 7 8 6}$	$\mathbf{0 . 2 3 3}$	$\mathbf{0 . 7 9 7}$
FIP	Ψ	ℓ_{1}	0.765	0.215	0.772

SIM: similarity based model;
RLFM: regression based latent factor model (Chen\&Agarwal); NLFM: SIM\&RLFM

Social recommendation

Models	loss	$\Omega[\cdot]$	MAP@5	MAR@5	nDCG@5
RLFM			0.164	0.202	0.174
FIP	ℓ_{2}	ℓ_{2}	$\mathbf{0 . 3 5 9}$	$\mathbf{0 . 2 8 4}$	$\mathbf{0 . 2 4 4}$
FIP	lazy ℓ_{2}	ℓ_{2}	0.193	0.269	0.200
FIP	logistic	ℓ_{2}	0.174	0.220	0.189
FIP	Huber	ℓ_{2}	0.210	0.234	0.215
FIP	Ψ	ℓ_{2}	0.187	0.255	0.185
FIP	ℓ_{2}	ℓ_{1}	0.186	0.230	0.214
FIP	lazy ℓ_{2}	ℓ_{1}	0.180	0.223	0.194
FIP	logistic	ℓ_{1}	0.183	0.217	0.189
FIP	Huber	ℓ_{1}	0.188	0.222	0.200
FIP	Ψ	ℓ_{1}	0.178	0.208	0.179

MACHINE LEARNING DEPARTMENT

8.5 Hashing 8 Recommender Systems

Alexander Smola
Introduction to Machine Learning 10-701 http://alex.smola.org/teaching/10-701-15

Significant content courtesy of Yehuda Koren
Carnegie Mellon University

Parameter Storage

- We have millions of users
- We have millions of products
- Storage - for 100 factors this requires
$106 \times 106 \times 8=8$ TB
- We want a model that can be kept in RAM (<16GB)
- Instant response for each user
- Disks have 20 IOP/s at best (SSDs much better)
- Privacy (what if parameter vector leaks)

Recall - Hash Kernels

instance:

Carnegie Mellon University

Collaborative Filtering

- Hashing compression

$$
\begin{aligned}
& u_{i}=\sum_{j, k: h(j, k)=i} \xi(j, k) U_{j k} \text { and } v_{i}=\sum_{j, k: h^{\prime}(j, k)=i} \xi^{\prime}(j, k) V_{j k} . \\
& X_{i j}:=\sum_{k} \xi(k, i) \xi^{\prime}(k, j) u_{h(k, i)} v_{h^{\prime}(k, j)} .
\end{aligned}
$$

- Approximation is $\mathbf{O}(1 / n)$
- To show that estimate is unbiased take expectation over Rademacher hash.

Collaborative Filtering

- Hashing compression

$$
\begin{aligned}
& u_{i}=\sum_{j, k: h(k, j)=i} \xi(k, j) U_{k j} \text { and } v_{i}=\sum_{j, k: h^{\prime}(k, j)=i} \xi^{\prime}(k, j) V_{k j} . \\
& X_{i j}:=\sum_{k} \xi(k, i) \xi^{\prime}(k, j) u_{h(k, i)} v_{h^{\prime}(k, j)} .
\end{aligned}
$$

- Expectation

expectation vanishes

$$
X_{i j}:=\sum_{k} \xi(k, i) \xi^{\prime}(k, j) \sum_{l, k: h(k, l)=h(k, i) o, k: h^{\prime}(k, o)=h^{\prime}(k, j)} \xi(k, l) \xi^{\prime}(k, o) U_{k l} V_{k o}
$$

Collaborative Hashing

- Combine with stochastic gradient descent
- Random access in memory is expensive (we now have to do k lookups per pair)
- Feistel networks can accelerate this
- Distributed optimization without locking

Examples

Eachmovie

MovieLens
Carnegie Mellon University

Summary

- Neighborhood methods
- User / movie similarity
- Iteration on graph
- Matrix Factorization
- Singular value decomposition
- Convex reformulation
- Ranking and Session Modeling
- Ordinal regression
- Session models
- Features
- Latent dense (Bayesian Probabilistic Matrix Factorization)
- Latent sparse (Dirichlet process factorization)
- Coldstart problem (inferring features)
- Hashing

Further reading

- Collaborative Filtering with temporal dynamics http://research.yahoo.com/files/kdd-fp074-koren.pdf
- Neighborhood factorization http://research.yahoo.com/files/paper.pdf
- Matrix Factorization for recommender systems http://research.yahoo.com/files/ieeecomputer.pdf
- CoFi Rank (collaborative filtering \& ranking) http://www.cofirank.org/
- Yehuda Koren's papers
http://research.yahoo.com/Yehuda Koren

