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Motivation





Netflix



Movie Recommendation







Personalized Content

adapt to general popularity
pick based on user preferences



Spam Filtering

Something went wrong!



A more formal view
• User (requests content)
• Objects (that can be displayed)
• Context (device, location, time)
• Interface (mobile browser, tablet, viewport)
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Examples
• Movie recommendation (Netflix)
• Related product recommendation (Amazon)
• Web page ranking (Google)
• Social recommendation (Facebook)
• News content recommendation (Yahoo)
• Priority inbox & spam filtering (Google)
• Online dating (OK Cupid)
• Computational Advertising (Yahoo)



Running Example 
scoredatemovieuser

15/7/02211

58/2/042131

43/6/013452

45/1/051232

37/15/027682

51/22/01763

48/3/00454

19/10/055685

23/5/033425

212/28/002345

58/11/02766

46/15/03566

scoredatemovieuser
?1/6/05621

?9/13/04961

?8/18/0572

?11/22/0532

?6/13/02473

?8/12/01153

?9/1/00414

?8/27/05284

?4/4/05935

?7/16/03745

?2/14/04696

?10/3/03836

Training data Test data

Movie rating data



Challenges
• Scalability

• Millions of objects
• 100s of millions of users

• Cold start
• Changing user base
• Changing inventory (movies, stories, goods)
• Attributes

• Imbalanced dataset 
User activity / item reviews  
are power law distributed

http://www.igvita.com/2006/10/29/dissecting-the-netflix-dataset/

http://www.igvita.com/2006/10/29/dissecting-the-netflix-dataset/


Netflix competition yardstick
• Least mean squares prediction error

• Easy to define  
 

• Wrong measure for composing sessions!

• Consistent (in large sample size limit this will 
converge to minimizer)

rmse(S) =
s
|S|�1

X

(i,u)2S

(r̂ui � rui)2
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Basic Idea
Part I:

Basic neighborhood methods

Joe

#2

#3

#1

#4



• Earliest and most popular collaborative filtering method
• Derive  unknown  ratings  from  those  of  “similar”  items  

(item-item variant)
• A parallel user-user flavor: rely on ratings of like-minded 

users

Neighborhood-based CF
Basic Idea

• (user,user) similarity to recommend items
• good if item base is smaller than user base
• good if item base changes rapidly
• traverse bipartite similarity graph

• (item,item) similarity to recommend new items that 
were also liked by the same users
• good if the user base  

is small is small
• Oldest known CF method



Neighborhood based CFNeighborhood-based CF
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• Earliest and most popular collaborative filtering method
• Derive  unknown  ratings  from  those  of  “similar”  items  

(item-item variant)
• A parallel user-user flavor: rely on ratings of like-minded 

users

Neighborhood-based CF

Properties
• Intuitive
• No (substantial) training
• Handles new users / items
• Easy to explain to user

• Accuracy & scalability questionable



Normalization / Bias
• Problem

• Some items are significantly higher rated
• Some users rate substantially lower
• Ratings change over time

• Bias correction is crucial for nearest neighborhood 
recommender algorithm
• Offset per user
• Offset per movie
• Time effects
• Global bias

bui = µ+ bu + bi

user item

globa

Bell & Koren ICDM 2007  
http://public.research.att.com/~volinsky/netflix/BellKorICDM07.pdf

http://public.research.att.com/~volinsky/netflix/BellKorICDM07.pdf


Baseline estimation
• Mean rating is 3.7
• Troll Hunter is 0.7 above mean
• User rates 0.2 below mean
• Baseline is 4.2 stars
• Least mean squares problem 
 

• Jointly convex. Alternatively remove mean & iterate

minimize
b

X

(u,i)

(rui � µ� bu � bi)
2 + �

"
X

u

b2u +
X

i

b2i

#

bi =

P
u2R(i)(rui � µ� bu)

�+ |R(i)| and bu =

P
i2R(u)(rui � µ� bi)

�+ |R(u)|



Parzen Windows style CF
• Similarity measure sij between items
• Find set sk(i,u) of k-nearest neighbors to movie i  

that were rated by user u
• Weighted average over the set 
 
 

• How to compute sij?

r̂ui = bui +

P
j2sk(i,u)

sij(ruj � buj)P
j2sk(i,u)

sij
where bui = µ+ bu + bi



Estimating item-item similarities

• Common practice – rely on Pearson correlation coeff
• Challenge – non-uniform user support of item ratings, 

each item rated by a distinct set of users

1 ? ? 5 5 3 ? ? ? 4 2 ? ? ? ? 4 ? 5 4 1 ?

? ? 4 2 5 ? ? 1 2 5 ? ? 2 ? ? 3 ? ? ? 5 4

User ratings for item i:

User ratings for item j:

• Compute correlation over shared support

(item,item) similarity measures

• Pearson correlation coefficient
• nonuniform support
• compute only over shared support
• shrinkage towards 0 to address problem of 

small support (typically few items in common)

sij =
Cov[rui, ruj ]

Std[rui]Std[ruj ]



(item,item) similarity measures
• Empirical Pearson correlation coefficient

• Smoothing towards 0 for small support 
 

• Make neighborhood more peaked
• Shrink towards baseline for small neighborhood

⇢̂ij =

P
u2U(i,j)(rui � bui)(ruj � buj)qP

u2U(i,j)(rui � bui)2
P

u2U(i,j)(ruj � buj)2

sij =
|U(i, j)|� 1

|U(i, j)|� 1 + �
⇢̂ij

sij ! s2ij

r̂ui = bui +

P
j2sk(i,u)

sij(ruj � buj)

�+
P

j2sk(i,u)
sij



Similarity for binary data
• Pearson correlation meaningless

• Views
• Purchase behavior
• Clicks

• Jaccard similarity 
(intersection vs. joint) 

• Observed/expected ratio  
Improve by counting  
per user (many users better than heavy users)

mi users acting on i

mij users acting on both i and j

m total number of users

sij =
mij

↵+mi +mj �mij

sij =
observed

expected

⇡ mij

↵+mimj/m
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Basics



Basic Idea
Part II:

Matrix factorization techniques

~ M ⇡ U · V



Latent variable view

Geared 
towards 
females

Geared 
towards 
males

serious

escapist

The Princess
Diaries

The Lion King

Braveheart

Lethal Weapon

Independence 
Day

AmadeusThe Color 
Purple

Dumb and 
Dumber

Ocean’s  11

Sense and 
Sensibility

Gus

Dave

Latent factor models



Basic matrix factorizationBasic matrix factorization model
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Properties

• SVD is undefined for missing entries
• stochastic gradient descent (faster)
• alternating optimization

• Overfitting without regularization  
particularly if fewer reviews than dimensions

• Very popular on Netflix

Matrix factorization model
45531

312445

53432142

24542

522434

42331

.2-.4.1

.5.6-.5

.5.3-.2

.32.11.1

-22.1-.7

.3.7-1

-.92.41.4.3-.4.8-.5-2.5.3-.21.1

1.3-.11.2-.72.91.4-1.31.4.5.7-.8

.1-.6.7.8.4-.3.92.41.7.6-.42.1
~

Properties:
• SVD  isn’t  defined  when  entries  are  unknown  Î use 

specialized methods
• Very powerful model Î can easily overfit, sensitive to 

regularization
• Probably most popular model among Netflix contestants

– 12/11/2006: Simon Funk describes an SVD based method
– 12/29/2006: Free implementation at timelydevelopment.com
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Risk Minimization View
• Objective Function

• Alternating least squares

minimize
p,q

X

(u,i)2S

(rui � hpu, qii)2 + �
h
kpk2

Frob

+ kqk2
Frob

i

pu  

2

4�1+
X

i|(u,i)2S

qiq
>
i

3

5
�1

X

i

qirui

qi  

2

4�1+
X

u|(u,i)2S

pup
>
u

3

5
�1

X

i

purui

good for
MapReduce



Risk Minimization View
• Objective Function

• Stochastic gradient descent

• No need for locking
• Multicore updates asynchronously 

(Recht, Re, Wright, 2012 - Hogwild)
• 20 minutes on a laptop for 1000+ dimensions

minimize
p,q

X

(u,i)2S

(rui � hpu, qii)2 + �
h
kpk2

Frob

+ kqk2
Frob

i

much
faster

pu  (1� �⌘t)pu � ⌘tqi(rui � hpu, qii)
qi  (1� �⌘t)qi � ⌘tpu(rui � hpu, qii)



Aldous-Hoover 
Theorem



deFinetti Theorem
• Independent random variables 
 

• Exchangeable random variables

• There exists a conditionally independent 
representation of exchangeable r.v. 
 
 
This motivates latent variable models

p(X) =
mY

i=1

p(xi)

p(X) = p(x1, . . . , xm) = p(x⇡(1), . . . , x⇡(m))

xi

xi

ϴ
p(X) =

Z
dp(✓)

mY

i=1

p(xi|✓)



Aldous Hoover Factorization
• Matrix-valued set of random variable  

Example - Erdos Renyi graph model  
 

• Independently exchangeable on matrix

• Aldous Hoover Theorem

p(E) =
Y

i,j

p(Vij)

p(E) = p(E11, E12, . . . , Emn) = p(E⇡(1)⇢(1), E⇡(1)⇢(2), . . . , E⇡(m)⇢(n))

p(E) =

Z
dp(✓)

Z mY

i=1

dp(ui)
nY

j=1

dp(vj)
Y

i,j

p(Eij |ui, vj , ✓)



Aldous Hoover Factorization
• Rating matrix is (row, 

column) exchangeable
• Draw latent variables per 

row and column
• Draw matrix entries 

independently given pairs
• Absence / presence of 

rating is a signal
• Can be extended to graphs 

with vertex attributes

u1 u2 u3 u4 u5 u6

v1 e1
1
e1
2

e1
5
e1
6

v2 e2
4

v3 e3
2

v4 e4
3

e4
6

v5 e5
5



Aldous Hoover variants
• Jointly exchangeable matrix

• Social network graphs
• Draw vertex attributes first, then edges

• Cold start problem
• New user appears
• Attributes (age, location, browser)
• Can estimate latent variables from that

• User and item factors in matrix factorization 
problem can be viewed as AH-factors
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Bias
• Objective Function

• Stochastic gradient descent

minimize
p,q

X

(u,i)2S

(rui � (µ+ bu + bi + hpu, qii))2+

�
h
kpk2

Frob

+ kqk2
Frob

+ kb
users

k2 + kb
items

k2
i

pu  (1� �⌘t)pu � ⌘tqi⇢ui

qi  (1� �⌘t)qi � ⌘tpu⇢ui

bu  (1� �⌘t)bu � ⌘t⇢ui

bi  (1� �⌘t)bi � ⌘t⇢ui

µ (1� �⌘t)µ� ⌘t⇢ui

where ⇢ui = (rui � (µ+ bi + bu + hpu, qii))
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Ratings are not given at random

• Marlin et al. “Collaborative Filtering and the 
Missing at Random Assumption” UAI 2007

Ratings are not given at random!

B.  Marlin  et  al.,  “Collaborative  Filtering  and  the  Missing  
at  Random  Assumption”  UAI 2007

Yahoo! survey answersYahoo! music ratingsNetflix ratings

Distribution of ratings



Movie rating matrix

• Characterize users by which movies they rated  
Edge attributes (observed, rating)

• Adding features to recommender system

• A powerful source of information:
Characterize users by which movies they rated, rather 
than how they rated

• Î A dense binary representation of the data:

45531

312445

53432142

24542

522434

42331

users

m
ovies

010100100101

111001001100

011101011011

010010010110

110000111100

010010010101

users

m
ovies

Which movies users rate?

^ ` ,ui u i
R r ^ ` ,ui u i

B b rui cui

rui = µ+ bu + bi + hpu, qii+ hcu, xii regression



Alternative integration
• Key idea - use related ratings to average
• Salakhudtinov & Mnih, 2007

• Koren et al., 2008  
 
 
Overparametrize items by q and x

qi  qi +
X

u

cuipu

qi  qi +
X

u

cuixj
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Something Happened in Early 2004…

2004

Netflix ratings by date

Netflix changed 
rating labels



Are movies getting better with time?



Sources of temporal change
• Items

• Seasonal effects  
(Christmas, Valentine’s day, Holiday movies)

• Public perception of movies (Oscar etc.)
• Users

• Changed labeling of reviews
• Anchoring (relative to previous movie)
• Change of rater in household
• Selection bias for time of viewing



Modeling temporal change
• Time-dependent bias
• Time-dependent user preferences

• Parameterize functions b and p
• Slow changes for items
• Fast sudden changes for users
• Good parametrization is key

rui(t) = µ+ bu(t) + bi(t) + hqi, pu(t)i

Koren et al., KDD 2009 (CF with temporal dynamics)



Research

Biases 
33%

Personalization  
10%

Unexplained
57%

Sources of Variance in Netflix data

1.276 (total variance)

0.732 (unexplained)
0.415 (biases)
0.129 (personalization)

+
+

Biases matter!Bias matters
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More ideas
• Explain factorizations
• Cold start (new users)
• Different regularization for different parameter 

groups / different users
• Sharing of statistical strength between users 
• Hierarchical matrix co-clustering / factorization
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Motivation

Session



User interaction
• Explicit search query

• Search engine
• Genre selection on movie site

• Implicit search query
• News site
• Priority inbox
• Comments on article
• Viewing specific movie (see also ...)
• Sponsored search (advertising)

Space, users’ time and attention are limited.





session? models?



Did the user
SCROLL DOWN?



Bad ideas ...
• Show items based on relevance  
 
 

• Yes, this user likes Die Hard. 
• But he likes other movies, too

• Show items only for majority of users  
‘apple’ vs. ‘Apple’



User response
• Clicks

collapscollaps

implicit
user interest

log it!



User response
hover on 

link



Response is conditioned on  
available options

• User search for ‘chocolate’

• What the user really would have wanted
• User can only pick from  

available items
• Preferences are often relative

user picks this



Models



Independent click model

• Each object has click probability
• Object is viewed independently

• Used in computational advertising (with some position correction)
• Horribly wrong assumption
• OK if probability is very small (OK in ads)

p(x|s) =
nY

i=1

1

1 + e

�xisi



Logistic click model

• User picks at most one object 
• Exponential family model for click 

• Ignores order of objects
• Assumes that the user looks at all before taking action

p(x|s) = e

s

x

e

s0
+

P
x

0 e
s

x

0
= exp (s

x

� g(s))

no click

no
click



Sequential click model

• User traverses list
• At each position some probability of clicking
• When user reaches end of the list he aborts

• This assumes that a patient user viewed all items

no
click

click

p(x = j|s) =
"
j�1Y

i=1

1

1 + e

si

#
1

1 + e

�sj



Skip click model

• User traverses list
• At each position some probability of clicking
• At each position the user may abandon the process
• This assumes that user traverses list sequentially

click

nono nono

clickclickclick



Context skip click model

• User traverses list
• At each position some probability of clicking which depends on previous content
• At each position the user may abandon the process
• User may click more than once



Context skip click model
• User traverses list
• At each position some probability of clicking 

which depends on previous content
• At each position the user may abandon the 

process
• User may click more than once



Context skip click model 
• Viewing probability 
 
 
 

• Click probability (only if viewed)

modeling user behavior, hence we can assume that the es-
timates are statistically reliable. In order to make matters
more specific we now describe the probabilistic model associ-
ated with the above assumptions. We use vt := (v

1

, . . . , v
t

)
as a shorthand to denote vectors of length t consisting of the
first t elements in an array.

In the following we denote by v
i

2 {0, 1} a variable which
indicates whether a user examined result i and by c

i

2 {0, 1}
whether he clicked on result i. We use standard directed
graphical models syntax, that is, arrows indicate statisti-
cal dependencies from parent to child. Shaded vertices are
considered observed, blank ones are considered latent. Ex-
tending [5] we obtain the following model. Note that we
omitted some edges not pertaining to vertex c

i

for readabil-
ity. Furthermore, we define v

0

= 1 and c
0

= 0 as auxiliary
constants to keep the notation simple.
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Note that here c
i

is determined by a multitude of random
variables, in particular all previously shown articles di�1

and the current article d
i

. The equivalent joint probability
distribution of p(v, c|d) is given by

p(v, c|d) =
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We use a logistic transfer function to model the binary condi-
tional probabilities, and defer specifying the functional form
of the scores until Section 2.2 because it requires us to in-
troduce submodular gains first.
Examination probability: We distinguish two cases: the
examination probability whenever a user clicked on a previ-
ous item and the examination probability when the previous
item was not clicked.

p(v
i

= 1|v
i�1

= 0) = 0 (2)

p(v
i

= 1|v
i�1

= 1, c
i�1

= 0) =
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1 + e�↵i
(3)

p(v
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= 1|v
i�1
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= 1) =
1

1 + e��i
(4)

In other words, provided that the user examined the pre-
vious link, we allow for a logistic dependence which di↵ers
according to whether the user returns after having clicked
a link or whether he is already on the page. Choosing dif-
ferent coe�cients ↵

i

, �
i

makes sense since the propensity to
click on a result varies in accordance to the location on the
results page (e.g. whether a user will be required to scroll).

Click probability: The key aim of our user interaction
model is to obtain good estimate of the click probability.
As described in the graphical model above, it depends on
c

i

|v
i

, ci�1, di. In this context we stratify by the value of v
i

by setting

p(c
i

= 1|v
i

= 0) = 0,

that is, if a user did not examine a result then he will not
click on it. Furthermore, we assume that the click proba-
bility for a given article is characterized by 1) the number
of previous clicks, as denoted by |ci�1| and 2) by the rele-
vance of the current article d

i

given the previously displayed
articles di�1 where the particular order of the latter is irrel-
evant. These simplifying assumptions lead to the following
functional form:

p(c
i

= 1|v
i

= 1, ci�1, di) =
1

1 + e�f(|ci�1|,di,d

i�1
)

The specific functional form of f will be described as part
of the relevance model next.

2.2 Relevance Model
A key component in our model is a score to capture notion

of information gain based on a set of articles presented to the
user. The intuition behind our approach is that two articles
which might be equally relevant might attract considerably
di↵erent number of clicks depending on which of them is
displayed above the other. We model this e↵ect via a sub-
modular coverage function. There is plenty of evidence that
submodular functions capture the e↵ects of diversity fairly
accurately both in terms of user satisfaction and in terms
of their mathematical properties (see e.g. [9] and references
therein).

Here we present key results about submodular functions
necessary for the development of our relevance models, for
more details, please see Appendix A. In a nutshell, submod-
ularity is characterized by its diminishing returns property.
That is, for a set S, a subset A ✓ S, elements x, y 2 S, and
a submodular function f : {0, 1}S ! R we have

f(A [ {x})� f(A) � f(A [ {x, y})� f(A [ {y}) (5)

and the improvement decreases as we add more elements to
the set A. Moreover, the set of submodular functions forms
a convex cone. One of the main reasons for the popularity of
submodular functions is the fact that constrained submod-
ular maximization can be carried out e�ciently through a
greedy procedure, as described in the celebrated paper of
[16] which can be accelerated even further by a lazy evalua-
tion procedure as described in [14].

Consider two sets of articles: a set S of “source” articles
to be covered and a set D of articles chosen to represent the
content described in S. Given those sets we may define a
coverage score via

⇢(S, D) :=
X

s2S

X

j

[s]
j

⇢
j

(D), (6)

where [s]
j

is a real value describing the extent to which
feature j is present in s, and ⇢

j

(D) a monotonically non-
decreasing submodular function capturing how well the fea-
ture j of article collection D covers the same feature in arti-
cle s. We assume that S is generated, e.g. by a set of search
results or a storyline clustering module (e.g. articles about
the debt crisis).

Next we need to define the properties of ⇢. For this we
introduce the notion of a generating function to deal with a
large family of submodular functions abstractly.

Definition 1 A monotonic, concave and nonnegative func-
tion � : [0,1)! [0, 1] is a cover generator.
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Incremental gains score

• Submodular gain per additional document
• Relevance score per document
• Coverage over different aspects
• Position dependent score
• Score dependent on number of previous clicks

Lemma 2 Given a domain X and coe�cients c
x

� 0 for
all x 2 X, and A ✓ X, the function ⇢(A) := �(

P
x2A

c
x

) is
submodular whenever � is a cover generator.

Proof. Clearly ⇢ is monotonic with respect to addition
to A. The diminishing returns property follows immediately
from concavity in � and the fact that c

x

� 0 for all x 2 X.
Hence ⇢ is submodular.

Our definition covers a number of popular submodular cov-
erage scores as special case:

�(z) =

(
0 if z = 0

1 if z > 0
(set cover) (7)

Here we simply assume that once we discussed a subject
even once it is considered covered.

�(z) = 1� e�✓z for ✓ > 0 (probabilistic cover) (8)

This equation can be seen, e.g. from [9], where one chooses
the probability of not finding what is required, i.e. 1 �Q

x2A

(1�⇡
x

) to be the coverage score, where ⇡
x

is the prob-
ability of the features in x. By setting c

x

:= � log(1 � ⇡
x

)
and ✓ = 1 we obtain this case.

�(z) = log(✓z + 1) for ✓ > 0 (logarithmic cover) (9)

Recall that modular function is a special case of submodular
function and that submodular functions form a convex cone.
Hence, a

P
d2D

[d]
j

+ b⇢
j

(D) is submodular for a, b � 0. By
plugging this generalization into (6), it leads to a powerful
parametrization of ⇢(S, D) as follows:

⇢(S, D|a, b) :=
X

s2S

X

j

[s]
j

“
a

j

X

d2D

[d]
j

+ b
j

⇢
j

(D)
”
. (10)

The significance of the expansion is that it combines both
modular and submodular scores into a unified formula and
allows us to learn the weights of the modularity a

j

and sub-
modularity b

j

of a each feature j. Covering a modular fea-
ture always increases the coverage score, but covering a sub-
modular feature has a diminishing return e↵ect.

Given this definition of coverage, we now convert it into
a relevance score to be used in the model of Section 2.1 by
defining:

f(|ci�1|, d
i

, di�1) (11)

:=⇢(S, di|a, b)� ⇢(S, di�1|a, b) + �|ci�1| + �
i

:=
X

s2S

X

j

[s]
j

 
a

j

X

d2d

i

[d]
j

+ b
j

“
⇢

j

(di)� ⇢
j

(di�1)
”!

+ �|ci�1| + �
i

Here �|ci�1| is a correction coe�cient which captures the ef-

fect of having visited |ci�1| links previously. �
i

captures the
position specific e↵ect, i.e. how clickable di↵erent positions
in the result set are. Furthermore note that for b = 0 we are
back to a modular relevance ranking model where each arti-
cle is considered regardless of previously shown content. In
other words, we recover the vector space model as a special
case [18]. Moreover, setting a = 0, we recover the submod-
ular score in [9] as another special case.

2.3 Composite Weights
Let  = (↵, �, a, b, �, �) denotes the parameter set of our

model. This parameter set is shared across all stories and
users. A significant advantage of our parametrization is that
the expected negative log-likelihood of the model is convex
in the  . This allows us to perform the following personal-
ization extensions rather easily:

User Personalization: Di↵erent users have di↵erent pref-
erences. It is therefore desirable that we learn from such
interactions and personalize the results. We resort to an
additive model along the lines of [20], i.e. we assume that
the parameters  are given by  

0

+ 
u

where the latter are
user-specific terms and the former are common parameters
which ensure that we obtain a generally relevant set of arti-
cles. In other words, the latter pair allows us to personalize
results to a user’s preferences whereas the former pair en-
sures good coldstart behavior.

Storyline Adjustment: It is unlikely that all stories would
be characterized by the same set of attributes. Hence, it is
equally desirable to learn how to adjust the summaries to
the stories at hand. Based on the amount of interaction
with users we hope to improve the estimates after recording
su�cient amounts of user feedback. Our model is flexible,
for instance, one can have a weight for each storyline ( 

s

)
and also group stories based on their category and learn
corresponding category weights ( 

c

). We can address all of
this by an additive decomposition. In conjunction with user
personalization this leads to

 =  
0

+ 
u

+ 
s

+ 
c

. (12)

Our experiments show that personalization and storyline ad-
justment can significantly improve retrieval quality.

2.4 Online Learning
Our goal of learning is to find a weigh vector  ⇤ that fits

our proposed probabilistic click models (1) on an observed
data set of presumably independent examples. We formulate
this learning process as a (regularized) maximum likelihood
estimation problem which can be written as the following
convex minimization problem:

 ⇤ = �⌦( ) + argmin
 

X

(c,d)

� log p(c| , d). (13)

Here, � log p(c| , d) is the marginal log-likelihood of the ob-
served click behavior i.e., (1)). ⌦( ) is a regularizer defined
as:

⌦( ) = k 
0

k2
2

+
X

u

k 
u

k2
2

+
X

s

k 
s

k2
2

+
X

c

k 
c

k2
2

. (14)

The regularizer helps prevent overfitting and the regular-
ization constant � determines the extent to which we prefer
smooth solutions to solutions which maximize the likelihood.

The key challenge in solving the problem (13) lies in the
facts that p(c| , d) is the marginal of (1) with respect to v
and that v’s after the last clicked position are unobserved
(without the use of more advanced tracking mechanism for
user browsing behavior). Thus we resort to an Expectation
Maximization (EM) algorithm and use an variational upper
bound on the negative log likelihood on observed data as
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Optimization
• Latent variables 
 
 
We don’t know v whether user viewed result

• Use variational inference to integrate out v 
(more next week in graphical models)

follows:

� log p(c)  � log p(c) + D(q(v)kp(v|c))
= E

v⇠q(v)

[� log p(c) + log q(v)� log p(v|c)]
= E

v⇠q(v)

[� log p(c, v)]�H(q(v)).

Here q(v) is a distribution over the latent variables, H(q) is
the entropy of the distribution q, and D(pkq) is the Kullback-
Leibler divergence between p and q. Putting everything to-
gether, we have the following optimization problem:

min
q(v), 

�⌦( ) +
X

(c,d)

E
v⇠q(v)

[� log p(c, v|d, )]�H(q(v)).

(15)

The standard EM algorithm that runs in batch mode and
require all data to be available at hand is not appropriate in
our case as a successful and e�cient deployment of our sys-
tem must process data in near real-time as we observe them
in a streaming fashion. To meet the system requirement,
we employ an online EM [4] that performs an approximate
yet complete EM step on a example-by-example basis. We
describe these two steps in more details below.

E-step: Expected Log-Likelihood
In the E-step, we need to compute q(v), however, we note
that the bound on the marginal log-likelihood is tight when
q = p(v|c, d), which is the minimizer of Eq (15). In this Sec-
tion we show how to compute p(v|c, d), i.e. the probability
distribution over views, given the observed clicks c and the
presented set of articles d.

While the graphical model in Section 2.1 suggests that dy-
namic programming might be needed, computing p(v|c, d) is,
in fact, considerably simpler as we may exploit the fact that
v

i

is a monotonically decreasing sequence, that is, it is fully
specified by counting how many views there are. In other
words, since p(v

i

= 1|v
i�1

= 0) = 0 and p(v
i

= 0|v
i�1

=
0) = 1, the only admissible values for v are those which con-
sists of a sequence of 1s followed by a sequence of zeros and
as such v is completely defined by counting the number of
1s in v. Hence we denote by v̄ := |v| the view count. Next
denote by ⇡

l

the unnormalized likelihood scores for the user
viewing l results.

⇡
l

:=p(v̄ = l, c, d) (16)

=
lY

i=1

h
p(v

i

= 1|v
i�1

= 1, c
i�1

)p(c
i

|v
i

= 1, ci�1, di)
i

·

p(v
l+1

= 0|v
l

= 1, c
l

) ·
(

1 if c
j

= 0 for j > l

0 otherwise

It is easy to see that (16) can be computed for all values of
l in linear time. This yields

q
l

:= p(v̄ = l|c, d) =
⇡

lP
i

⇡
i

and r
l

:= p(v̄ � l|c, d) =
nX

i=l

q
i

(17)

Here q
l

, r
l

are the coe�cients of the variational distribution
to be used in the M-step as described below.

M-step: Stochastic Gradient Descent
In the M-step we optimize over  . First, we plug q(v) de-
rived in Section 2.4 and specified in (17) into the negative

log-likelihood of the click and view probability in (15) (ig-
noring the last term H(q(v)) as it does not depend on  ).
We have that E

v̄⇠q

[log p(v, c|d, )] is given by:

nX

i=1

E
v̄⇠q

[log p(v
i

|v
i�1

, c
i�1

, )] + E
v̄⇠q

h
log p(c

i

|v
i

, ci�1, di, )
i

=
nX

i=1

r
i

log p(v
i

= 1|v
i�1

= 1, c
i�1

, )+

nX

i=1

q
i�1

log p(v
i

= 1|v
i�1

= 0, c
i�1

, )+

nX

i=1

q
i

log p(c
i

|v
i

= 1, ci�1, di, ). (18)

The remaining terms all vanish from the above expansion.
For instance, log p(v

i

= 0|v
i�1

= 0) = 0. The regularized
expected log-likelihood is now amenable to convex optimiza-
tion with respect to the parameters  . Since our goal is to
learn the weight vector  online, we use the SVMSGD2 al-
gorithm described in [3] to update  . The update procedure
at example t + 1 is as follows:

g :=
@

@ 
E

v̄⇠q

ˆ
log p(v, c|d, t)

˜
(19)

 t+1 :=  t � 1
�(t + t

0

)
g (20)

 t+1 :=  t+1 � skip

t + t
0

 t+1 [if (skip mod t) = 0] (21)

where t
0

and skip are predefined hyperparameters. To main-
tain submodularity, we project (i.e. truncate) the a, b part
of  so that they remain nonnegative. The average regret
(with respect to the best parameters learned in hindsight if
we observe all the clicks at once, i.e. as in batch settings)

vanishes at rate O(t�
1
2 ) for the above projected gradient

algorithm, where t is the number of examples seen [22].

Online Model Selection
The hyper-parameters in our model that we need to spec-
ify are the scale theta in the cover function (8), regular-
ization constant �, and SGD parameters t

0

and skip. In
batch setting one can select these hyper-parameters using
cross-validation, however this is not feasible in our online
setting. We adopt an online approach to tune these hyper-
parameters as learning progresses by learning a set of K
candidate models, each of which corresponds to a specific
value of these hyper-parameters. After we receive an exam-
ple, we ask each model to first predict which documents the
user clicked on, and we keep track of the accuracy of each
model. The best model is determined periodically based on
its accumulated accuracy. Recommendation of articles (see
Section 2.5) will be made using the best model until the
next model selection. We note that the user’s interaction is
used to update all candidate models and this setup is simi-
lar is spirit to the mixture of expert framework, where each
model is treated as an expert. Experimentally, we found
that this strategy works well. In our experiments we start
with K = 48 and we then shrink K to 5 after observing the
first 10000 sessions for e�ciency.

2.5 Recommendation
An important aspect to be addressed is the issue of display

optimization. That is, we are not learning the user and rel-
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Optimization
• Compute latent viewing probability given clicks

• Easy since we only have one transition from 
views to no views (no DP needed)

• Expected log-likelihood under viewing model
• Convex expected log-likelihood

• Stochastic gradient descent
• Parametrization uses personalization, too  

(user, position, viewport, browser)



Figure 1: Prec@1
(left) and Prec@FC
(right) of various
user models rela-
tive to the deployed
model. SVCM is
the Sequential View
Click Model, TDN
is the model in [9],
SUM is the Session
Utility Model of [7],
CCM is the Cas-
cade Click Model of
[6]. All models were
trained using SGD
(See Figure 3).

Figure 2: Prec@1
(left) and Prec@FC
(right) of the com-
bined (10) and sub-
modular only cover-
age scores, relative to
the deployed model.

Figure 3: Prec@1
(left) and Prec@FC
(right) of stochas-
tic gradient descent
(SGD) vs expo-
nentiated gradient
(EG) relative to the
deployed model.

Figure 4: Lift in
Prec@FC achieved by
SVCM over deployed
system vs number of
user visits (right) and
vs the number of
times a story was dis-
played (left).
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(left) and Prec@FC
(right) of the com-
bined (10) and sub-
modular only cover-
age scores, relative to
the deployed model.

Figure 3: Prec@1
(left) and Prec@FC
(right) of stochas-
tic gradient descent
(SGD) vs expo-
nentiated gradient
(EG) relative to the
deployed model.

Figure 4: Lift in
Prec@FC achieved by
SVCM over deployed
system vs number of
user visits (right) and
vs the number of
times a story was dis-
played (left).
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Bayesian 
Probabilistic  

Matrix 
Factorization

Automatic Complexity Control for PMF (II)

UVj i

Rij
j=1,...,M

i=1,...,N

σ

ΘV UΘ

ααV U• Can use more sophisticated
regularization methods than
simple penalization of the Frobenius
norm of the feature matrices:

• priors with diagonal or full
covariance matrices and
adjustable means, or even mixture of
Gaussians priors.

• Using spherical Gaussian priors for feature
vectors leads to the standard PMF with
λU and λV chosen automatically.

• Automatic selection of the hyperparameter values worked
considerably better than the manual approach that used a
validation set.

13



Statistical Model
• Aldous-Hoover factorization

• normal distribution for 
user and item attributes

• rating given by inner product
• Ratings

• Latent factors

Probabilistic Matrix Factorization (PMF)

UVj i

Rij

j=1,...,M
i=1,...,N

Vσ Uσ

σ

• PMF is a simple probabilistic linear
model with Gaussian observation
noise.

• Given the feature vectors for the
user and the movie, the distribution
of the corresponding rating is:

p(Rij|Ui, Vj, σ2) = N (Rij|UT
i Vj, σ2)

• The user and movie feature vectors
are given zero-mean spherical
Gaussian priors:

p(U |σ2
U) =

N
∏

i=1

N (Ui|0, σ2
UI), p(V |σ2

V ) =
M
∏

j=1

N (Vj|0, σ2
V I)

9
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Probabilistic Matrix Factorization (PMF)

UVj i

Rij
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i=1,...,N

Vσ Uσ
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• PMF is a simple probabilistic linear
model with Gaussian observation
noise.

• Given the feature vectors for the
user and the movie, the distribution
of the corresponding rating is:

p(Rij|Ui, Vj, σ2) = N (Rij|UT
i Vj, σ2)

• The user and movie feature vectors
are given zero-mean spherical
Gaussian priors:

p(U |σ2
U) =

N
∏

i=1

N (Ui|0, σ2
UI), p(V |σ2

V ) =
M
∏

j=1

N (Vj|0, σ2
V I)

9Salakhudtinov & Mnih, ICML 2008 BPMF



Details
Automatic Complexity Control for PMF (II)

UVj i

Rij
j=1,...,M

i=1,...,N

σ

ΘV UΘ

ααV U• Can use more sophisticated
regularization methods than
simple penalization of the Frobenius
norm of the feature matrices:

• priors with diagonal or full
covariance matrices and
adjustable means, or even mixture of
Gaussians priors.

• Using spherical Gaussian priors for feature
vectors leads to the standard PMF with
λU and λV chosen automatically.

• Automatic selection of the hyperparameter values worked
considerably better than the manual approach that used a
validation set.

13

• Priors on all factors
• Wishart prior is conjugate  

to Gaussian, hence use it
• Allows us to adapt the  

variance automatically
• Inference (Gibbs sampler)

• Sample user factors (parallel)
• Sample movie factors (parallel)
• Sample hyperparameters (parallel)



Making it fancier Constrained PMF (II)

iY

Vj

Rij

j=1,...,M

U i iI

i=1,...,N

Vσ

Uσ

W

k=1,...,M

k

Wσ

σ

• Let W ∈ RD×M be a latent
similarity constraint matrix.

• We define the feature
vector for user i as:

Ui = Yi +

∑M
k=1 IikWk
∑M

k=1 Iik

• I is the observed indicator matrix, Iij = 1 if user i rated
movie j and 0 otherwise.

• Performs considerably better on infrequent users.

15

who rated 
what



Results (Mnih & Salakthudtinov)Experimental Results
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• Left Panel: Performance of constrained PMF, PMF and
movie average algorithm that always predicts the average
rating of each movie.

• Right panel: Distribution of the number of ratings per user
in the training dataset.

19

helps for 
infrequent users



Multiple Sources



Social Network Data

Data: users, connections, features
Goal: suggest connections
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Social Network Data

Data: users, connections, features
Goal: suggest connections

x x’

y y’
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Social Network Data

Data: users, connections, features
Goal: model/suggest connections

x x’

y y’

e

p(x, y, e) =
Y

i2Users

p(yi)p(xi|yi)
Y

i,j2Users

p(eij |xi, yi, xj , yj)

Direct application of the Aldous-Hoover theorem.
Edges are conditionally independent.



Applications



Applications
social network = friendship + interests



Applications
social network = friendship + interests

recommend users based 
on friendship & interests

recommend apps based 
on friendship & interests



Social Recommendation
recommend users based 
on friendship & interests

recommend apps based 
on friendship & interests

• boost traffic
• make the user graph 

more dense
• increase user 

population
• stickiness

• boost traffic
• increased revenue
• increased user 

participation
• make app graph 

more dense
... usually addressed by separate tools ...



Homophily
recommend users based 
on friendship & interests

recommend apps based 
on friendship & interests

• users with similar 
interests are more 
likely to connect

• friends install similar 
applications

Highly correlated. Estimate both jointly



Model

x x’

y y’

e

v

u

s

(latent) app 
features (latent) user 

features

app install



Model

x x’

y y’

e

v

u

a

• Social interaction

• App install

xi � p(x|yi)
xj � p(x|yj)
eij � p(e|xi, yi, xj , yj ,�)

xi � p(x|yi)
vj � p(v|uj)

aij � p(a|xi, yi, uj , vj ,�)



Model
• Social interaction

• App install

xi = Ayi + �i

vj = Buj + �̃j

eij � p(e|x>
i xj + y>i Wyj)

aij � p(a|x>
i vj + y>i Muj)

cold start latent features

bilinear features

xi � p(x|yi)
xj � p(x|yj)
eij � p(e|xi, yi, xj , yj ,�)

xi � p(x|yi)
vj � p(v|uj)

aij � p(a|xi, yi, uj , vj ,�)
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Optimization Problem
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Loss Function



Loss
• Much more evidence of application non-install  

(i.e. many more negative examples)
• Few links between vertices in friendship network 

(even within short graph distance)

• Generate ranking problems (link, non-link) with 
non-links drawn from background set



Loss
• Much more evidence of application non-install  

(i.e. many more negative examples)
• Few links between vertices in friendship network 

(even within short graph distance)

• Generate ranking problems (link, non-link) with 
non-links drawn from background set

application
recommendation

social
recommendation



Optimization
• Nonconvex optimization problem
• Large set of variables

• Stochastic gradient descent 
on x, v, ε for speed

• Use hashing to reduce  
memory load, i.e.

xi = Ayi + �i

vj = Buj + �̃j

eij � p(e|x>
i xj + y>i Wyj)

aij � p(a|x>
i vj + y>i Muj)

xij = �(i, j)X[h(i, j)]

binary hash hash



Y! Pulse
1.2M users, 386 items 
6.1M friend connections 
29M interest indications



Y! Pulse Data
1.2M users, 386 items 
6.1M friend connections 
29M interest indications



App Recommendation

SIM: similarity based model; 
RLFM: regression based latent factor model (Chen&Agarwal); NLFM: SIM&RLFM



Social recommendation



app recommendation
L2 penalty
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Parameter Storage
• We have millions of users
• We have millions of products
• Storage - for 100 factors this requires 

106 x 106 x 8 = 8TB
• We want a model that can be kept in RAM (<16GB)

• Instant response for each user
• Disks have 20 IOP/s at best (SSDs much better)

• Privacy (what if parameter vector leaks)



Recall - Hash Kernels

Hey,


please mention 
subtly during 
your talk that 
people should 
use Yahoo mail 

more often. 

Thanks,  


Someone 

instance:

task/user

(=barney):

⇥xi � RN�(U+1)

1

3

2
-1

h()

h(‘mention’)

h(‘mention_barney’)

s(m_b)

s(m)

{-1, 1}

Similar to count hash
(Charikar, Chen, Farrach-Colton, 2003)

X

i

w̄[h(i)]�(i)xi



Collaborative Filtering
• Hashing compression  
 
 
 
 
 
 

• Approximation is O(1/n)
• To show that estimate is unbiased take expectation 

over Rademacher hash.

ui =
�

j,k:h(j,k)=i

�(j, k)Ujk and vi =
�

j,k:h�(j,k)=i

��(j, k)Vjk.

Xij :=
�

k

�(k, i)��(k, j)uh(k,i)vh�(k,j).



Collaborative Filtering
• Hashing compression  
 
 
 
 
 
 

• Expectation

Xij :=
�

k

�(k, i)��(k, j)uh(k,i)vh�(k,j).

X

ij

:=
X

k

⇠(k, i)⇠0(k, j)
X

l,k:h(k,l)=h(k,i)

X

o,k:h0(k,o)=h

0(k,j)

⇠(k, l)⇠0(k, o)U
kl

V

ko

ui =
X

j,k:h(k,j)=i

⇠(k, j)Ukj and vi =
X

j,k:h0(k,j)=i

⇠0(k, j)Vkj .

expectation vanishesexpectation vanishes



Collaborative Hashing
• Combine with stochastic gradient descent
• Random access in memory is expensive  

(we now have to do k lookups per pair)
• Feistel networks can accelerate this 

• Distributed optimization without locking



Examples
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Summary
• Neighborhood methods

• User / movie similarity
• Iteration on graph

• Matrix Factorization
• Singular value decomposition
• Convex reformulation

• Ranking and Session Modeling
• Ordinal regression
• Session models

• Features
• Latent dense (Bayesian Probabilistic Matrix Factorization)
• Latent sparse (Dirichlet process factorization)
• Coldstart problem (inferring features)

• Hashing



Further reading
• Collaborative Filtering with temporal dynamics 

http://research.yahoo.com/files/kdd-fp074-koren.pdf
• Neighborhood factorization  

http://research.yahoo.com/files/paper.pdf
• Matrix Factorization for recommender systems 

http://research.yahoo.com/files/ieeecomputer.pdf
• CoFi Rank (collaborative filtering & ranking) 

http://www.cofirank.org/
• Yehuda Koren’s papers 

http://research.yahoo.com/Yehuda_Koren

http://research.yahoo.com/files/kdd-fp074-koren.pdf
http://research.yahoo.com/files/paper.pdf
http://research.yahoo.com/files/ieeecomputer.pdf
http://www.cofirank.org/
http://research.yahoo.com/Yehuda_Koren

