

7.1 Directed Graphical Models 7 Graphical Models

Alexander Smola Introduction to Machine Learning 10-701 http://alex.smola.org/teaching/10-701-15

Directed Graphical Models

p(brain) = 0.1p(sports) = 0.2

p(g, s, b) = p(g|s, b)p(s)p(b)

Carnegie Mellon University

p(s,b) = p(s)p(b)

- p(brain) = 0.1
- p(sports) = 0.2
- p(brain|graduate) = 0.275p(sports|graduate) = 0.544
- p(brain|graduate, sports) = 0.111p(brain|graduate, nosports) = 0.471p(sports|graduate, brain) = 0.220p(sports|graduate, nobrain) = 0.333

$$p(s,b) = \sum_{g} p(s|g)p(b|g)p(g)$$
$$p(s,b|g) = p(s|g)p(b|g)$$

• Joint distribution (assume a and m are independent)

Joint distribution (assume a and m are independent)

$$p(m, a, w) = p(w|m, a)p(m)p(a)$$

Explaining away

g away

$$p(m, a|w) = \frac{p(w|m, a)p(m)p(a)}{\sum_{m', a'} p(w|m', a')p(m')p(a')}$$

a and m are dependent conditioned on w

Directed graphical model

- Easier estimation
 - 15 parameters for full joint distribution
 - 1+1+4+1 for factorizing distribution
- Causal relations
- Inference for unobserved variables

Directed Graphical Model

- Probability distribution
- Iterate over childrenlparents

 $p(x) = p(x_1)p(x_2|x_1)p(x_3|x_2)$ $p(x_4|x_3, x_7)p(x_5|x_2, x_3, x_6)$ $p(x_6|x_9)p(x_7|x_6)p(x_8|x_5)p(x_9)$

Directed Graphical Model

Joint probability distribution

$$p(x) = \prod_{i} p(x_i | x_{\text{parents}(i)})$$

Parameter estimation

If x is fully observed the likelihood breaks up

$$\log p(x|\theta) = \sum_{i} \log p(x_i|x_{\text{parents}(i)}, \theta)$$

- If x is partially observed things get interesting maximization, EM, variational, sampling ...
- If we don't know the structure ...

Summary

• Directed graphical models

$$p(x) = \prod_{i} p(x_i | x_{\text{parents(i)}})$$

- Explaining away Independent variables become dependent conditioned on a joint child.
- Observing yields independence
 Observed parent makes children independent
- No loops in graph allowed

Dependence

1 Chain

Joint distribution

p(a, b, c) = p(a)p(b|a)p(c|b)

Conditioning on b

$$p(a, c|b) = \frac{p(a)p(b|a)p(c|b)}{\sum_{a',c'} p(a')p(b|a')p(c'|b)}$$
$$= \frac{p(a)p(b|a)}{\sum_{a'} p(a')p(b|a')} \frac{p(c|b)}{\sum_{c'} p(c'|b)}$$

Conditional independence

 $a \perp c | b$

2 Common Cause

Joint distribution

p(a, b, c) = p(a|b)p(b)p(c|b)

• a and c are dependent

$$p(a,c) = \sum_{b} p(a|b)p(b)p(c|b)$$

 Conditioning on b creates independence

$$p(a, c|b) = p(a|b)p(c|b)$$
$$a \perp c|b$$

3 Explaining Away

Joint distribution

p(a, b, c) = p(a)p(b|a, c)p(c)

- a and c are independent
- Conditioning on b creates dependence

$$p(a, c|b) = \frac{p(a)p(b|a, c)p(c)}{\sum_{a', c'} p(a')p(b|a', c')p(c')}$$

d-Separation

- Given general directed acyclic graph (DAG)
- Determine whether sets A, B of random variables are conditionally independent given C
- Simple algorithm reachability
 - Start in in vertex of A
 - Check whether any vertex in B can be reached
 - If separated, we have conditional independence

Y

(a)

(b)

Y

(b)

X

X

Ζ

(a)

(b)

Courtesy of Sam Roweis

 $x_2 \perp x_3 | \{x_1, x_6\}$?

 $x_2 \perp x_3 | \{x_1, x_6\}$?

 $x_2 \perp x_3 | \{x_1, x_6\}$?

 $x_2 \perp x_3 | \{x_1, x_6\}$?

Summary

- Dependent random variables
- Observing can make things dependent or independent
- Conditional independence simplifies model
- Bayes ball to check properties
 - Chains (observing stops dependence)
 - Common causes (observing stops dependence)
 - Common children (observing creates dependence)
Structures

Plates: FOR loops for statisticians

- Repeated dependency structure
 - Modeling iid observations

Supervised learning

 $p(X, Y, \theta, w)$ = $p(\theta)p(w) \prod_{i} p(x_i|\theta)p(y_i|x_i, w)$ Carnegie Mellon University

Plates: FOR loops for statisticians

- Repeated dependency structure
 - Modeling iid observations

Supervised learning

 $p(X, Y, \theta, w)$ = $p(\theta)p(w) \prod_{i} p(x_i|\theta)p(y_i|x_i, w)$ Carnegie Mellon University

Markov Chain

Markov Chain

$$p(x;\theta) = p(x_0;\theta) \prod_{i=1}^{n-1} p(x_{i+1}|x_i;\theta)$$

Hidden Markov Chain

$$p(x, y; \theta) = p(x_0; \theta) \prod_{i=1}^{n-1} p(x_{i+1} | x_i; \theta) \prod_{i=1}^{n} p(y_i | x_i)$$

observed
user model for traversal through search results

Plate

user's

mindset

Factor Graphs

Factor Graphs

Observed effects
 Click behavior, queries, watched news, emails

Factor Graphs

- Observed effects
 Click behavior, queries, watched news, emails
- Latent factors
 User profile, news content, hot keywords, social connectivity graph, events

$$x \sim \mathcal{N}\left(\sum_{i=1}^{d} y_i v_i, \sigma^2 \mathbf{1}\right)$$
 and $p(y) = \prod_{i=1}^{d} p(y_i)$

 Observed effects Click behavior, queries, watched news, emails

$$x \sim \mathcal{N}\left(\sum_{i=1}^{d} y_i v_i, \sigma^2 \mathbf{1}\right)$$
 and $p(y) = \prod_{i=1}^{d} p(y_i)$

 Observed effects Click behavior, queries, watched news, emails

$$x \sim \mathcal{N}\left(\sum_{i=1}^{d} y_i v_i, \sigma^2 \mathbf{1}\right)$$
 and $p(y) = \prod_{i=1}^{d} p(y_i)$

 Observed effects Click behavior, queries, watched news, emails

$$x \sim \mathcal{N}\left(\sum_{i=1}^{d} y_i v_i, \sigma^2 \mathbf{1}\right)$$
 and $p(y) = \prod_{i=1}^{d} p(y_i)$

Observed effects
 Click behavior, queries, watched news, emails

$$x \sim \mathcal{N}\left(\sum_{i=1}^{d} y_i v_i, \sigma^2 \mathbf{1}\right)$$
 and $p(y) = \prod_{i=1}^{d} p(y_i)$

p(y) is Gaussian for PCA. General for ICA

Cocktail party problem

- Users u
- Movies m
- Ratings r (but only for a subset of users)

- Users u
- Movies m
- Ratings r (but only for a subset of users)

- Users u
- Movies m
- Ratings r (but only for a subset of users)

engineering

machine learning

- How to design models
 - Common (engineering) sense
 - Computational tractability

engineering

machine learning

- How to design models
 - Common (engineering) sense
 - Computational tractability
- Dependency analysis

engineering

machine learning

- How to design models
 - Common (engineering) sense
 - Computational tractability
- Dependency analysis
- Inference
 - Easy for fully observed situations
 - Many algorithms if not fully observed
 - Dynamic programming / message passing

engineering

machine learning

Summary

- Repeated structure encode with plate
- Chains, bipartite graphs, etc (more later)
- Plates can intersect
- Not all variables are observed

7.2 Dynamic Programming 7 Graphical Models

Alexander Smola Introduction to Machine Learning 10-701 http://alex.smola.org/teaching/10-701-15

$$p(x;\theta) = p(x_0;\theta) \prod_{i=1}^{n-1} p(x_{i+1}|x_i;\theta)$$

$$x_0 \rightarrow x_1 \rightarrow x_2 \rightarrow x_3$$

Unraveling the chain

$$p(x_1) = \sum_{x_0} p(x_1|x_0)p(x_0) \iff \pi_1 = \Pi_{0 \to 1}\pi_0$$
$$p(x_2) = \sum_{x_1} p(x_2|x_1)p(x_1) \iff \pi_2 = \Pi_{1 \to 2}\pi_1 = \Pi_{1 \to 2}\Pi_{0 \to 1}\pi_0$$
$$Carnegie Mellon University$$

$$Pi1 = [0.2 \ 0.1; \ 0.8 \ 0.9];$$

$$Pi2 = [0.8 \ 0.5; \ 0.2 \ 0.5];$$

$$Pi3 = [0 \ 1; \ 1 \ 0];$$

$$x3 = Pi3 * Pi2 * Pi1 * x0 = [0.45800; \ 0.54200]$$

Markov Chains

• First order chain $p(X) = p(x_0) \prod_{i} p(x_{i+1}|x_i)$ • Second order $p(X) = p(x_0, x_1) \prod_{i} p(x_{i+1}|x_i, x_{i-1})$

Markov Chains

• First order chain

$$x_0 \rightarrow x_1 \rightarrow x_2 \rightarrow x_3$$

x2

xЗ

22 Mar

$$p(X) = p(x_0) \prod_{i} p(x_{i+1}|x_i)$$

Second order

$$p(X) = p(x_0, x_1) \prod_{i} p(x_{i+1} | x_i, x_{i-1})$$

x0

 Mark Reid @mdreid
 ²

 Markov In Chains #MLBandNames

 Collapse ◆ Reply 13 Retweet ★ Favorite ••• More

$$p(x;\theta) = p(x_0;\theta) \prod_{i=1}^{n-1} p(x_{i+1}|x_i;\theta) \qquad \textbf{X0} \rightarrow \textbf{X1} \rightarrow \textbf{X2} \rightarrow \textbf{X3}$$

$$p(x;\theta) = p(x_0;\theta) \prod_{i=1}^{n-1} p(x_{i+1}|x_i;\theta) \qquad \textbf{x0} \rightarrow \textbf{x1} \rightarrow \textbf{x2} \rightarrow \textbf{x3}$$
$$p(x_i) = \sum_{x_0, \dots, x_{i-1}, x_{i+1}, \dots, x_n} \underbrace{p(x_0)}_{:=l_0(x_0)} \prod_{j=1}^n p(x_j|x_{j-1})$$

$$p(x;\theta) = p(x_0;\theta) \prod_{i=1}^{n-1} p(x_{i+1}|x_i;\theta) \qquad \textbf{x0} \rightarrow \textbf{x1} \rightarrow \textbf{x2} \rightarrow \textbf{x3}$$

$$p(x_i) = \sum_{x_0,\dots,x_{i-1},x_{i+1},\dots,x_n} \underbrace{p(x_0)}_{:=l_0(x_0)} \prod_{j=1}^n p(x_j|x_{j-1}) = \sum_{x_1,\dots,x_{i-1},x_{i+1},\dots,x_n} \underbrace{\sum_{x_0} [l_0(x_0)p(x_1|x_0)]}_{:=l_1(x_1)} \prod_{j=2}^n p(x_j|x_{j-1}) \rightarrow \textbf{x}$$

$$p(x;\theta) = p(x_{0};\theta) \prod_{i=1}^{n-1} p(x_{i+1}|x_{i};\theta) \qquad \textbf{x0} \rightarrow \textbf{x1} \rightarrow \textbf{x2} \rightarrow \textbf{x3}$$

$$p(x_{i}) = l_{i}(x_{i}) \sum_{x_{i+1}...x_{n}} \prod_{j=i}^{n-1} p(x_{j+1}|x_{j})$$

$$= l_{i}(x_{i}) \sum_{x_{i+1}...x_{n-1}} \prod_{j=i}^{n-2} p(x_{j+1}|x_{j}) \sum_{x_{n}} p(x_{n}|x_{n-1})$$

$$= l_{i}(x_{i}) \sum_{x_{i+1}...x_{n-2}} \prod_{j=i}^{n-3} p(x_{j+1}|x_{j}) \sum_{x_{n-1}} p(x_{n-1}|x_{n-2})r_{n-1}(x_{n-1})$$

$$p(x_{1...n-1}|x_{n};\theta) = p(x_{0}|\theta) \prod_{\substack{i=1\\n-1}}^{n-1} p(x_{i+1}|x_{i};\theta)$$

$$p(x_{i}|x_{n}) = l_{i}(x_{i}) \sum_{\substack{x_{i+1}...x_{n-1}\\n-1}} \prod_{\substack{j=i\\j=i}}^{n-2} p(x_{j+1}|x_{j}) \underbrace{p(x_{n}|x_{n-1})}_{:=r_{n-1}(x_{n-1})}$$

$$= l_{i}(x_{i}) \sum_{\substack{x_{i+1}...x_{n-2}\\n-3}} \prod_{\substack{j=i\\j=i}}^{n-3} p(x_{j+1}|x_{j}) \underbrace{p(x_{n}|x_{n-1})}_{:=r_{n-1}(x_{n-1})}$$

$$= l_{i}(x_{i}) \sum_{\substack{x_{i+1}...x_{n-2}\\n-3}} \prod_{\substack{j=i\\j=i}}^{n-3} p(x_{j+1}|x_{j}) \underbrace{p(x_{n-1}|x_{n-2})r_{n-1}(x_{n-1})}_{:=r_{n-2}(x_{n-2})}$$

$$p(x;\theta) = p(x_0;\theta) \prod_{i=1}^{n-1} p(x_{i+1}|x_i;\theta)$$

$$x_0 \rightarrow x_1 \rightarrow x_2 \rightarrow x_3$$

• Forward recursion

$$l_0(x_0) := p(x_0)$$
 and $l_i(x_i) := \sum_{x_{i-1}} l_{i-1}(x_{i-1})p(x_i|x_{i-1})$

Backward recursion

$$r_n(x_n) := 1$$
 and $r_i(x_i) := \sum r_{i+1}(x_{i+1})p(x_{i+1}|x_i)$

• Marginalization & conditioning x_{i+1}

$$p(x_i) = l_i(x_i)r_i(x_i)$$

$$p(x_{-i}|x_i) = \frac{p(x)}{p(x_i)}$$

$$p(x_i, x_{i+1}) = l_i(x_i)p(x_{i+1}|x_i)r_i(x_{i+1})$$

$$(x) \rightarrow (x1) \rightarrow (x2) \rightarrow (x3) \rightarrow (x4) \rightarrow (x5) \qquad l_i = \prod_i l_{i-1} \\ r_i = \prod_i^\top r_{i+1}$$

Send forward messages starting from left node

$$m_{i-1 \to i}(x_i) = \sum_{x_{i-1}} m_{i-2 \to i-1}(x_{i-1}) f(x_{i-1}, x_i)$$

Send backward messages starting from right node

$$m_{i+1 \to i}(x_i) = \sum_{x_{i+1}} m_{i+2 \to i+1}(x_{i+1}) f(x_i, x_{i+1})$$

Example - inferring lunch

current

	caffè TAZZA D'ORO EL MEJOR DEL MUNDO	
caffè TAZZA D'ORO El MEJOR DEL MUNDO	0.9	0.2
	0.1	0.8

- Initial probability p(x0=t)=p(x0=b) = 0.5
- Stationary transition matrix
- On fifth day observed at Tazza d'oro p(x5=t)=1
- Distribution on day 3
 - Left messages to 3
 - Right messages to 3
 - Renormalize

Example - inferring lunch

current

	caffè TAZZA D'ORO EL MEJOR DEL MUNDO	
caffè TAZZA D'ORO EL MEJOR DEL MUNDO	0.9	0.2
	0.1	0.8

>	Pi	=	[0]	.9,	0.	.2;	0.1	0.8	3]
Pi	=								
	0	.90	000	0	0.	.20	000		
	0	.10	000	0	0	.80	000		
>	11	=	[0]	.5;	0.	5]	;		
>	13	=	Pi	*]	Pi	*	11		
13	=								
	0	• 58	350	0					
	0	.41	.50	0					
>	r5	=	[1	; 0];				
>	r3	=	Pi	' *	P	Ľ' :	* r5		
r3	=								
	0	.83	800	0					
	0	.34	100	0					
>	(13	3.	* :	r3)	/	sui	m(13	•*	r3
an	s =	=							
	0	.77	48	3					
	0	. 22	251	7					

- Forward/Backward messages as normal for chain
- When we have more edges for a vertex use ...

$$\begin{array}{c} x_{3} \rightarrow x_{4} \rightarrow x_{5} \\ x_{0} \rightarrow x_{1} \rightarrow x_{2} \\ x_{6} \rightarrow x_{7} \rightarrow x_{8} \\ l_{1}(x_{1}) = \sum_{x_{0}} p(x_{0})p(x_{1}|x_{0}) \\ r_{7}(x_{7}) = \sum_{x_{8}} p(x_{8}|x_{7}) \end{array}$$

$$x_{0} + x_{1} + x_{2} + x_{3} + x_{4} + x_{5} + x_{5} + x_{6} + x_{7} + x_{8} + x_{8$$

$$x_{0} \rightarrow x_{1} \rightarrow x_{2}$$

$$x_{0} \rightarrow x_{1} \rightarrow x_{2}$$

$$x_{6} \rightarrow x_{7} \rightarrow x_{8}$$

$$l_1(x_1) = \sum_{x_0} p(x_0) p(x_1 | x_0)$$

$$l_2(x_2) = \sum_{x_1} l_1(x_1) p(x_2|x_1)$$

$$r_{7}(x_{7}) = \sum_{x_{8}} p(x_{8}|x_{7})$$
$$r_{6}(x_{6}) = \sum r_{7}(x_{7})p(x_{7}|x_{6})$$

$$r_2(x_2) = \sum_{x_6}^{x_7} r_6(x_6) p(x_6|x_2)$$

$$x_{0} \rightarrow x_{1} \rightarrow x_{2}$$

$$x_{0} \rightarrow x_{1} \rightarrow x_{2}$$

$$x_{6} \rightarrow x_{7} \rightarrow x_{8}$$

$$l_1(x_1) = \sum_{x_0} p(x_0) p(x_1 | x_0)$$
$$l_2(x_2) = \sum_{x_0} l_1(x_1) p(x_2 | x_1)$$

 x_1

$$r_{7}(x_{7}) = \sum_{x_{8}} p(x_{8}|x_{7})$$

$$r_{6}(x_{6}) = \sum_{x_{7}} r_{7}(x_{7})p(x_{7}|x_{6})$$
$$r_{2}(x_{2}) = \sum_{x_{6}} r_{6}(x_{6})p(x_{6}|x_{2})$$

$$l_3(x_3) = \sum_{x_2} l_2(x_2) p(x_3|x_2) r_2(x_2)$$

$$x_{0} \rightarrow x_{1} \rightarrow x_{2} \rightarrow x_{4} \rightarrow x_{5}$$

$$l_1(x_1) = \sum_{x_0} p(x_0) p(x_1 | x_0)$$
$$l_2(x_2) = \sum_{x_0} l_1(x_1) p(x_2 | x_1)$$

 x_1

$$r_{7}(x_{7}) = \sum_{x_{8}} p(x_{8}|x_{7})$$
$$r_{6}(x_{6}) = \sum_{x_{8}} r_{7}(x_{7}) p(x_{7}|x_{7})$$

$$r_{6}(x_{6}) = \sum_{x_{7}} r_{7}(x_{7})p(x_{7}|x_{6})$$
$$r_{2}(x_{2}) = \sum_{x_{6}} r_{6}(x_{6})p(x_{6}|x_{2})$$

$$l_3(x_3) = \sum_{x_2} l_2(x_2) p(x_3|x_2) r_2(x_2)$$

$$x_0 \rightarrow x_1 \rightarrow x_2$$

 $x_6 \rightarrow x_7 \rightarrow x_8$

$$l_1(x_1) = \sum_{x_0} p(x_0) p(x_1 | x_0)$$
$$l_2(x_2) = \sum_{x_0} l_1(x_1) p(x_2 | x_1)$$

 x_1

$$r_{7}(x_{7}) = \sum_{x_{8}} p(x_{8}|x_{7})$$
$$r_{6}(x_{6}) = \sum r_{7}(x_{7})p(x_{7}|x_{6})$$

$$r_{0}(x_{0}) = \sum_{x_{7}} r_{1}(x_{7})p(x_{7}|x_{0})$$
$$r_{2}(x_{2}) = \sum_{x_{6}} r_{6}(x_{6})p(x_{6}|x_{2})$$

$$l_3(x_3) = \sum_{x_2} l_2(x_2) p(x_3|x_2) r_2(x_2)$$

Junction Template

- Order of computation
- Dependence does not matter (only matters for parametrization)

- Forward/Backward messages as normal for chain
- When we have more edges for a vertex use ...

$$m_{2\to 3}(x_3) = \sum_{x_2} m_{1\to 2}(x_2) m_{6\to 2}(x_2) f(x_2, x_3)$$

- Forward/Backward messages as normal for chain
- When we have more edges for a vertex use ...

$$m_{2\to 3}(x_3) = \sum_{x_2} m_{1\to 2}(x_2) m_{6\to 2}(x_2) f(x_2, x_3)$$

- Forward/Backward messages as normal for chain
- When we have more edges for a vertex use ...

$$m_{2\to 3}(x_3) = \sum_{x_2} m_{1\to 2}(x_2) m_{6\to 2}(x_2) f(x_2, x_3)$$

- Forward/Backward messages as normal for chain
- When we have more edges for a vertex use ...

$$m_{2\to 3}(x_3) = \sum_{x_2} m_{1\to 2}(x_2) m_{6\to 2}(x_2) f(x_2, x_3)$$

- Forward/Backward messages as normal for chain
- When we have more edges for a vertex use ...

$$m_{2\to 3}(x_3) = \sum_{x_2} m_{1\to 2}(x_2) m_{6\to 2}(x_2) f(x_2, x_3)$$
$$m_{2\to 6}(x_6) = \sum_{x_2} m_{1\to 2}(x_2) m_{3\to 2}(x_2) f(x_2, x_6)$$

- Forward/Backward messages as normal for chain
- When we have more edges for a vertex use ...

$$m_{2\to 3}(x_3) = \sum_{x_2} m_{1\to 2}(x_2) m_{6\to 2}(x_2) f(x_2, x_3)$$
$$m_{2\to 6}(x_6) = \sum_{x_2} m_{1\to 2}(x_2) m_{3\to 2}(x_2) f(x_2, x_6)$$

- Forward/Backward messages as normal for chain
- When we have more edges for a vertex use ...

$$m_{2\to 3}(x_3) = \sum_{x_2} m_{1\to 2}(x_2) m_{6\to 2}(x_2) f(x_2, x_3)$$
$$m_{2\to 6}(x_6) = \sum_{x_2} m_{1\to 2}(x_2) m_{3\to 2}(x_2) f(x_2, x_6)$$

- Forward/Backward messages as normal for chain
- When we have more edges for a vertex use ...

$$m_{2\to 3}(x_3) = \sum_{x_2} m_{1\to 2}(x_2) m_{6\to 2}(x_2) f(x_2, x_3)$$
$$m_{2\to 6}(x_6) = \sum_{x_2} m_{1\to 2}(x_2) m_{3\to 2}(x_2) f(x_2, x_6)$$

- Forward/Backward messages as normal for chain
- When we have more edges for a vertex use ...

$$m_{2\to3}(x_3) = \sum_{x_2} m_{1\to2}(x_2) m_{6\to2}(x_2) f(x_2, x_3)$$

$$m_{2\to6}(x_6) = \sum_{x_2} m_{1\to2}(x_2) m_{3\to2}(x_2) f(x_2, x_6)$$

$$m_{2\to1}(x_1) = \sum_{x_2} m_{3\to2}(x_2) m_{6\to2}(x_2) f(x_1, x_2)$$

Carnegie Mellon University

- Forward/Backward messages as normal for chain
- When we have more edges for a vertex use ...

- Forward/Backward messages as normal for chain
- When we have more edges for a vertex use ...

- Forward/Backward messages as normal for chain
- When we have more edges for a vertex use ...

- Joint distribution over latent state and observations
- To compute conditional probability we normalize

$$p(x,z) = p(x) \prod_{i} p(z_i | x_i) = \prod_{i,j \in T} f(x_i, x_j) \prod_{i} g(x_i, z_i)$$

Carnegie Mellon Universi

Summary

- Markov chains
 - Present only depends on recent past
 - Higher order longer history.
- Dynamic programming
 - Exponential if brute force.
 - Linear in chain if we iterate.
 - For junctions treat like chains but integrate signals from all sources.
 - Exponential in the history size.

Junction Trees

$f(x_1, x_2)f(x_2, x_3)f(x_2, x_4)$

$f(x_1, x_2)f(x_2, x_3)f(x_2, x_4)$

$f(x_1, x_2)f(x_2, x_3)f(x_2, x_4)$

$f(x_1, x_2)f(x_2, x_3)f(x_2, x_4)$

This is not a tree Carnegie Mellon University

This is not a tree Carnegie Mellon University

Separator set increases Carnegie Mellon University

Separator set increases Carnegie Mellon University

Separator set increases Carnegie Mellon University

Carnegie Mellon University

unnormalized

unnormalized

unnormalized

unnormalized

2D grid

Nontrivial to generate junction tree (problem clumps together)

images

3D grid

movies, CAT scans

3D grid

movies, CAT scans

Summary

- (Directed) graphical model
- Build clique graph
 - Luck if it's a tree
 - If not, need to add edges to make it a tree
 - Tree width increases
 - In many realistic cases exact inference is not possible - need approximation techniques.
- Same operations as for tree. Just now with more variables

Generalized Distributive Law

Recall - dynamic programming

$$p(x_{i}|x_{n}) = l_{i}(x_{i}) \sum_{\substack{x_{i+1}...x_{n-1} \\ x_{i+1}...x_{n-1} \\ x_{i+1}...x_{n-1} \\ x_{j=i}}} \prod_{\substack{n=2 \\ p(x_{j+1}|x_{j}) \\ y(x_{j+1}|x_{j}) \\ x_{i+1}...x_{n-2} \\ x_{j=i}}} p(x_{j+1}|x_{j}) \underbrace{p(x_{n}|x_{n-1})}_{x_{n-1}} \sum_{\substack{x_{n-1} \\ y(x_{n-1}|x_{n-2}) \\ x_{n-1} \\ x_{n-1} \\ x_{n-2} \\ x_{n-1} \\ x_{n-1}$$

- The reason for efficient computation is the fact that we can swap multiplication and addition.
- Are there other such pairs?

Generalized Distributive Law

- Dynamic programming uses only additions and multiplications,
- Replace them with equivalent operations from other semirings
- Semiring
 - 'addition' and 'summation' equivalent
 - Associative law (a+b) + c = a + (b+c)
 - Distributive law a(b+c) = ab + ac

Generalized Distributive Law

Integrating out probabilities (sum, product)

$$a \cdot (b+c) = a \cdot b + a \cdot c$$

• Finding the maximum (max, +)

 $a + \max(b, c) = \max(a + b, a + c)$

- Set algebra (union, intersection) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- Boolean semiring (AND, OR)
- Probability semiring (log +, +)
- Tropical semiring (min, +)

Chains ... again

$$\bar{s} = \max_{x} s(x_{0}) + \sum_{i=1}^{n-1} s(x_{i+1}|x_{i}) \quad x_{0} \rightarrow x_{1} \rightarrow x_{2} \rightarrow x_{3}$$

$$\bar{s} = \max_{x_{0...n}} \underbrace{s(x_{0})}_{:=l_{0}(x_{0})} + \sum_{j=1}^{n} s(x_{j}|x_{j-1})$$

$$= \max_{x_{1...n}} \max_{x_{0}} \frac{[l_{0}(x_{0})s(x_{1}|x_{0})]}{:=l_{1}(x_{1})} + \sum_{j=2}^{n} s(x_{j}|x_{j-1})$$

$$= \max_{x_{2...n}} \max_{x_{1}} \frac{[l_{1}(x_{1})s(x_{2}|x_{1})]}{:=l_{2}(x_{2})} + \sum_{j=3}^{n} s(x_{j}|x_{j-1})$$
Carnegie Mellon University

$$m_{i \to j}(x_j) = \max_{x_i} f(x_i, x_j) + \sum_{l \neq j} m_{l \to i}(x_j)$$

clique potential

No loops allowed

$$s(x_1, x_2) + s(x_2, x_3) + s(x_3, x_4) + s(x_4, x_1)$$

Often use it anyway --- Loopy Belief Propagation (Turbo Codes, Markov Random Fields, etc.)
$s(x_1, x_2) + s(x_2, x_3) + s(x_3, x_4) + s(x_4, x_1)$

Often use it anyway --- Loopy Belief Propagation (Turbo Codes, Markov Random Fields, etc.)

 $s(x_1, x_2) + s(x_2, x_3) + s(x_3, x_4) + s(x_4, x_1)$

Often use it anyway --- Loopy Belief Propagation (Turbo Codes, Markov Random Fields, etc.)

 $s(x_1, x_2) + s(x_2, x_3) + s(x_3, x_4) + s(x_4, x_1)$

Often use it anyway --- Loopy Belief Propagation (Turbo Codes, Markov Random Fields, etc.)

 $s(x_1, x_2) + s(x_2, x_3) + s(x_3, x_4) + s(x_4, x_1)$

Often use it anyway --- Loopy Belief Propagation (Turbo Codes, Markov Random Fields, etc.)

$$s(x_1, x_2) + s(x_2, x_3) + s(x_3, x_4) + s(x_4, x_1)$$

Often use it anyway --- Loopy Belief Propagation (Turbo Codes, Markov Random Fields, etc.)

$$s(x_1, x_2) + s(x_2, x_3) + s(x_3, x_4) + s(x_4, x_1)$$

Often use it anyway --- Loopy Belief Propagation (Turbo Codes, Markov Random Fields, etc.)

7.3 Practical Inference 7 Graphical Models

Alexander Smola Introduction to Machine Learning 10-701 http://alex.smola.org/teaching/10-701-15

Clustering

Density Estimation

- Draw latent parameter Θ
- For all i draw observed x_i given Θ
- What if the basic model doesn't fit all data?

 $p(X, Y | \theta, \sigma, \mu) = \prod_{i=1}^{n} p(x_i | y_i, \sigma, \mu) p(y_i | \theta)$ Carnegie Mellon University

What can we cluster?

What can we cluster?

Mixture of Gaussians

- Draw cluster ID y from discrete distribution
- Draw data x from Gaussian for cluster y
- Prior for discrete distribution Dirichlet
- Prior for Gaussians Gauss-Wishart
- Problem: we don't know y
 - If we knew the parameters we could get y $p(y|x,\theta) \propto p(x|y,\theta) p(y|\theta)$
 - If we knew y we could get the parameters (estimate normal distribution)

k-means

- Fixed uniform variance for all Gaussians
- Fixed uniform distribution over clusters
- Initialize centers with random subset of points
- Find most likely cluster y for x (ignores p(y) ...)

$$y_i = \operatorname*{argmax}_{y} p(x_i | y, \sigma, \mu)$$

Find most likely center for given cluster

$$\mu_y = \frac{1}{n_y} \sum_i \left\{ y_i = y \right\} x_i$$

Repeat until converged

k-means

- Pro
 - simple algorithm
 - can be implemented by MapReduce passes
- Con
 - no proper probabilistic representation
 - can get stuck easily in local minima

partitioning

initialization

k-means

partitioning

partitioning

initialization

update

Inference Overview

------* COLLECTION TTELEVISION STATEMENT STATEMENT OF 18881 2 211 911 AND A DESCRIPTION OF A

Statestentfanten jestes. Jestifutetestestes

11111111

AND REAL POINT OF THE PARTY OF

................... CTARE CONTINUES CONTRACTOR

t send i follo se consecto se follo si consecto se insecto

Bayesian Inference

- Complete bipartite graph of dependence between y and the model parameters.
- Cannot generate a thin junction tree.
- Exact inference is impossible.
- We need approximations

Loopy belief propagation

- Don't worry about junction tree
- Just send messages between vertices
- Still expensive for high degree vertices such as clusters
- Exact messages and potentials are too complicated

$$\left[\prod_{i=1}^{m} \mu_{y_i \to \theta}(\theta)\right] \cdot \psi(\theta)$$

Maximum a posteriori

 Approximate integral by mode of distribution

- Easy (see k-means)
- OK for unimodal distribution
- Misses out on large modes
- Can get stuck in local maxima

Sampling

- Sample subset of variables while keeping the rest fixed
- Iterate until converged
- Draw several samples
- Gibbs sampler
 Draw one group
 at a time and iterate

$$y_i \sim p(y_i | X, Y^{-i}, \theta, \mu, \Sigma)$$
$$\theta \sim p(\theta | X, Y, \mu, \Sigma)$$
$$(\mu, \Sigma) \sim p(\mu, \Sigma | X, \theta, Y)$$

Variational Inference

 Approximate graphical model by simpler one

$$q(\theta) \prod_{i=1}^{m} q(y_i|\theta) \prod_{j=1}^{k} q(\mu_j, \Sigma_j)$$

- Minimize 'distance' between models
- Often methods are combined into hybrid approach

Carnegie Mellon University

μ_k,

μ₁, Σ. Уm

Variational Inference

 Approximate graphical model by simpler one

$$q(\theta) \prod_{i=1}^{m} q(y_i|\theta) \prod_{j=1}^{k} q(\mu_j, \Sigma_j)$$

- Minimize 'distance' between models
- Often methods are combined into hybrid approach

 $\mu_1, \qquad \mu_k, \qquad$

уз

y2

 $\operatorname{minimize}_{\gamma} D(q_{\gamma}(Y, \theta, \mu, \Sigma) | p(Y, \theta, \mu, \Sigma | X))$

Carnegie Mellon University

Уm

Variational Inference and EM

Nonconvex Optimization

 Optimization Problem
 Find the parameters (clusters, probabilities) for the mixture of Gaussians problem

$$\underset{\theta,\mu,\sigma}{\text{maximize }} p(X|\theta,\sigma,\mu) = \underset{\theta,\mu,\sigma}{\text{maximize }} \sum_{Y} \prod_{i=1}^{I} p(x_i|y_i,\sigma,\mu) p(y_i|\theta)$$

This problem is nonconvex and difficult to solve

Key idea

If we knew p(ylx) we could estimate the remaining parameters easily and vice versa

DC Programming

Variational Bound

$$\begin{split} \log p(x;\theta) &\geq \log p(x;\theta) - D(q(y) \| p(y|x;\theta)) \\ &= \int dq(y) \left[\log p(x;\theta) + \log p(y|x;\theta) - \log q(y) \right] \\ &= \int dq(y) \log p(x,y;\theta) - \int dq(y) \log q(y) \end{split}$$

Variational Bound

$$\begin{split} \log p(x;\theta) &\geq \log p(x;\theta) - D(q(y) \| p(y|x;\theta)) \\ &= \int dq(y) \left[\log p(x;\theta) + \log p(y|x;\theta) - \log q(y) \right] \\ &= \int dq(y) \log p(x,y;\theta) - \int dq(y) \log q(y) \end{split}$$

$$q(y) = p(y|x;\theta)$$

Variational Bound

$$\begin{split} \log p(x;\theta) &\geq \log p(x;\theta) - D(q(y) || p(y|x;\theta)) \\ &= \int dq(y) \left[\log p(x;\theta) + \log p(y|x;\theta) - \log q(y) \right] \\ &= \int dq(y) \log p(x,y;\theta) - \int dq(y) \log q(y) \end{split}$$

$$q(y) = p(y|x; \theta)$$
 find bound

Variational Bound

$$\begin{split} \log p(x;\theta) &\geq \log p(x;\theta) - D(q(y) || p(y|x;\theta)) \\ &= \int dq(y) \left[\log p(x;\theta) + \log p(y|x;\theta) - \log q(y) \right] \\ &= \int dq(y) \log p(x,y;\theta) - \int dq(y) \log q(y) \end{split}$$

$$q(y) = p(y|x; \theta)$$
 find bound

Variational Bound

$$\begin{split} \log p(x;\theta) &\geq \log p(x;\theta) - D(q(y) || p(y|x;\theta)) \\ &= \int dq(y) \left[\log p(x;\theta) + \log p(y|x;\theta) - \log q(y) \right] \\ &= \int dq(y) \log p(x,y;\theta) - \int dq(y) \log q(y) \end{split}$$

$$q(y) = p(y|x; \theta)$$
 find bound
Variational Bound

$$\log p(x;\theta) \ge \log p(x;\theta) - D(q(y)||p(y|x;\theta))$$

=
$$\int dq(y) \left[\log p(x;\theta) + \log p(y|x;\theta) - \log q(y)\right]$$

=
$$\int dq(y) \log p(x,y;\theta) - \int dq(y) \log q(y)$$

This inequality is tight for p(ylx) = q(y)

 $q(y) = p(y|x;\theta)$ find bound

Variational Bound

log

$$p(x;\theta) \ge \log p(x;\theta) - D(q(y)||p(y|x;\theta))$$

= $\int dq(y) \left[\log p(x;\theta) + \log p(y|x;\theta) - \log q(y)\right]$
= $\int dq(y) \log p(x,y;\theta) - \int dq(y) \log q(y)$

- This inequality is tight for p(ylx) = q(y)
- Expectation step

$$q(y) = p(y|x;\theta)$$
 find bound

Variational Bound

$$\log p(x;\theta) \ge \log p(x;\theta) - D(q(y)||p(y|x;\theta))$$
$$= \int dq(y) \left[\log p(x;\theta) + \log p(y|x;\theta) - \log q(y)\right]$$
$$= \int dq(y) \log p(x,y;\theta) - \int dq(y) \log q(y)$$

- This inequality is tight for p(ylx) = q(y)
- Expectation step

$$q(y) = p(y|x;\theta)$$
 find

Maximization step

$$\theta^* = \operatorname*{argmax}_{\theta} \int dq(y) \log p(x, y; \theta)$$

Carnegie Mellon University

bound

Variational Bound

$$\log p(x;\theta) \ge \log p(x;\theta) - D(q(y)||p(y|x;\theta))$$
$$= \int dq(y) \left[\log p(x;\theta) + \log p(y|x;\theta) - \log q(y)\right]$$
$$= \int dq(y) \log p(x,y;\theta) - \int dq(y) \log q(y)$$

- This inequality is tight for p(ylx) = q(y)
- Expectation step

$$q(y) = p(y|x;\theta)$$
 find bound

Maximization step

maximize it

$$= \underset{\theta}{\operatorname{argmax}} \int dq(y) \log p(x, y; \theta)$$

Expectation Step

Factorizing distribution

• E-Step
$$q(Y) = \prod_i q_i(y)$$

$$q_i(y) \propto p(x_i|y_i, \mu, \sigma) p(y_i|\theta) \text{ hence}$$
$$m_{iy} := \frac{1}{(2\pi)^{\frac{d}{2}} |\Sigma_y|^{\frac{1}{2}}} \exp\left[-\frac{1}{2}(x_i - \mu_y)\Sigma_y^{-1}(x_i - \mu_y)\right] p(y)$$
$$q_i(y) = \frac{m_{iy}}{\sum_{y'} m_{iy'}}$$

Maximization Step

 \boldsymbol{n}

Log-likelihood

$$\log p(X, Y|\theta, \mu, \sigma) = \sum_{i=1}^{n} \log p(x_i|y_i, \mu, \sigma) + \log p(y_i|\theta)$$

 Cluster distribution (weighted Gaussian MLE)

$$n_y = \sum_i q_i(y)$$

$$\mu_y = \frac{1}{n_y} \sum_{i=1}^n q_i(y) x_i$$

$$\Sigma_y = \frac{1}{n_y} \sum_{i=1}^n q_i(y) x_i x_i^\top - \mu_y \mu_y^\top$$

Cluster probabilities

$$\theta^* = \operatorname*{argmax}_{\theta} \sum_{i=1}^{n} \sum_{y} q_i(y) \log p(y_i|\theta) \text{ hence } p(y|\theta) = \frac{n_y}{n}$$

EM Clustering in action

Estimates will diverge (infinite variance, zero probability, tiny clusters)

Solution

- Use priors for μ, σ, θ
 - Dirichlet distribution for cluster probabilities
 - Gauss-Wishart for Gaussian
- Cluster distribution

$$\mu_{y} = \frac{1}{n_{y}} \sum_{i=1}^{n} q_{i}(y) x_{i}$$

$$n_{y} = n_{0} + \sum_{i} q_{i}(y)$$

$$\Sigma_{y} = \frac{1}{n_{y}} \sum_{i=1}^{n} q_{i}(y) x_{i} x_{i}^{\top} + \frac{n_{0}}{n_{y}} \mathbf{1} - \mu_{y} \mu_{y}^{\top}$$

$$P(y|\theta) = \frac{n_{y}}{n + k \cdot n_{0}}$$
Carnegie Mellon Universit

Sampling

Is maximization (always) good?

parameter1

Sampling

- Key idea
 - Want accurate distribution of the posterior
 - Sample from posterior distribution rather than maximizing it
- Problem direct sampling is usually intractable
- Solutions
 - Markov Chain Monte Carlo (complicated)
 - Gibbs Sampling (somewhat simpler)

Carnegie Mellon University

- Gibbs sampling:
 - In most cases direct sampling not possible
 - Draw one set of variables at a time

- Gibbs sampling:
 - In most cases direct sampling not possible
 - Draw one set of variables at a time

(b,g) - draw p(.,g)

- Gibbs sampling:
 - In most cases direct sampling not possible
 - Draw one set of variables at a time

(b,g) - draw p(.,g) (g,g) - draw p(g,.)

- Gibbs sampling:
 - In most cases direct sampling not possible
 - Draw one set of variables at a time

(b,g) - draw p(.,g) (g,g) - draw p(g,.) (g,g) - draw p(.,g)

- Gibbs sampling:
 - In most cases direct sampling not possible
 - Draw one set of variables at a time

(b,g) - draw p(.,g) (g,g) - draw p(g,.) (g,g) - draw p(.,g) (b,g) - draw p(b,.)

- Gibbs sampling:
 - In most cases direct sampling not possible
 - Draw one set of variables at a time

(b,g) - draw p(.,g) (g,g) - draw p(g,.) (g,g) - draw p(.,g) (b,g) - draw p(b,.) (b,b) ...

resample cluster model

resample cluster labels

resample cluster model

resample cluster labels

cluster model e.g. Mahout Dirichlet Process Clustering

Inference Algorithm ≠ Model

Corollary: EM ≠ Clustering ... but some algorithms and models are good match ...

7.4 Models 7 Graphical Models

Alexander Smola Introduction to Machine Learning 10-701 http://alex.smola.org/teaching/10-701-15

Clustering and Hidden Markov Models

- Clustering no dependence between observations
- Hidden Markov Model dependence between states

Applications

- Speech recognition (soundltext)
- Optical character recognition (writingItext)
- Gene finding (DNA sequencelgenes)
- Activity recognition (accelerometerlactivity)

Inference

- Summing over y possible via dynamic programming
- Log-likelihood is nonconvex

Variational Approximation

- Lower bound on log-likelihood $\log p(x;\theta) \ge \int dq(y) \log p(x,y;\theta) - \int dq(y) \log q(y)$
- Inequality holds for any q
 - Find q within subset Q to tighten inequality
 - Find parameters to maximize for fixed q
- Inference for graphical models where joint probability computation is infeasible

Variational Approximation

Variational approximation via

$$q(y) = q(y_1) \prod_{i=1}^{m} q(y_i | y_{i-1})$$

Compute p(xly) via dynamic programming

Variational Method

- Initialize parameters somehow
- Set q(x) = p(x|y)Dynamic programming yields chain
- Maximizing the log-likelihod w.r.t. q

$$\log p(x;\theta) \ge \int dq(y) \log p(x,y;\theta) - \int dq(y) \log q(y)$$

$$p(x,y) = p(y_1) \left[\prod_{i=1}^{m-1} p(y_{i+1}|y_i) p(x_i|y_i) \right] p(x_m|y_m)$$

$$q(y_1) \qquad q(y_i+1|y_i) \qquad q(y_i)$$

$$q(y_i) \qquad q(y_i)$$

Parameter Estimation

$$\mathbf{E}_{y \sim q} \left[\log p(x, y; \theta)\right] = \mathbf{E}_{y_1 \sim q} \log p(y_1; \theta) + \sum_{i=1}^{n} \mathbf{E}_{y_i \sim q} \log p(x_i | y_i; \theta)$$

+
$$\sum_{i=1}^{m-1} \mathbf{E}_{y_{i+1}, y_i \sim q} \log p(y_{i+1}|y_i; \theta)$$

- $p(y_1)$ Since we have $\mathbf{E}_{q(y_1)}[\log p(y_1)]$ set $p(y_1) = q(y_1)$
- p(x_ily_i)
 Same as clustering
 e.g. for Gaussians

$$\mu_y = \frac{1}{n_y} \sum_{i=1}^n q_i(y) x_i$$

$$\Sigma_y = \frac{1}{n_y} \sum_{i=1}^n q_i(y) x_i x_i^\top - \mu_y \mu_y^\top$$
Parameter Estimation

. . .

$$\begin{aligned} \mathbf{E}_{y \sim q} \left[\log p(x, y; \theta) \right] = & \mathbf{E}_{y_1 \sim q} \log p(y_1; \theta) + \sum_{i=1}^{m-1} \mathbf{E}_{y_i \sim q} \log p(x_i | y_i; \theta) \\ &+ \sum_{i=1}^{m-1} \mathbf{E}_{y_{i+1}, y_i \sim q} \log p(y_{i+1} | y_i; \theta) \end{aligned}$$

Maximum likelihood estimate for p(y'ly)

$$\sum_{i=1}^{m-1} q(y_{i+1} = a, y_i = b) \log p(a|b)$$

hence $p(a|b) = \frac{\sum_{i=1}^{m-1} q(y_{i+1} = a, y_i = b)}{\sum_{i=1}^{m-1} q(y_i = b)}$
fective sample

Smoothed Estimates

- Laplace prior on latent state distribution
 - Uniform distribution over states
 - Alternatively assume that state remains

$$p(a|b) = \frac{n_{a|b} + \sum_{i=1}^{m-1} q(y_{i+1} = a, y_i = b)}{n_b + \sum_{i=1}^{m-1} q(y_i = b)}$$

transition
smoother
aggregate
mass

Beyond mixtures

taxonomies

topics

chains

'Unsupervised' Models

Density Estimation

webpages news users ads queries images

'Unsupervised' Models

'Unsupervised' Models

Density Estimation

Factor Analysis

'Supervised' Models

Classification Regression

> spam filtering tiering crawling categorization bid estimation tagging

Chains

Markov Chain

Chains

Collaborative Filtering

Topic Models

Topic Models

Simplical Mixtures

7.5 Undirected Graphical Models 7 Graphical Models

Alexander Smola Introduction to Machine Learning 10-701 http://alex.smola.org/teaching/10-701-15

Blunting the arrows

Chicken and Egg

... some web service

... some web service

... some web service

p(w|m,a)p(m)p(a) $m \not\perp a|w$ easier "debugging"

 $p(m, w, a) \propto \phi(m, w)\phi(w, a)$ $m \perp \!\!\!\perp a | w$

easier "modeling" Carnegie Mellon University

Key Concept Observing nodes makes remainder conditionally independent

Key Concept Observing nodes makes remainder conditionally independent

Key Concept Observing nodes makes remainder conditionally independent

Key Concept Observing nodes makes remainder conditionally independent

Key Concept Observing nodes makes remainder conditionally independent

Key Concept Observing nodes makes remainder conditionally independent

Key Concept Observing nodes makes remainder conditionally independent

Key Concept Observing nodes makes remainder conditionally independent

ie Mellon University

maximal fully connected subgraph

maximal fully connected subgraph

Hammersley Clifford Theorem

If density has full support then it decomposes into products of clique potentials

$$p(x) = \prod \psi_c(x_c)$$

С

Directed vs. Undirected

- Causal description
- Normalization automatic
- Intuitive
- Requires knowledge of dependencies
- Conditional independence tricky (Bayes Ball algorithm)

- Noncausal description (correlation only)
- Intuitive
- Easy modeling
- Normalization difficult
- Conditional independence easy to read off (graph connectivity)

Exponential Families and Graphical Models

Exponential Family Recap

Density function

$$p(x;\theta) = \exp\left(\langle \phi(x), \theta \rangle - g(\theta)\right)$$

where $g(\theta) = \log \sum_{x'} \exp\left(\langle \phi(x'), \theta \rangle\right)$

Log partition function generates cumulants

$$\partial_{\theta} g(\theta) = \mathbf{E} \left[\phi(x) \right]$$

 $\partial_{\theta}^2 g(\theta) = \operatorname{Var} \left[\phi(x) \right]$

• g is convex (second derivative is p.s.d.)

Log Partition Function

$$p(x|\theta) = e^{\langle \phi(x), \theta \rangle - g(\theta)}$$

 $p(y|\theta, x) = e^{\langle \phi(x,y), \theta \rangle - g(\theta|x)}$

 $\int d(x y) \theta$

$$g(\theta) = \log \sum_{x} e^{\langle \phi(x), \theta \rangle}$$

Unconditional model

$$\partial_{\theta} g(\theta) = \frac{\sum_{x} \phi(x) e^{\langle \phi(x), \theta \rangle}}{\sum_{x} e^{\langle \phi(x), \theta \rangle}} = \sum_{x} \phi(x) e^{\langle \phi(x), \theta \rangle - g(\theta)}$$

$$g(\theta|x) = \log \sum_{y} e^{\langle \phi(x,y), \theta \rangle}$$
$$\partial_{\theta} g(\theta|x) = \frac{\sum_{y} \phi(x,y) e^{\langle \phi(x,y), \theta \rangle}}{\sum_{y} e^{\langle \phi(x,y), \theta \rangle}} = \sum_{y} \phi(x,y) e^{\langle \phi(x,y), \theta \rangle - g(\theta|x)}$$
Carnegie Mellon Universit

Estimation

Conditional log-likelihood

 $\log p(y|x;\theta) = \langle \phi(x,y), \theta \rangle - g(\theta|x)$

Log-posterior (Gaussian Prior)

$$\log p(\theta|X,Y) = \sum_{i} \log(y_i|x_i;\theta) + \log p(\theta) + \text{const.}$$
$$= \left\langle \sum_{i} \phi(x_i,y_i), \theta \right\rangle - \sum_{i} g(\theta|x_i) - \frac{1}{2\sigma^2} \|\theta\|^2 + \text{const.}$$

 $\sum_{i} \phi(x_i, y_i) = \sum_{i} \mathbf{E}_{y|x_i} \left[\phi(x_i, y) \right] + \frac{1}{\sigma^2} \theta$

• First order optimality conditions

maxent

model

expensive

Carnegie Mellon University

prior

Logistic Regression

Label space

 $\phi(x,y) = y\phi(x)$ where $y \in \{\pm 1\}$

- Log-partition function $g(\theta|x) = \log \left[e^{1 \cdot \langle \phi(x), \theta \rangle} + e^{-1 \cdot \langle \phi(x), \theta \rangle} \right] = \log 2 \cosh \langle \phi(x), \theta \rangle$
- Convex minimization problem

$$\underset{\theta}{\text{minimize}} \frac{1}{2\sigma^2} \left\|\theta\right\|^2 + \sum_{i} \log 2 \cosh \left\langle \phi(x_i), \theta \right\rangle - y_i \left\langle \phi(x_i, \theta) \right\rangle$$

Prediction

$$p(y|x,\theta) = \frac{e^{y\langle\phi(x),\theta\rangle}}{e^{\langle\phi(x),\theta\rangle} + e^{-\langle\phi(x),\theta\rangle}} = \frac{1}{1 + e^{-2y\langle\phi(x),\theta\rangle}}$$

Carnegie Mellon University

Logistic Regression

Label space

 $\phi(x,y) = y\phi(x)$ where $y \in \{\pm 1\}$

- Log-partition function $g(\theta|x) = \log \left[e^{1 \cdot \langle \phi(x), \theta \rangle} + e^{-1 \cdot \langle \phi(x), \theta \rangle} \right] = \log 2 \cosh \langle \phi(x), \theta \rangle$
- Convex minimization problem

Exponential Clique Decomposition

$$p(x) = \prod_{c} \psi_c(x_c)$$

Theorem: Clique decomposition holds in sufficient statistics $\phi(x) = (\dots, \phi_c(x_c), \dots)$ and $\langle \phi(x), \theta \rangle = \sum_c \langle \phi_c(x_c), \theta_c \rangle$ Corollary: we only need expectations on cliques $\mathbf{E}_x[\phi(x)] = (\dots, \mathbf{E}_{x_c} [\phi_c(x_c)], \dots)$ Carnegie Mellon University

Conditional Random Fields

$$\phi(x) = (y_1\phi_x(x_1), \dots, y_n\phi_x(x_n), \phi_y(y_1, y_2), \dots, \phi_y(y_{n-1}, y_n))$$

$$\langle \phi(x), \theta \rangle = \sum_i \langle \phi_x(x_i, y_i), \theta_x \rangle + \sum_i \langle \phi_y(y_i, y_{i+1}), \theta_y \rangle$$

$$g(\theta|x) = \sum_y \prod_i f_i(y_i, y_{i+1}) \text{ where}$$

$$f_i(y_i, y_{i+1}) = e^{\langle \phi_x(x_i, y_i), \theta_x \rangle + \langle \phi_y(y_i, y_{i+1}), \theta_y \rangle}$$

$$f_i(y_i, y_{i+1}) = e^{\langle \phi_x(x_i, y_i), \theta_x \rangle + \langle \phi_y(y_i, y_{i+1}), \theta_y \rangle}$$
Carnegie Mellon University

Conditional Random Fields

- Compute distribution over marginal and adjacent labels
- Take conditional expectations
- Take update step (batch or online)
- More general techniques for computing normalization via message passing ...

Examples

Named Entity Tagging

Trees + Ontologies

Ontology classification (e.g. YDir, DMOZ)

Spin Glasses + Images

observed pixels real image

 $p(x|y) = \prod_{ij} \psi^{\text{right}}(x_{ij}, x_{i+1,j})\psi^{\text{up}}(x_{ij}, x_{i,j+1})\psi^{xy}(x_{ij}, y_{ij})$ Carnegie Mellon University
Spin Glasses + Images

 $p(x|y) = \prod_{ij} \psi^{\text{right}}(x_{ij}, x_{i+1,j})\psi^{\text{up}}(x_{ij}, x_{i,j+1})\psi^{xy}(x_{ij}, y_{ij})$ Carnegie Mellon University

Image Denoising

Li&Huttenlocher, ECCV'08 Carnegie Mellon University

Semi-Markov Models

phrase segmentation, activity recognition, motion data analysis Shi, Smola, Altun, Vishwanathan, Li, 2007-2009

Carnegie Mellon University

2D CRF for Webpages

Summary

- Directed Graphical Models
 - Dependence
 - Inference for fully observed models
 - Incomplete information / variational and sampling inference
- Undirected Graphical Models
 - Hammersley Clifford decomposition
 - Conditional independence
 - Junction trees
- Dynamic Programming
 - Generalized Distributive Law
 - Naive Message Passing
- Inference techniques
 - Sampling (Gibbs and Monte Carlo)
 - Variational methods (EM, extensions)

Carnegie Mellon University