
7.1 Directed Graphical Models
7 Graphical Models

Alexander Smola
Introduction to Machine Learning 10-701
http://alex.smola.org/teaching/10-701-15

http://alex.smola.org/teaching/10-701-15

Directed Graphical Models

Brain & Brawn

smart strong

0 1

0 0.1 0.8

1 0.8 0.9

p(g, s, b) = p(g|s, b)p(s)p(b)

p(brain) = 0.1

p(sports) = 0.2

Brain & Brawn

0 1

0 0.1 0.8

1 0.8 0.9

p(g, s, b) = p(g|s, b)p(s)p(b)

? 0 1

0 0.72 0.08

1 0.18 0.02

p(s, b) = p(s)p(b)

p(brain) = 0.1

p(sports) = 0.2

Brain & Brawn

0 1

0 0.1 0.8

1 0.8 0.9

p(g, s, b) = p(g|s, b)p(s)p(b)

g=1 0 1

0 0.072 0.064

1 0.144 0.018

p(s, b|g) = p(s)p(b)p(g|s, b)P
s0,b0 p(s

0)p(b0)p(g|s0, b0)

element-wise multiply p(brain) = 0.1

p(sports) = 0.2

Brain & Brawn

0 1

0 0.1 0.8

1 0.8 0.9

p(g, s, b) = p(g|s, b)p(s)p(b)

|g=1 0 1

0 0.242 0.215

1 0.483 0.06

p(s, b|g) = p(s)p(b)p(g|s, b)P
s0,b0 p(s

0)p(b0)p(g|s0, b0)

renormalize to 1 p(brain) = 0.1

p(sports) = 0.2

Brain & Brawn

p(g, s, b) = p(g|s, b)p(s)p(b)

|g=1 0 1

0 0.242 0.215

1 0.483 0.06

p(s, b|g) = p(s)p(b)p(g|s, b)P
s0,b0 p(s

0)p(b0)p(g|s0, b0)

p(brain) = 0.1

p(sports) = 0.2

p(brain|graduate) = 0.275

p(sports|graduate) = 0.544

p(brain|graduate, sports) = 0.111

p(brain|graduate, nosports) = 0.471

p(sports|graduate, brain) = 0.220

p(sports|graduate, nobrain) = 0.333

Brain & Brawn

smart strong

p(g, s, b) = p(g)p(s|g)p(b|g)

p(s, b) =
X

g

p(s|g)p(b|g)p(g)

p(s, b|g) = p(s|g)p(b|g)

... some Web 2.0 service
MySQL Apache

Website

... some Web 2.0 service

• Joint distribution (assume a and m are independent) 

MySQL Apache

Website

... some Web 2.0 service

• Joint distribution (assume a and m are independent) 

• Explaining away 
 
 
a and m are dependent conditioned on w

MySQL Apache

Website

p(m, a,w) = p(w|m, a)p(m)p(a)

p(m, a|w) =
p(w|m, a)p(m)p(a)P

m0,a0 p(w|m0, a0)p(m0)p(a0)

... some Web 2.0 service
MySQL Apache

Website

... some Web 2.0 service

is working

MySQL is working
Apache is working

MySQL Apache

Website

... some Web 2.0 service

is working

MySQL is working
Apache is working

is broken

At least one of the two
services is broken
(not independent)

MySQL Apache

Website

Directed graphical model

• Easier estimation
• 15 parameters for full joint distribution
• 1+1+4+1 for factorizing distribution

• Causal relations
• Inference for unobserved variables

m a

w

m a

w

m a

w

u
user

action

No loops allowed

No loops allowed

No loops allowed

No loops allowed

No loops allowed

p(c|e)p(e|c)

No loops allowed

p(c|e)p(e) or p(e|c)p(c)

p(c|e)p(e|c)

No loops allowed

p(c|e)p(e) or p(e|c)p(c)

p(c|e)p(e|c)

Directed Graphical Model
• Probability 

distribution
• Iterate over 

children|parents 1

2
3

5

4

76

9

8

p(x) =p(x1)p(x2|x1)p(x3|x2)

p(x4|x3, x7)p(x5|x2, x3, x6)

p(x6|x9)p(x7|x6)p(x8|x5)p(x9)

Directed Graphical Model
• Joint probability distribution  
 

• Parameter estimation
• If x is fully observed the likelihood breaks up 
 

• If x is partially observed things get interesting  
maximization, EM, variational, sampling ...

• If we don’t know the structure ...

p(x) =
Y

i

p(xi|xparents(i))

log p(x|✓) =

X

i

log p(xi|xparents(i), ✓)

Summary
• Directed graphical models 
 

• Explaining away 
Independent variables become dependent
conditioned on a joint child.

• Observing yields independence  
Observed parent makes children independent

• No loops in graph allowed

p(x) =
Y

i

p(xi|xparents(i))

Dependence

1 Chain
• Joint distribution

• Conditioning on b  
 
 
 
 

• Conditional independence
c

a

b

c

a

b

p(a, b, c) = p(a)p(b|a)p(c|b)

p(a, c|b) = p(a)p(b|a)p(c|b)P
a0,c0 p(a

0)p(b|a0)p(c0|b)

=
p(a)p(b|a)P
a0 p(a0)p(b|a0)

p(c|b)P
c0 p(c

0|b)

a ? c|b

2 Common Cause
• Joint distribution

• a and c are dependent 
 

• Conditioning on b creates  
independence

c

a

b

c

a

b

a ? c|b

p(a, b, c) = p(a|b)p(b)p(c|b)

p(a, c) =
X

b

p(a|b)p(b)p(c|b)

p(a, c|b) = p(a|b)p(c|b)

3 Explaining Away
• Joint distribution

• a and c are independent
• Conditioning on b creates  

dependence

c

a

b

c

a

b

p(a, b, c) = p(a)p(b|a, c)p(c)

p(a, c|b) = p(a)p(b|a, c)p(c)P
a0,c0 p(a

0)p(b|a0, c0)p(c0)

d-Separation
• Given general directed acyclic graph (DAG)
• Determine whether sets A, B of random variables

are conditionally independent given C
• Simple algorithm - reachability

• Start in in vertex of A
• Check whether any vertex in B can be reached
• If separated, we have conditional independence

Transition rules
Canonical Micrographs

X Y Z X Y Z

(a) (b) (a) (b)

X Y X Y

(a)

X

Y

Z X

Y

Z

(b) (a) (b)

X Y X Y

(a)

X

Y

Z

(b)

X

Y

Z

Examples of Bayes-Ball Algorithm

x1 ⊥ x6|{x2,x3} ?

1X

2X

3X

X 4

X 5

X6

Examples of Bayes-Ball Algorithm

x2 ⊥ x3|{x1,x6} ?

1X

2X

3X

X 4

X 5

X6

Notice: balls can travel opposite to edge directions.

Families of Distributions

• Consider two families of distributions.

•One is generated by all possible settings of the conditional
probability tables in the DAGM form:

P(x1,x2, . . . ,xn) =
∏

i

P(xi|xπi)

• The other is generated by finding all the conditional independencies
implied by a DAGM and eliminating any joint distributions which
violate them.

• A version of the amazing Hammersley-Clifford Theorem (1971)
states that these two families are exactly the same.

Courtesy of Sam Roweis

Transition rules
Canonical Micrographs

X Y Z X Y Z

(a) (b) (a) (b)

X Y X Y

(a)

X

Y

Z X

Y

Z

(b) (a) (b)

X Y X Y

(a)

X

Y

Z

(b)

X

Y

Z

Examples of Bayes-Ball Algorithm

x1 ⊥ x6|{x2,x3} ?

1X

2X

3X

X 4

X 5

X6

Examples of Bayes-Ball Algorithm

x2 ⊥ x3|{x1,x6} ?

1X

2X

3X

X 4

X 5

X6

Notice: balls can travel opposite to edge directions.

Families of Distributions

• Consider two families of distributions.

•One is generated by all possible settings of the conditional
probability tables in the DAGM form:

P(x1,x2, . . . ,xn) =
∏

i

P(xi|xπi)

• The other is generated by finding all the conditional independencies
implied by a DAGM and eliminating any joint distributions which
violate them.

• A version of the amazing Hammersley-Clifford Theorem (1971)
states that these two families are exactly the same.

ball can travel
opposite arrows

Transition rules
Canonical Micrographs

X Y Z X Y Z

(a) (b) (a) (b)

X Y X Y

(a)

X

Y

Z X

Y

Z

(b) (a) (b)

X Y X Y

(a)

X

Y

Z

(b)

X

Y

Z

Examples of Bayes-Ball Algorithm

x1 ⊥ x6|{x2,x3} ?

1X

2X

3X

X 4

X 5

X6

Examples of Bayes-Ball Algorithm

x2 ⊥ x3|{x1,x6} ?

1X

2X

3X

X 4

X 5

X6

Notice: balls can travel opposite to edge directions.

Families of Distributions

• Consider two families of distributions.

•One is generated by all possible settings of the conditional
probability tables in the DAGM form:

P(x1,x2, . . . ,xn) =
∏

i

P(xi|xπi)

• The other is generated by finding all the conditional independencies
implied by a DAGM and eliminating any joint distributions which
violate them.

• A version of the amazing Hammersley-Clifford Theorem (1971)
states that these two families are exactly the same.

ball can travel
opposite arrows

Transition rules
Canonical Micrographs

X Y Z X Y Z

(a) (b) (a) (b)

X Y X Y

(a)

X

Y

Z X

Y

Z

(b) (a) (b)

X Y X Y

(a)

X

Y

Z

(b)

X

Y

Z

Examples of Bayes-Ball Algorithm

x1 ⊥ x6|{x2,x3} ?

1X

2X

3X

X 4

X 5

X6

Examples of Bayes-Ball Algorithm

x2 ⊥ x3|{x1,x6} ?

1X

2X

3X

X 4

X 5

X6

Notice: balls can travel opposite to edge directions.

Families of Distributions

• Consider two families of distributions.

•One is generated by all possible settings of the conditional
probability tables in the DAGM form:

P(x1,x2, . . . ,xn) =
∏

i

P(xi|xπi)

• The other is generated by finding all the conditional independencies
implied by a DAGM and eliminating any joint distributions which
violate them.

• A version of the amazing Hammersley-Clifford Theorem (1971)
states that these two families are exactly the same.

ball can travel
opposite arrows

Transition rules
Canonical Micrographs

X Y Z X Y Z

(a) (b) (a) (b)

X Y X Y

(a)

X

Y

Z X

Y

Z

(b) (a) (b)

X Y X Y

(a)

X

Y

Z

(b)

X

Y

Z

Examples of Bayes-Ball Algorithm

x1 ⊥ x6|{x2,x3} ?

1X

2X

3X

X 4

X 5

X6

Examples of Bayes-Ball Algorithm

x2 ⊥ x3|{x1,x6} ?

1X

2X

3X

X 4

X 5

X6

Notice: balls can travel opposite to edge directions.

Families of Distributions

• Consider two families of distributions.

•One is generated by all possible settings of the conditional
probability tables in the DAGM form:

P(x1,x2, . . . ,xn) =
∏

i

P(xi|xπi)

• The other is generated by finding all the conditional independencies
implied by a DAGM and eliminating any joint distributions which
violate them.

• A version of the amazing Hammersley-Clifford Theorem (1971)
states that these two families are exactly the same.

ball can travel
opposite arrows

Summary
• Dependent random variables
• Observing can make things dependent or

independent
• Conditional independence simplifies model
• Bayes ball to check properties

• Chains (observing stops dependence)
• Common causes (observing stops dependence)
• Common children (observing creates dependence)

Structures

Plates: FOR loops for statisticians
• Repeated dependency structure

• Modeling iid observations 
 
 
 
 

• Supervised learning

x1 x2 x3 x4

Θ

xi

Θ

xiΘ yi

p(X, ✓) = p(✓)
Y

i

p(xi|✓)

w
p(X,Y, ✓, w)

=p(✓)p(w)
Y

i

p(xi|✓)p(yi|xi, w)

Plates: FOR loops for statisticians
• Repeated dependency structure

• Modeling iid observations 
 
 
 
 

• Supervised learning

x1 x2 x3 x4

Θ

xi

Θ

xiΘ yi

p(X, ✓) = p(✓)
Y

i

p(xi|✓)

w
p(X,Y, ✓, w)

=p(✓)p(w)
Y

i

p(xi|✓)p(yi|xi, w)

Chains
Markov Chain

past past presen
t future future

Chains
Markov Chain

past past presen
t future future

Plate

Chains
Markov Chain

past past presen
t future future

Plate

Hidden Markov Chain

observed
user action

user’s
mindset

Chains
Markov Chain

past past presen
t future future

Plate

Hidden Markov Chain

observed
user action

user’s
mindset

user model for traversal through search results

Chains
Markov Chain

past past presen
t future future

Plate

Hidden Markov Chain

observed
user action

user’s
mindset

user model for traversal through search results

Chains
Markov Chain

Hidden Markov Chain

observed
user action

user’s
mindset

user model for traversal through search results

p(x, y; ✓) = p(x0; ✓)
n�1Y

i=1

p(xi+1|xi; ✓)
nY

i=1

p(yi|xi)

p(x; ✓) = p(x0; ✓)
n�1Y

i=1

p(xi+1|xi; ✓)

Plate

Factor Graphs
Latent Factors

Observed
Effects

Factor Graphs

• Observed effects 
Click behavior, queries, watched news, emails

Latent Factors

Observed
Effects

Factor Graphs

• Observed effects 
Click behavior, queries, watched news, emails

• Latent factors 
User profile, news content, hot keywords, social
connectivity graph, events

Latent Factors

Observed
Effects

Example - PCA/ICA
Latent Factors

Observed
Effects

x ⇠ N

dX

i=1

yivi,�
21

!
and p(y) =

dY

i=1

p(yi)

Example - PCA/ICA

• Observed effects 
Click behavior, queries, watched news, emails

Latent Factors

Observed
Effects

x ⇠ N

dX

i=1

yivi,�
21

!
and p(y) =

dY

i=1

p(yi)

Example - PCA/ICA

• Observed effects 
Click behavior, queries, watched news, emails

Latent Factors

Observed
Effects

x ⇠ N

dX

i=1

yivi,�
21

!
and p(y) =

dY

i=1

p(yi)

Example - PCA/ICA

• Observed effects 
Click behavior, queries, watched news, emails

Latent Factors

Observed
Effects

x ⇠ N

dX

i=1

yivi,�
21

!
and p(y) =

dY

i=1

p(yi)

Example - PCA/ICA

• Observed effects 
Click behavior, queries, watched news, emails

• p(y) is Gaussian for PCA. General for ICA

Latent Factors

Observed
Effects

x ⇠ N

dX

i=1

yivi,�
21

!
and p(y) =

dY

i=1

p(yi)

Cocktail party problem

Recommender Systems

r

u m

Recommender Systems

• Users u
• Movies m
• Ratings r (but only for a subset of users)

r

u m

Recommender Systems

• Users u
• Movies m
• Ratings r (but only for a subset of users)

r

u m

... intersecting plates ...
(like nested FOR loops)

Recommender Systems

• Users u
• Movies m
• Ratings r (but only for a subset of users)

r

u m

... intersecting plates ...
(like nested FOR loops)

news,
SearchMonkey

answers
social

ranking
OMG

personals

Challenges
engineering

machine learning

Challenges
• How to design models

• Common (engineering) sense
• Computational tractability

engineering

machine learning

Challenges
• How to design models

• Common (engineering) sense
• Computational tractability

• Dependency analysis

engineering

machine learning

Challenges
• How to design models

• Common (engineering) sense
• Computational tractability

• Dependency analysis
• Inference

• Easy for fully observed situations
• Many algorithms if not fully observed
• Dynamic programming / message passing

engineering

machine learning

Summary
• Repeated structure - encode with plate
• Chains, bipartite graphs, etc (more later)
• Plates can intersect
• Not all variables are observed

x1 x2 x3 x4

Θ

xi

Θp(X, ✓) = p(✓)
Y

i

p(xi|✓)

7.2 Dynamic Programming
7 Graphical Models

Alexander Smola
Introduction to Machine Learning 10-701
http://alex.smola.org/teaching/10-701-15

http://alex.smola.org/teaching/10-701-15

x0

0 1

x1 0 0.2 0.1

1 0.8 0.9

x0 0 0.4

1 0.6

x1

0 1

x2 0 0.8 0.5

1 0.2 0.5

x2

0 1

x3 0 0 1

1 1 0

Chains
p(x; ✓) = p(x0; ✓)

n�1Y

i=1

p(xi+1|xi; ✓) x0 x1 x2 x3

p(x1) =
X

x0

p(x1|x0)p(x0) () ⇡1 = ⇧0!1⇡0

p(x2) =
X

x1

p(x2|x1)p(x1) () ⇡2 = ⇧1!2⇡1 = ⇧1!2⇧0!1⇡0

Transition Matrices

Unraveling the chain

Chains
p(x; ✓) = p(x0; ✓)

n�1Y

i=1

p(xi+1|xi; ✓) x0 x1 x2 x3
• Transition matrices 
 
 
 
 
 
x0 = [0.4; 0.6];  
Pi1 = [0.2 0.1; 0.8 0.9];  
Pi2 = [0.8 0.5; 0.2 0.5];  
Pi3 = [0 1; 1 0];  
x3 = Pi3 * Pi2 * Pi1 * x0 = [0.45800; 0.54200]

x0

0 1

x1 0 0.2 0.1

1 0.8 0.9

x0 0 0.4

1 0.6

x1

0 1

x2 0 0.8 0.5

1 0.2 0.5

x2

0 1

x3 0 0 1

1 1 0

Markov Chains
• First order chain

• Second order

x0 x1 x2 x3
p(X) = p(x0)

Y

i

p(xi+1|xi)

x0 x1 x2 x3
p(X) = p(x0, x1)

Y

i

p(xi+1|xi, xi�1)

Markov Chains
• First order chain

• Second order

x0 x1 x2 x3
p(X) = p(x0)

Y

i

p(xi+1|xi)

x0 x1 x2 x3
p(X) = p(x0, x1)

Y

i

p(xi+1|xi, xi�1)

Chains

x

p(x; ✓) = p(x0; ✓)
n�1Y

i=1

p(xi+1|xi; ✓) x0 x1 x2 x3

p(x
i

) =
X

x0,...xi�1,xi+1...xn

p(x0)| {z }
:=l0(x0)

nY

j=1

p(x
j

|x
j�1)

=
X

x1,...xi�1,xi+1...xn

X

x0

[l0(x0)p(x1|x0)]

| {z }
:=l1(x1)

nY

j=2

p(x
j

|x
j�1)

=
X

x2,...xi�1,xi+1...xn

X

x1

[l1(x1)p(x2|x1)]

| {z }
:=l2(x2)

nY

j=3

p(x
j

|x
j�1)

Chains

x

p(x; ✓) = p(x0; ✓)
n�1Y

i=1

p(xi+1|xi; ✓) x0 x1 x2 x3

p(x
i

) =
X

x0,...xi�1,xi+1...xn

p(x0)| {z }
:=l0(x0)

nY

j=1

p(x
j

|x
j�1)

=
X

x1,...xi�1,xi+1...xn

X

x0

[l0(x0)p(x1|x0)]

| {z }
:=l1(x1)

nY

j=2

p(x
j

|x
j�1)

=
X

x2,...xi�1,xi+1...xn

X

x1

[l1(x1)p(x2|x1)]

| {z }
:=l2(x2)

nY

j=3

p(x
j

|x
j�1)

Chains

x

p(x; ✓) = p(x0; ✓)
n�1Y

i=1

p(xi+1|xi; ✓) x0 x1 x2 x3

p(x
i

) =
X

x0,...xi�1,xi+1...xn

p(x0)| {z }
:=l0(x0)

nY

j=1

p(x
j

|x
j�1)

=
X

x1,...xi�1,xi+1...xn

X

x0

[l0(x0)p(x1|x0)]

| {z }
:=l1(x1)

nY

j=2

p(x
j

|x
j�1)

=
X

x2,...xi�1,xi+1...xn

X

x1

[l1(x1)p(x2|x1)]

| {z }
:=l2(x2)

nY

j=3

p(x
j

|x
j�1)

Chains

x

p(x; ✓) = p(x0; ✓)
n�1Y

i=1

p(xi+1|xi; ✓) x0 x1 x2 x3

p(x
i

) =
X

x0,...xi�1,xi+1...xn

p(x0)| {z }
:=l0(x0)

nY

j=1

p(x
j

|x
j�1)

=
X

x1,...xi�1,xi+1...xn

X

x0

[l0(x0)p(x1|x0)]

| {z }
:=l1(x1)

nY

j=2

p(x
j

|x
j�1)

=
X

x2,...xi�1,xi+1...xn

X

x1

[l1(x1)p(x2|x1)]

| {z }
:=l2(x2)

nY

j=3

p(x
j

|x
j�1)

Chains

x

p(x; ✓) = p(x0; ✓)
n�1Y

i=1

p(xi+1|xi; ✓) x0 x1 x2 x3

p(x
i

) = l

i

(x
i

)
X

xi+1...xn

n�1Y

j=i

p(x
j+1|x

j

)

= l

i

(x
i

)
X

xi+1...xn�1

n�2Y

j=i

p(x
j+1|x

j

)
X

xn

p(x
n

|x
n�1)

| {z }
:=rn�1(xn�1)

= l

i

(x
i

)
X

xi+1...xn�2

n�3Y

j=i

p(x
j+1|x

j

)
X

xn�1

p(x
n�1|x

n�2)rn�1(xn�1)

| {z }
:=rn�2(xn�2)

Chains

x

p(x; ✓) = p(x0; ✓)
n�1Y

i=1

p(xi+1|xi; ✓) x0 x1 x2 x3

p(x
i

) = l

i

(x
i

)
X

xi+1...xn

n�1Y

j=i

p(x
j+1|x

j

)

= l

i

(x
i

)
X

xi+1...xn�1

n�2Y

j=i

p(x
j+1|x

j

)
X

xn

p(x
n

|x
n�1)

| {z }
:=rn�1(xn�1)

= l

i

(x
i

)
X

xi+1...xn�2

n�3Y

j=i

p(x
j+1|x

j

)
X

xn�1

p(x
n�1|x

n�2)rn�1(xn�1)

| {z }
:=rn�2(xn�2)

⇡i =
iY

j=1

⇧j�1!j⇡0

Chains

x

p(x; ✓) = p(x0; ✓)
n�1Y

i=1

p(xi+1|xi; ✓) x0 x1 x2 x3

p(x
i

) = l

i

(x
i

)
X

xi+1...xn

n�1Y

j=i

p(x
j+1|x

j

)

= l

i

(x
i

)
X

xi+1...xn�1

n�2Y

j=i

p(x
j+1|x

j

)
X

xn

p(x
n

|x
n�1)

| {z }
:=rn�1(xn�1)

= l

i

(x
i

)
X

xi+1...xn�2

n�3Y

j=i

p(x
j+1|x

j

)
X

xn�1

p(x
n�1|x

n�2)rn�1(xn�1)

| {z }
:=rn�2(xn�2)

⇡i =
iY

j=1

⇧j�1!j⇡0

not needed for directed graphs
that are already normalized  

... but good to know ...

p(x
i

|x
n

) = l

i

(x
i

)
X

xi+1...xn�1

n�1Y

j=i

p(x
j+1|xj

)

= l

i

(x
i

)
X

xi+1...xn�1

n�2Y

j=i

p(x
j+1|xj

) p(x
n

|x
n�1)| {z }

:=rn�1(xn�1)

= l

i

(x
i

)
X

xi+1...xn�2

n�3Y

j=i

p(x
j+1|xj

)
X

xn�1

p(x
n�1|xn�2)rn�1(xn�1)

| {z }
:=rn�2(xn�2)

Chains

x

x0 x1 x2 x3
p(x1...n�1|xn; ✓) = p(x0|✓)

n�1Y

i=1

p(xi+1|xi; ✓)

Chains
p(x; ✓) = p(x0; ✓)

n�1Y

i=1

p(xi+1|xi; ✓) x0 x1 x2 x3

• Forward recursion  
 

• Backward recursion  
 

• Marginalization & conditioning

l0(x0) := p(x0) and l

i

(x
i

) :=
X

xi�1

l

i�1(xi�1)p(x
i

|x
i�1)

r

n

(x
n

) := 1 and r

i

(x
i

) :=
X

xi+1

r

i+1(xi+1)p(x
i+1|x

i

)

p(xi) = li(xi)ri(xi)

p(x�i|xi) =
p(x)
p(xi)

p(xi, xi+1) = li(xi)p(xi+1|xi)ri(xi+1)

Chains

• Send forward messages starting from left node  
 

• Send backward messages starting from right node

x0 x1 x2 x3 x4 x5

m

i+1!i

(x
i

) =
X

xi+1

m

i+2!i+1(xi+1)f(x
i

, x

i+1)

m

i�1!i

(x
i

) =
X

xi�1

m

i�2!i�1(xi�1)f(x
i�1, xi

)

li = ⇧ili�1

ri = ⇧>
i ri+1

Example - inferring lunch
• Initial probability 

p(x0=t)=p(x0=b) = 0.5
• Stationary transition matrix
• On fifth day observed at

Tazza d’oro p(x5=t)=1
• Distribution on day 3

• Left messages to 3
• Right messages to 3
• Renormalize

0.9 0.2

0.1 0.8

current

Example - inferring lunch
> Pi = [0.9, 0.2; 0.1 0.8]
Pi =
 0.90000 0.20000
 0.10000 0.80000
> l1 = [0.5; 0.5];
> l3 = Pi * Pi * l1
l3 =
 0.58500
 0.41500
> r5 = [1; 0];
> r3 = Pi' * Pi' * r5
r3 =
 0.83000
 0.34000
> (l3 .* r3) / sum(l3 .* r3)
ans =
 0.77483
 0.22517

0.9 0.2

0.1 0.8

current

Trees

• Forward/Backward messages as normal for chain
• When we have more edges for a vertex use ...

x0 x1 x2
x3 x4 x5

x6 x7 x8

Trees

x0 x1 x2

x3 x4 x5

x6 x7 x8

l1(x1) =
X

x0

p(x0)p(x1|x0) r7(x7) =
X

x8

p(x8|x7)

l2(x2) =
X

x1

l1(x1)p(x2|x1) r6(x6) =
X

x7

r7(x7)p(x7|x6)

r2(x2) =
X

x6

r6(x6)p(x6|x2)

l3(x3) =
X

x2

l2(x2)p(x3|x2)r2(x2)

. . .

Trees

x0 x1 x2

x3 x4 x5

x6 x7 x8

l1(x1) =
X

x0

p(x0)p(x1|x0) r7(x7) =
X

x8

p(x8|x7)

l2(x2) =
X

x1

l1(x1)p(x2|x1) r6(x6) =
X

x7

r7(x7)p(x7|x6)

r2(x2) =
X

x6

r6(x6)p(x6|x2)

l3(x3) =
X

x2

l2(x2)p(x3|x2)r2(x2)

. . .

Trees

x0 x1 x2

x3 x4 x5

x6 x7 x8

l1(x1) =
X

x0

p(x0)p(x1|x0) r7(x7) =
X

x8

p(x8|x7)

l2(x2) =
X

x1

l1(x1)p(x2|x1) r6(x6) =
X

x7

r7(x7)p(x7|x6)

r2(x2) =
X

x6

r6(x6)p(x6|x2)

l3(x3) =
X

x2

l2(x2)p(x3|x2)r2(x2)

. . .

Trees

x0 x1 x2

x3 x4 x5

x6 x7 x8

l1(x1) =
X

x0

p(x0)p(x1|x0) r7(x7) =
X

x8

p(x8|x7)

l2(x2) =
X

x1

l1(x1)p(x2|x1) r6(x6) =
X

x7

r7(x7)p(x7|x6)

r2(x2) =
X

x6

r6(x6)p(x6|x2)

l3(x3) =
X

x2

l2(x2)p(x3|x2)r2(x2)

. . .

Trees

x0 x1 x2

x3 x4 x5

x6 x7 x8

l1(x1) =
X

x0

p(x0)p(x1|x0) r7(x7) =
X

x8

p(x8|x7)

l2(x2) =
X

x1

l1(x1)p(x2|x1) r6(x6) =
X

x7

r7(x7)p(x7|x6)

r2(x2) =
X

x6

r6(x6)p(x6|x2)

l3(x3) =
X

x2

l2(x2)p(x3|x2)r2(x2)

. . .

Trees

x0 x1 x2

x3 x4 x5

x6 x7 x8

l1(x1) =
X

x0

p(x0)p(x1|x0) r7(x7) =
X

x8

p(x8|x7)

l2(x2) =
X

x1

l1(x1)p(x2|x1) r6(x6) =
X

x7

r7(x7)p(x7|x6)

r2(x2) =
X

x6

r6(x6)p(x6|x2)

l3(x3) =
X

x2

l2(x2)p(x3|x2)r2(x2)

. . .

Trees

x0 x1 x2

x3 x4 x5

x6 x7 x8

l1(x1) =
X

x0

p(x0)p(x1|x0) r7(x7) =
X

x8

p(x8|x7)

l2(x2) =
X

x1

l1(x1)p(x2|x1) r6(x6) =
X

x7

r7(x7)p(x7|x6)

r2(x2) =
X

x6

r6(x6)p(x6|x2)

l3(x3) =
X

x2

l2(x2)p(x3|x2)r2(x2)

. . .

Junction Template
• Order of computation
• Dependence does not matter 

(only matters for parametrization)

2

3

4

1 in
in

out

m2!3(x3) =
X

x2

m1!2(x2)m4!2(x2)f(x2, x3)

Trees

• Forward/Backward messages as normal for chain
• When we have more edges for a vertex use ...

x0 x1 x2

x3 x4 x5

x6 x7 x8

m2!3(x3) =
X

x2

m1!2(x2)m6!2(x2)f(x2, x3)

m2!6(x6) =
X

x2

m1!2(x2)m3!2(x2)f(x2, x6)

m2!1(x1) =
X

x2

m3!2(x2)m6!2(x2)f(x1, x2)

Trees

• Forward/Backward messages as normal for chain
• When we have more edges for a vertex use ...

x0 x1 x2

x3 x4 x5

x6 x7 x8

m2!3(x3) =
X

x2

m1!2(x2)m6!2(x2)f(x2, x3)

m2!6(x6) =
X

x2

m1!2(x2)m3!2(x2)f(x2, x6)

m2!1(x1) =
X

x2

m3!2(x2)m6!2(x2)f(x1, x2)

Trees

• Forward/Backward messages as normal for chain
• When we have more edges for a vertex use ...

x0 x1 x2

x3 x4 x5

x6 x7 x8

m2!3(x3) =
X

x2

m1!2(x2)m6!2(x2)f(x2, x3)

m2!6(x6) =
X

x2

m1!2(x2)m3!2(x2)f(x2, x6)

m2!1(x1) =
X

x2

m3!2(x2)m6!2(x2)f(x1, x2)

Trees

• Forward/Backward messages as normal for chain
• When we have more edges for a vertex use ...

x0 x1 x2

x3 x4 x5

x6 x7 x8

m2!3(x3) =
X

x2

m1!2(x2)m6!2(x2)f(x2, x3)

m2!6(x6) =
X

x2

m1!2(x2)m3!2(x2)f(x2, x6)

m2!1(x1) =
X

x2

m3!2(x2)m6!2(x2)f(x1, x2)

Trees

m2!3(x3) =
X

x2

m1!2(x2)m6!2(x2)f(x2, x3)

m2!6(x6) =
X

x2

m1!2(x2)m3!2(x2)f(x2, x6)

m2!1(x1) =
X

x2

m3!2(x2)m6!2(x2)f(x1, x2)

• Forward/Backward messages as normal for chain
• When we have more edges for a vertex use ...

x0 x1 x2

x3 x4 x5

x6 x7 x8

Trees

m2!3(x3) =
X

x2

m1!2(x2)m6!2(x2)f(x2, x3)

m2!6(x6) =
X

x2

m1!2(x2)m3!2(x2)f(x2, x6)

m2!1(x1) =
X

x2

m3!2(x2)m6!2(x2)f(x1, x2)

• Forward/Backward messages as normal for chain
• When we have more edges for a vertex use ...

x0 x1 x2

x3 x4 x5

x6 x7 x8

Trees

m2!3(x3) =
X

x2

m1!2(x2)m6!2(x2)f(x2, x3)

m2!6(x6) =
X

x2

m1!2(x2)m3!2(x2)f(x2, x6)

m2!1(x1) =
X

x2

m3!2(x2)m6!2(x2)f(x1, x2)

• Forward/Backward messages as normal for chain
• When we have more edges for a vertex use ...

x0 x1 x2

x3 x4 x5

x6 x7 x8

Trees

m2!3(x3) =
X

x2

m1!2(x2)m6!2(x2)f(x2, x3)

m2!6(x6) =
X

x2

m1!2(x2)m3!2(x2)f(x2, x6)

m2!1(x1) =
X

x2

m3!2(x2)m6!2(x2)f(x1, x2)

• Forward/Backward messages as normal for chain
• When we have more edges for a vertex use ...

x0 x1 x2

x3 x4 x5

x6 x7 x8

Trees

• Forward/Backward messages as normal for chain
• When we have more edges for a vertex use ...

m2!3(x3) =
X

x2

m1!2(x2)m6!2(x2)f(x2, x3)

m2!6(x6) =
X

x2

m1!2(x2)m3!2(x2)f(x2, x6)

m2!1(x1) =
X

x2

m3!2(x2)m6!2(x2)f(x1, x2)

x0 x1 x2

x3 x4 x5

x6 x7 x8

Trees

• Forward/Backward messages as normal for chain
• When we have more edges for a vertex use ...

m2!3(x3) =
X

x2

m1!2(x2)m6!2(x2)f(x2, x3)

m2!6(x6) =
X

x2

m1!2(x2)m3!2(x2)f(x2, x6)

m2!1(x1) =
X

x2

m3!2(x2)m6!2(x2)f(x1, x2)

x0 x1 x2

x3 x4 x5

x6 x7 x8

Trees

• Forward/Backward messages as normal for chain
• When we have more edges for a vertex use ...

m2!3(x3) =
X

x2

m1!2(x2)m6!2(x2)f(x2, x3)

m2!6(x6) =
X

x2

m1!2(x2)m3!2(x2)f(x2, x6)

m2!1(x1) =
X

x2

m3!2(x2)m6!2(x2)f(x1, x2)

x0 x1 x2

x3 x4 x5

x6 x7 x8

Trees

• Forward/Backward messages as normal for chain
• When we have more edges for a vertex use ...

m2!3(x3) =
X

x2

m1!2(x2)m6!2(x2)f(x2, x3)

m2!6(x6) =
X

x2

m1!2(x2)m3!2(x2)f(x2, x6)

m2!1(x1) =
X

x2

m3!2(x2)m6!2(x2)f(x1, x2)

x0 x1 x2

x3 x4 x5

x6 x7 x8

Trees

• Joint distribution over latent state and observations
• To compute conditional probability we normalize

z z z
z z z

z z z

p(x, z) = p(x)
Y

i

p(zi|xi) =
Y

i,j2T

f(xi, xj)
Y

i

g(xi, zi)

x0 x1 x2

x3 x4 x5

x6 x7 x8

Trees

• Joint distribution over latent state and observations
• To compute conditional probability we normalize

z z z
z z z

z z z

p(x, z) = p(x)
Y

i

p(zi|xi) =
Y

i,j2T

f(xi, xj)
Y

i

g(xi, zi)

x0 x1 x2

x3 x4 x5

x6 x7 x8

Trees

z z z
z z z

z z z

p(x
i

|rest) /
X

x

�i

2

4
Y

j,k2T

f(x
j

, x

k

)
Y

j

g(x
j

)

3

5

=g(x
i

)
Y

(j,i)

m

j!i

(x
i

)

x0 x1 x2

x3 x4 x5

x6 x7 x8

Summary
• Markov chains

• Present only depends on recent past
• Higher order - longer history.

• Dynamic programming
• Exponential if brute force.
• Linear in chain if we iterate.
• For junctions treat like chains but 

integrate signals from all sources.
• Exponential in the history size. 2

3

4

1 in
in

out

Junction Trees

Junction Trees

1 2
3

4

m

i!j

(x
j

) =
X

xi

f(x
i

, x

j

)
Y

l 6=j

m

l!i

(x
j

)

clique
potential

separator
set

clique
potential

f(x1, x2)f(x2, x3)f(x2, x4)

1,2 2,3 2,42 2

separator
set

Junction Trees

1 2
3

4

m

i!j

(x
j

) =
X

xi

f(x
i

, x

j

)
Y

l 6=j

m

l!i

(x
j

)

clique
potential

separator
set

clique
potential

f(x1, x2)f(x2, x3)f(x2, x4)

1,2 2,3 2,42 2

separator
set

Junction Trees

1 2
3

4

m

i!j

(x
j

) =
X

xi

f(x
i

, x

j

)
Y

l 6=j

m

l!i

(x
j

)

clique
potential

separator
set

clique
potential

f(x1, x2)f(x2, x3)f(x2, x4)

1,2 2,3 2,42 2

separator
set

Junction Trees

1 2
3

4

m

i!j

(x
j

) =
X

xi

f(x
i

, x

j

)
Y

l 6=j

m

l!i

(x
j

)

clique
potential

separator
set

clique
potential

f(x1, x2)f(x2, x3)f(x2, x4)

1,2 2,3 2,42 2

separator
set

Junction Trees

dependency
graph separator

set

1,2 2,4,5

2,3,4

4,5,6

2

2,4

4,5

m245!234(x24)

=
X

x5

f(x245)m12!245(x2)m457!245(x45)

clique
potential

1 2

3

4

5 6

Junction Trees

dependency
graph separator

set

1,2 2,4,5

2,3,4

4,5,6

2

2,4

4,5

m245!234(x24)

=
X

x5

f(x245)m12!245(x2)m457!245(x45)

clique
potential

1 2

3

4

5 6

Junction Trees

dependency
graph separator

set

1,2 2,4,5

2,3,4

4,5,6

2

2,4

4,5

m245!234(x24)

=
X

x5

f(x245)m12!245(x2)m457!245(x45)

clique
potential

1 2

3

4

5 6

Junction Trees

dependency
graph separator

set

1,2 2,4,5

2,3,4

4,5,6

2

2,4

4,5

m245!234(x24)

=
X

x5

f(x245)m12!245(x2)m457!245(x45)

clique
potential

1 2

3

4

5 6

Junction Trees

dependency
graph separator

set

1,2 2,4,5

2,3,4

4,5,6

2

2,4

4,5

m245!234(x24)

=
X

x5

f(x245)m12!245(x2)m457!245(x45)

clique
potential

1 2

3

4

5 6

Junction Trees

dependency
graph separator

set

1,2 2,4,5

2,3,4

4,5,6

2

2,4

4,5

m245!234(x24)

=
X

x5

f(x245)m12!245(x2)m457!245(x45)

clique
potential

1 2

3

4

5 6

Caution

3

2

5

4

7

6

9

8
101

Caution

3

2

5

4

7

6

9

8
101

3,5

2,4

5,7

4,6

7,9

6,8

9,10

8,10

1,3

1,2

Caution

3

2

5

4

7

6

9

8
101

This is not a tree

3,5

2,4

5,7

4,6

7,9

6,8

9,10

8,10

1,3

1,2

Caution

3

2

5

4

7

6

9

8
101

This is not a tree

3,5

2,4

5,7

4,6

7,9

6,8

9,10

8,10

1,3

1,2
1

Graph triangulation

3

2

5

4

7

6

9

8
101

1,3,5

1,2,4

1,5,7

1,4,6

1,7,9

1,6,8

1,9
10

1,8
10

Graph triangulation

3

2

5

4

7

6

9

8
101

1,3,5

1,2,4

1,5,7

1,4,6

1,7,9

1,6,8

1,9
10

1,8
10

Graph triangulation

3

2

5

4

7

6

9

8
101

1,3,5

1,2,4

1,5,7

1,4,6

1,7,9

1,6,8

1,9
10

1,8
101,4

Graph triangulation

3

2

5

4

7

6

9

8
101

1,3,5

1,2,4

1,5,7

1,4,6

1,7,9

1,6,8

Separator set increases

1,9
10

1,8
101,4

Graph triangulation

3

2

5

4

7

6

9

8
101

Separator set increases

Graph triangulation

3

2

5

4

7

6

9

8
101

Separator set increases

Graph triangulation

3

2

5

4

7

6

9

8
101

4,6,71,2,3 6,7,92,3,5 6,8,92,4,5 8,9,1
0

4,5,7

Separator set increases

Update equations

xA xB

xC

xA’

A∩B

B∩C

A’∩ incoming
messagesclique potential

m

B!C

(x
B\C

) =
X

xB\C

f(x
B

)
Y

A 6=C|A⇠B

m

A!B

(x
A\B

)

all but separator set

p(xB) / f(xB)
Y

A⇠B

mA!B(xA\B)

unnormalized

Update equations

xA xB

xC

xA’

A∩B

B∩C

A’∩ incoming
messagesclique potential

m

B!C

(x
B\C

) =
X

xB\C

f(x
B

)
Y

A 6=C|A⇠B

m

A!B

(x
A\B

)

all but separator set

p(xB) / f(xB)
Y

A⇠B

mA!B(xA\B)

unnormalized

Update equations

xA xB

xC

xA’

A∩B

B∩C

A’∩ incoming
messagesclique potential

m

B!C

(x
B\C

) =
X

xB\C

f(x
B

)
Y

A 6=C|A⇠B

m

A!B

(x
A\B

)

all but separator set

p(xB) / f(xB)
Y

A⇠B

mA!B(xA\B)

unnormalized

Update equations

xA xB

xC

xA’

A∩B

B∩C

A’∩ incoming
messagesclique potential

m

B!C

(x
B\C

) =
X

xB\C

f(x
B

)
Y

A 6=C|A⇠B

m

A!B

(x
A\B

)

all but separator set

p(xB) / f(xB)
Y

A⇠B

mA!B(xA\B)

unnormalized

2D grid
• Nontrivial to generate junction tree  

(problem clumps together)

images

3D grid

movies, CAT scans

3D grid

movies, CAT scans

junction trees
are impossible

Summary
• (Directed) graphical model
• Build clique graph

• Luck if it’s a tree
• If not, need to add edges to make it a tree
• Tree width increases
• In many realistic cases exact inference is not

possible - need approximation techniques.
• Same operations as for tree.  

Just now with more variables

Generalized Distributive Law

Recall - dynamic programming

• The reason for efficient computation is the fact
that we can swap multiplication and addition.

• Are there other such pairs?

p(x
i

|x
n

) = l

i

(x
i

)
X

xi+1...xn�1

n�1Y

j=i

p(x
j+1|xj

)

= l

i

(x
i

)
X

xi+1...xn�1

n�2Y

j=i

p(x
j+1|xj

) p(x
n

|x
n�1)| {z }

:=rn�1(xn�1)

= l

i

(x
i

)
X

xi+1...xn�2

n�3Y

j=i

p(x
j+1|xj

)
X

xn�1

p(x
n�1|xn�2)rn�1(xn�1)

| {z }
:=rn�2(xn�2)

Generalized Distributive Law
• Dynamic programming uses only additions  

and multiplications,
• Replace them with equivalent operations from

other semirings  

• Semiring
• ‘addition’ and ‘summation’ equivalent
• Associative law
• Distributive law

(a+ b) + c = a+ (b+ c)

a(b+ c) = ab+ ac

Generalized Distributive Law
• Integrating out probabilities (sum, product)

• Finding the maximum (max, +)

• Set algebra (union, intersection)

• Boolean semiring (AND, OR)
• Probability semiring (log +, +)
• Tropical semiring (min, +)

a · (b+ c) = a · b+ a · c

a+max(b, c) = max(a+ b, a+ c)

A [(B \ C) = (A [B) \ (A [C)

Chains ... again

x

x0 x1 x2 x3
s̄ = max

x

s(x0) +

n�1X

i=1

s(x

i+1|xi

)

s̄ = max

x0...n

s(x0)| {z }
:=l0(x0)

+

nX

j=1

s(x

j

|x
j�1)

= max

x1...n

max

x0

[l0(x0)s(x1|x0)]

| {z }
:=l1(x1)

+

nX

j=2

s(x

j

|x
j�1)

= max

x2...n

max

x1

[l1(x1)s(x2|x1)]

| {z }
:=l2(x2)

+

nX

j=3

s(x

j

|x
j�1)

m245!234(x24)

=max

x5

f(x245) +m12!245(x2) +m457!245(x45)

Junction Trees

1 2
3

4

clique
potential separator

set

1,2 2,4,5

2,3,4

4,5,7

2

2,4

4,5

clique
potential

m

i!j

(x

j

) = max

xi

f(x

i

, x

j

) +

X

l 6=j

m

l!i

(x

j

)

m245!234(x24)

=max

x5

f(x245) +m12!245(x2) +m457!245(x45)

Junction Trees

1 2
3

4

clique
potential separator

set

1,2 2,4,5

2,3,4

4,5,7

2

2,4

4,5

clique
potential

m

i!j

(x

j

) = max

xi

f(x

i

, x

j

) +

X

l 6=j

m

l!i

(x

j

)

No loops allowed

x1

x2 x3

x4

Often use it anyway --- Loopy Belief Propagation
(Turbo Codes, Markov Random Fields, etc.)

s(x1, x2) + s(x2, x3) + s(x3, x4) + s(x4, x1)

No loops allowed

x1

x2 x3

x4

Often use it anyway --- Loopy Belief Propagation
(Turbo Codes, Markov Random Fields, etc.)

s(x1, x2) + s(x2, x3) + s(x3, x4) + s(x4, x1)

No loops allowed

x1

x2 x3

x4

Often use it anyway --- Loopy Belief Propagation
(Turbo Codes, Markov Random Fields, etc.)

s(x1, x2) + s(x2, x3) + s(x3, x4) + s(x4, x1)

No loops allowed

x1

x2 x3

x4

Often use it anyway --- Loopy Belief Propagation
(Turbo Codes, Markov Random Fields, etc.)

s(x1, x2) + s(x2, x3) + s(x3, x4) + s(x4, x1)

No loops allowed

x1

x2 x3

x4

Often use it anyway --- Loopy Belief Propagation
(Turbo Codes, Markov Random Fields, etc.)

s(x1, x2) + s(x2, x3) + s(x3, x4) + s(x4, x1)

No loops allowed

x1

x2 x3

x4

Often use it anyway --- Loopy Belief Propagation
(Turbo Codes, Markov Random Fields, etc.)

s(x1, x2) + s(x2, x3) + s(x3, x4) + s(x4, x1)

No loops allowed

x1

x2 x3

x4

Often use it anyway --- Loopy Belief Propagation
(Turbo Codes, Markov Random Fields, etc.)

s(x1, x2) + s(x2, x3) + s(x3, x4) + s(x4, x1)

s(x1, x2) + s(x4, x1)

s(x2, x3) + s(x3, x4)

7.3 Practical Inference
7 Graphical Models

Alexander Smola
Introduction to Machine Learning 10-701
http://alex.smola.org/teaching/10-701-15

http://alex.smola.org/teaching/10-701-15

Clustering

Density Estimation

xi

Θ

p(X|✓) =
mY

i=1

p(xi|✓)

• Draw latent parameter Θ
• For all i draw observed xi given Θ
• What if the basic model doesn’t fit all data?

One size doesn’t fit all

y1

x1

y2

xi

y3

xi

ym

xm

Θ

...

μk,
Σk

yi

xi

Θ

μj,Σj

i=1..m

yi

xi

Θ

i=1..m

α

β

j=1..k

μ1,
Σ1 μj,Σj

j=1..k

...

One size doesn’t fit all

y1

x1

y2

xi

y3

xi

ym

xm

Θ

...

μk,
Σk

yi

xi

Θ

μj,Σj

i=1..m

yi

xi

Θ

i=1..m

α

β

j=1..k

μ1,
Σ1 μj,Σj

j=1..k

...

One size doesn’t fit all

y1

x1

y2

xi

y3

xi

ym

xm

Θ

...

μk,
Σk

yi

xi

Θ

μj,Σj

i=1..m

yi

xi

Θ

i=1..m

α

β

j=1..k

μ1,
Σ1 μj,Σj

j=1..k

...

One size doesn’t fit all

y1

x1

y2

xi

y3

xi

ym

xm

Θ

...

μk,
Σk

yi

xi

Θ

μj,Σj

i=1..m

yi

xi

Θ

i=1..m

α

β

j=1..k

μ1,
Σ1 μj,Σj

j=1..k

...

p(X,Y |✓,�, µ) =
nY

i=1

p(xi|yi, �, µ)p(yi|✓)

What can we cluster?

What can we cluster?

text
news users

mails

queries

urls

ads

products

events
locations

spammers

abuse

Mixture of Gaussians
• Draw cluster ID y from discrete distribution
• Draw data x from Gaussian for cluster y 

• Prior for discrete distribution - Dirichlet
• Prior for Gaussians - Gauss-Wishart
• Problem: we don’t know y

• If we knew the parameters we could get y

• If we knew y we could get the parameters 
(estimate normal distribution)

xi

Θ

p(y|x, ✓) / p(x|y, ✓)p(y|✓)

k-means
• Fixed uniform variance for all Gaussians
• Fixed uniform distribution over clusters
• Initialize centers with random subset of points
• Find most likely cluster y for x (ignores p(y) …) 
 

• Find most likely center for given cluster 
 

• Repeat until converged

yi = argmax

y
p(xi|y,�, µ)

µy =
1
ny

X

i

{yi = y}xi

k-means
• Pro

• simple algorithm
• can be implemented by MapReduce passes

• Con
• no proper probabilistic representation
• can get stuck easily in local minima

k-means

initialization

partitioning

update

partitioning

k-means

initialization

partitioning

update

partitioning

Inference Overview

Bayesian Inference
• Complete bipartite graph of 

dependence between y and  
the model parameters.

• Cannot generate a  
thin junction tree.

• Exact inference  
is impossible.

• We need approximations

y1

x1

y2

xi

y3

xi

ym

xm

Θ

...

μk,
Σk

yi

xi

Θ

μj,Σj

i=1..m

yi

xi

Θ

i=1..m

α

β

j=1..k

μ1,
Σ1 μj,Σj

j=1..k

...
huge

messages

Loopy belief propagation

y1

x1

y2

xi

y3

xi

ym

xm

Θ

...

μk,
Σk

yi

xi

Θ

μj,Σj

i=1..m

yi

xi

Θ

i=1..m

α

β

j=1..k

μ1,
Σ1 μj,Σj

j=1..k

...

• Don’t worry about junction tree
• Just send messages between vertices
• Still expensive for 

high degree vertices 
such as clusters

• Exact messages and  
potentials are too  
complicated"

mY

i=1

µyi!✓(✓)

#
· (✓)

Maximum a posteriori

y1

x1

y2

xi

y3

xi

ym

xm

Θ

...

μk,
Σk

yi

xi

Θ

μj,Σj

i=1..m

yi

xi

Θ

i=1..m

α

β

j=1..k

μ1,
Σ1 μj,Σj

j=1..k

...

• Approximate integral by mode  
of distribution  
 
 
 
 

• Easy (see k-means)
• OK for unimodal distribution
• Misses out on large modes
• Can get stuck in local maxima

Sampling

y1

x1

y2

xi

y3

xi

ym

xm

Θ

...

μk,
Σk

yi

xi

Θ

μj,Σj

i=1..m

yi

xi

Θ

i=1..m

α

β

j=1..k

μ1,
Σ1 μj,Σj

j=1..k

...

• Sample subset of variables 
while keeping the rest fixed

• Iterate until converged
• Draw several samples
• Gibbs sampler 

Draw one group  
at a time and iterate

yi ⇠ p(yi|X,Y �i, ✓, µ,⌃)

✓ ⇠ p(✓|X,Y, µ,⌃)

(µ,⌃) ⇠ p(µ,⌃|X, ✓, Y)

Variational Inference

y1

x1

y2

xi

y3

xi

ym

xm

Θ

...

μk,
Σk

yi

xi

Θ

μj,Σj

i=1..m

yi

xi

Θ

i=1..m

α

β

j=1..k

μ1,
Σ1 μj,Σj

j=1..k

...

• Approximate graphical model  
by simpler one  
 
 

• Minimize ‘distance’  
between models

• Often methods are combined  
into hybrid approach

q(✓)
mY

i=1

q(yi|✓)
kY

j=1

q(µj ,⌃j)

Variational Inference

y1

x1

y2

xi

y3

xi

ym

xm

Θ

...

μk,
Σk

yi

xi

Θ

μj,Σj

i=1..m

yi

xi

Θ

i=1..m

α

β

j=1..k

μ1,
Σ1 μj,Σj

j=1..k

...

• Approximate graphical model  
by simpler one  
 
 

• Minimize ‘distance’  
between models

• Often methods are combined  
into hybrid approach
minimize

�
D(q�(Y, ✓, µ,⌃)|p(Y, ✓, µ,⌃|X))

q(✓)
mY

i=1

q(yi|✓)
kY

j=1

q(µj ,⌃j)

Variational Inference and EM

y1

x1

y2

xi

y3

xi

ym

xm

Θ

...

μk,
Σk

yi

xi

Θ

μj,Σj

i=1..m

yi

xi

Θ

i=1..m

α

β

j=1..k

μ1,
Σ1 μj,Σj

j=1..k

...

y1

x1

y2

xi

y3

xi

ym

xm

Θ

...

μk,
Σk

yi

xi

Θ

μj,Σj

i=1..m

yi

xi

Θ

i=1..m

α

β

j=1..k

μ1,
Σ1 μj,Σj

j=1..k

...

Nonconvex Optimization
• Optimization Problem  

Find the parameters (clusters, probabilities) for
the mixture of Gaussians problem 
 
 
This problem is nonconvex and difficult to solve

• Key idea 
If we knew p(y|x) we could estimate the
remaining parameters easily and vice versa  

maximize

✓,µ,�
p(X|✓,�, µ) = maximize

✓,µ,�

X

Y

nY

i=1

p(xi|yi, �, µ)p(yi|✓)

100 1 2 3 4 5 6 7 8 9

10

0

1

2

3

4

5

6

7

8

9

parameters

ne
ga

ti
ve

 L
og

-l
ik

el
ih

oo
d

1

2

3
4

DC Programming

•Find convex upper bound
•Minimize it

f(x) = f

vex

(x) + f

cave

(x)

 f

vex

(x) + f

cave

(x
0

) + hf 0
cave

(x
0

), x� x

0

i

Expectation Maximization

Expectation Maximization
• Variational Bound

log p(x; ✓) � log p(x; ✓)�D(q(y)kp(y|x; ✓))

=

Z
dq(y) [log p(x; ✓) + log p(y|x; ✓)� log q(y)]

=

Z
dq(y) log p(x, y; ✓)�

Z
dq(y) log q(y)

Expectation Maximization
• Variational Bound

log p(x; ✓) � log p(x; ✓)�D(q(y)kp(y|x; ✓))

=

Z
dq(y) [log p(x; ✓) + log p(y|x; ✓)� log q(y)]

=

Z
dq(y) log p(x, y; ✓)�

Z
dq(y) log q(y)

q(y) = p(y|x; ✓)

Expectation Maximization
• Variational Bound

log p(x; ✓) � log p(x; ✓)�D(q(y)kp(y|x; ✓))

=

Z
dq(y) [log p(x; ✓) + log p(y|x; ✓)� log q(y)]

=

Z
dq(y) log p(x, y; ✓)�

Z
dq(y) log q(y)

q(y) = p(y|x; ✓) find bound

Expectation Maximization
• Variational Bound

log p(x; ✓) � log p(x; ✓)�D(q(y)kp(y|x; ✓))

=

Z
dq(y) [log p(x; ✓) + log p(y|x; ✓)� log q(y)]

=

Z
dq(y) log p(x, y; ✓)�

Z
dq(y) log q(y)

q(y) = p(y|x; ✓) find bound

Expectation Maximization
• Variational Bound

log p(x; ✓) � log p(x; ✓)�D(q(y)kp(y|x; ✓))

=

Z
dq(y) [log p(x; ✓) + log p(y|x; ✓)� log q(y)]

=

Z
dq(y) log p(x, y; ✓)�

Z
dq(y) log q(y)

q(y) = p(y|x; ✓) find bound

Expectation Maximization
• Variational Bound

• This inequality is tight for p(y|x) = q(y)

log p(x; ✓) � log p(x; ✓)�D(q(y)kp(y|x; ✓))

=

Z
dq(y) [log p(x; ✓) + log p(y|x; ✓)� log q(y)]

=

Z
dq(y) log p(x, y; ✓)�

Z
dq(y) log q(y)

q(y) = p(y|x; ✓) find bound

Expectation Maximization
• Variational Bound

• This inequality is tight for p(y|x) = q(y)
• Expectation step  

log p(x; ✓) � log p(x; ✓)�D(q(y)kp(y|x; ✓))

=

Z
dq(y) [log p(x; ✓) + log p(y|x; ✓)� log q(y)]

=

Z
dq(y) log p(x, y; ✓)�

Z
dq(y) log q(y)

q(y) = p(y|x; ✓) find bound

Expectation Maximization
• Variational Bound

• This inequality is tight for p(y|x) = q(y)
• Expectation step  

• Maximization step

log p(x; ✓) � log p(x; ✓)�D(q(y)kp(y|x; ✓))

=

Z
dq(y) [log p(x; ✓) + log p(y|x; ✓)� log q(y)]

=

Z
dq(y) log p(x, y; ✓)�

Z
dq(y) log q(y)

q(y) = p(y|x; ✓)

✓

⇤
= argmax

✓

Z
dq(y) log p(x, y; ✓)

find bound

Expectation Maximization
• Variational Bound

• This inequality is tight for p(y|x) = q(y)
• Expectation step  

• Maximization step

log p(x; ✓) � log p(x; ✓)�D(q(y)kp(y|x; ✓))

=

Z
dq(y) [log p(x; ✓) + log p(y|x; ✓)� log q(y)]

=

Z
dq(y) log p(x, y; ✓)�

Z
dq(y) log q(y)

q(y) = p(y|x; ✓)

✓

⇤
= argmax

✓

Z
dq(y) log p(x, y; ✓)

maximize it

find bound

Expectation Step

qi(y) / p(xi|yi, µ,�)p(yi|✓) hence

miy :=

1

(2⇡)

d
2 |⌃y| 1

2
exp


�1

2

(xi � µy)⌃

�1
y (xi � µy)

�
p(y)

qi(y) =

miyP
y0 miy0

• Factorizing distribution

• E-Step
q(Y) =

Y

i

qi(y)

Maximization Step
• Log-likelihood  
 

• Cluster distribution  
(weighted Gaussian MLE) 
 
 

• Cluster probabilities

log p(X,Y |✓, µ,�) =

nX

i=1

log p(xi|yi, µ,�) + log p(yi|✓)

µy =
1
ny

nX

i=1

qi(y)xi

⌃y =
1
ny

nX

i=1

qi(y)xix
>
i � µyµ

>
y

ny =
X

i

qi(y)

✓⇤ = argmax

✓

nX

i=1

X

y

qi(y) log p(yi|✓) hence p(y|✓) =

ny

n

EM Clustering in action

Problem

Estimates will diverge
(infinite variance, zero probability, tiny clusters)

Solution
• Use priors for

• Dirichlet distribution for cluster probabilities
• Gauss-Wishart for Gaussian

• Cluster distribution  
 
 
 

• Cluster probabilities 
 

µ, �, ✓

ny = n0 +
X

i

qi(y)
µy =

1
ny

nX

i=1

qi(y)xi

⌃y =
1
ny

nX

i=1

qi(y)xix
>
i +

n0

ny
1� µyµ

>
y

p(y|�) =
ny

n + k · n0

Sampling

 1 2 3 4 5 6 7 8 9 10

0.6

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

parameter1

d
en

si
ty

M
od

e

M
od

e

M
ea

n

Is maximization (always) good?

p(✓|X) / p(X|✓)p(✓)

Sampling
• Key idea

• Want accurate distribution of the posterior
• Sample from posterior distribution rather than

maximizing it
• Problem - direct sampling is usually intractable
• Solutions

• Markov Chain Monte Carlo (complicated)
• Gibbs Sampling (somewhat simpler) 
 
 

x ⇠ p(x|x0) and then x

0 ⇠ p(x0|x)

Gibbs sampling
• Gibbs sampling:

• In most cases direct sampling not possible
• Draw one set of variables at a time

0.45 0.05
0.05 0.45

Gibbs sampling
• Gibbs sampling:

• In most cases direct sampling not possible
• Draw one set of variables at a time

0.45 0.05
0.05 0.45

(b,g) - draw p(.,g)

Gibbs sampling
• Gibbs sampling:

• In most cases direct sampling not possible
• Draw one set of variables at a time

0.45 0.05
0.05 0.45

(b,g) - draw p(.,g)
(g,g) - draw p(g,.)

Gibbs sampling
• Gibbs sampling:

• In most cases direct sampling not possible
• Draw one set of variables at a time

0.45 0.05
0.05 0.45

(b,g) - draw p(.,g)
(g,g) - draw p(g,.)
(g,g) - draw p(.,g)

Gibbs sampling
• Gibbs sampling:

• In most cases direct sampling not possible
• Draw one set of variables at a time

0.45 0.05
0.05 0.45

(b,g) - draw p(.,g)
(g,g) - draw p(g,.)
(g,g) - draw p(.,g)
(b,g) - draw p(b,.)

Gibbs sampling
• Gibbs sampling:

• In most cases direct sampling not possible
• Draw one set of variables at a time

0.45 0.05
0.05 0.45

(b,g) - draw p(.,g)
(g,g) - draw p(g,.)
(g,g) - draw p(.,g)
(b,g) - draw p(b,.)
(b,b) ...

Gibbs sampling for clustering

Gibbs sampling for clustering

random
initialization

Gibbs sampling for clustering

sample
cluster labels

Gibbs sampling for clustering

resample
cluster model

Gibbs sampling for clustering

resample
cluster labels

Gibbs sampling for clustering

resample
cluster model

Gibbs sampling for clustering

resample
cluster labels

Gibbs sampling for clustering

resample
cluster model e.g. Mahout Dirichlet Process Clustering

Inference Algorithm ≠ Model
Corollary: EM ≠ Clustering

… but some algorithms and models are good match …

7.4 Models
7 Graphical Models

Alexander Smola
Introduction to Machine Learning 10-701
http://alex.smola.org/teaching/10-701-15

http://alex.smola.org/teaching/10-701-15

Hidden Markov Models

Clustering and Hidden Markov
Models

• Clustering - no dependence between observations
• Hidden Markov Model - dependence between states

3.3 Applications 107

x1 x2 x3 x4

y4

xm

y3y2y1

...
ym

i=1..m

xi xi+1

yi

Fig. 3.6. A simple hidden Markov model. The variables x
i

are observed, while the
states y

i

responsible for generating x
i

are unknown. The graph on the right is an
equivalent representation as a plate. Our notation is slightly sloppy by not dealing
explicitly with the last hidden state y10 which does not have a child y11. That said,
since y11 is an unobserved child node in the DAG, it integrates out without any
further e↵ect on the joint probability distribution.

The problem when performing inference in a HMM is that, just as before
in clustering, the hidden variables yi are unknown. We can use the EM-
algorithm for inference. However, unlike before, estimating p(Y|X, ✓) is no
trivial task, since the random variables depend on each other. We now dis-
cuss this estimation in detail, since it is a good introduction to the world of
dynamic programming. We will use these techniques extensively Section ??
when dealing with undirected graphical models and what is known as mes-
sage passing.
The joint likelihood of the model in Figure 3.6 can be written as

p(x, y) = p(y1)

"

m�1
Y

i=1

p(yi+1|yi)p(xi|yi)
#

p(xm|ym) (3.25)

If we want to compute the likelihood of x we need too perform a sum over
all values of y. That is, we need to compute

p(x) =
X

y1,...,ym

p(y1)

"

m�1
Y

i=1

p(yi+1|yi)p(xi|yi)
#

p(xm|ym) (3.26)

=
X

y2,...,ym

"

X

y1

p(y1)p(y2|y1)p(x1|y1)
#

| {z }

:=f2(y2)

"

m�1
Y

i=2

p(yi+1|yi)p(xi|yi)
#

p(xm|ym)

=
X

y3,...,ym

"

X

y2

h(y2)p(y3|y2)p(x2|y2)
#

| {z }

:=f3(y3)

"

m�1
Y

i=3

p(yi+1|yi)p(xi|yi)
#

p(xm|ym)

3.3 Applications 107

x1 x2 x3 x4

y4

xm

y3y2y1

...
ym

i=1..m

xi xi+1

yi

Fig. 3.6. A simple hidden Markov model. The variables x
i

are observed, while the
states y

i

responsible for generating x
i

are unknown. The graph on the right is an
equivalent representation as a plate. Our notation is slightly sloppy by not dealing
explicitly with the last hidden state y10 which does not have a child y11. That said,
since y11 is an unobserved child node in the DAG, it integrates out without any
further e↵ect on the joint probability distribution.

The problem when performing inference in a HMM is that, just as before
in clustering, the hidden variables yi are unknown. We can use the EM-
algorithm for inference. However, unlike before, estimating p(Y|X, ✓) is no
trivial task, since the random variables depend on each other. We now dis-
cuss this estimation in detail, since it is a good introduction to the world of
dynamic programming. We will use these techniques extensively Section ??
when dealing with undirected graphical models and what is known as mes-
sage passing.
The joint likelihood of the model in Figure 3.6 can be written as

p(x, y) = p(y1)

"

m�1
Y

i=1

p(yi+1|yi)p(xi|yi)
#

p(xm|ym) (3.25)

If we want to compute the likelihood of x we need too perform a sum over
all values of y. That is, we need to compute

p(x) =
X

y1,...,ym

p(y1)

"

m�1
Y

i=1

p(yi+1|yi)p(xi|yi)
#

p(xm|ym) (3.26)

=
X

y2,...,ym

"

X

y1

p(y1)p(y2|y1)p(x1|y1)
#

| {z }

:=f2(y2)

"

m�1
Y

i=2

p(yi+1|yi)p(xi|yi)
#

p(xm|ym)

=
X

y3,...,ym

"

X

y2

h(y2)p(y3|y2)p(x2|y2)
#

| {z }

:=f3(y3)

"

m�1
Y

i=3

p(yi+1|yi)p(xi|yi)
#

p(xm|ym)

Applications

• Speech recognition (sound|text)
• Optical character recognition (writing|text)
• Gene finding (DNA sequence|genes)
• Activity recognition (accelerometer|activity)

3.3 Applications 107

x1 x2 x3 x4

y4

xm

y3y2y1

...
ym

i=1..m

xi xi+1

yi

Fig. 3.6. A simple hidden Markov model. The variables x
i

are observed, while the
states y

i

responsible for generating x
i

are unknown. The graph on the right is an
equivalent representation as a plate. Our notation is slightly sloppy by not dealing
explicitly with the last hidden state y10 which does not have a child y11. That said,
since y11 is an unobserved child node in the DAG, it integrates out without any
further e↵ect on the joint probability distribution.

The problem when performing inference in a HMM is that, just as before
in clustering, the hidden variables yi are unknown. We can use the EM-
algorithm for inference. However, unlike before, estimating p(Y|X, ✓) is no
trivial task, since the random variables depend on each other. We now dis-
cuss this estimation in detail, since it is a good introduction to the world of
dynamic programming. We will use these techniques extensively Section ??
when dealing with undirected graphical models and what is known as mes-
sage passing.
The joint likelihood of the model in Figure 3.6 can be written as

p(x, y) = p(y1)

"

m�1
Y

i=1

p(yi+1|yi)p(xi|yi)
#

p(xm|ym) (3.25)

If we want to compute the likelihood of x we need too perform a sum over
all values of y. That is, we need to compute

p(x) =
X

y1,...,ym

p(y1)

"

m�1
Y

i=1

p(yi+1|yi)p(xi|yi)
#

p(xm|ym) (3.26)

=
X

y2,...,ym

"

X

y1

p(y1)p(y2|y1)p(x1|y1)
#

| {z }

:=f2(y2)

"

m�1
Y

i=2

p(yi+1|yi)p(xi|yi)
#

p(xm|ym)

=
X

y3,...,ym

"

X

y2

h(y2)p(y3|y2)p(x2|y2)
#

| {z }

:=f3(y3)

"

m�1
Y

i=3

p(yi+1|yi)p(xi|yi)
#

p(xm|ym)

Inference

• Summing over y possible via dynamic programming
• Log-likelihood is nonconvex

3.3 Applications 107

x1 x2 x3 x4

y4

xm

y3y2y1

...
ym

i=1..m

xi xi+1

yi

Fig. 3.6. A simple hidden Markov model. The variables x
i

are observed, while the
states y

i

responsible for generating x
i

are unknown. The graph on the right is an
equivalent representation as a plate. Our notation is slightly sloppy by not dealing
explicitly with the last hidden state y10 which does not have a child y11. That said,
since y11 is an unobserved child node in the DAG, it integrates out without any
further e↵ect on the joint probability distribution.

The problem when performing inference in a HMM is that, just as before
in clustering, the hidden variables yi are unknown. We can use the EM-
algorithm for inference. However, unlike before, estimating p(Y|X, ✓) is no
trivial task, since the random variables depend on each other. We now dis-
cuss this estimation in detail, since it is a good introduction to the world of
dynamic programming. We will use these techniques extensively Section ??
when dealing with undirected graphical models and what is known as mes-
sage passing.
The joint likelihood of the model in Figure 3.6 can be written as

p(x, y) = p(y1)

"

m�1
Y

i=1

p(yi+1|yi)p(xi|yi)
#

p(xm|ym) (3.25)

If we want to compute the likelihood of x we need too perform a sum over
all values of y. That is, we need to compute

p(x) =
X

y1,...,ym

p(y1)

"

m�1
Y

i=1

p(yi+1|yi)p(xi|yi)
#

p(xm|ym) (3.26)

=
X

y2,...,ym

"

X

y1

p(y1)p(y2|y1)p(x1|y1)
#

| {z }

:=f2(y2)

"

m�1
Y

i=2

p(yi+1|yi)p(xi|yi)
#

p(xm|ym)

=
X

y3,...,ym

"

X

y2

h(y2)p(y3|y2)p(x2|y2)
#

| {z }

:=f3(y3)

"

m�1
Y

i=3

p(yi+1|yi)p(xi|yi)
#

p(xm|ym)

3.3 Applications 107

x1 x2 x3 x4

y4

xm

y3y2y1

...
ym

i=1..m

xi xi+1

yi

Fig. 3.6. A simple hidden Markov model. The variables x
i

are observed, while the
states y

i

responsible for generating x
i

are unknown. The graph on the right is an
equivalent representation as a plate. Our notation is slightly sloppy by not dealing
explicitly with the last hidden state y10 which does not have a child y11. That said,
since y11 is an unobserved child node in the DAG, it integrates out without any
further e↵ect on the joint probability distribution.

The problem when performing inference in a HMM is that, just as before
in clustering, the hidden variables yi are unknown. We can use the EM-
algorithm for inference. However, unlike before, estimating p(Y|X, ✓) is no
trivial task, since the random variables depend on each other. We now dis-
cuss this estimation in detail, since it is a good introduction to the world of
dynamic programming. We will use these techniques extensively Section ??
when dealing with undirected graphical models and what is known as mes-
sage passing.
The joint likelihood of the model in Figure 3.6 can be written as

p(x, y) = p(y1)

"

m�1
Y

i=1

p(yi+1|yi)p(xi|yi)
#

p(xm|ym) (3.25)

If we want to compute the likelihood of x we need too perform a sum over
all values of y. That is, we need to compute

p(x) =
X

y1,...,ym

p(y1)

"

m�1
Y

i=1

p(yi+1|yi)p(xi|yi)
#

p(xm|ym) (3.26)

=
X

y2,...,ym

"

X

y1

p(y1)p(y2|y1)p(x1|y1)
#

| {z }

:=f2(y2)

"

m�1
Y

i=2

p(yi+1|yi)p(xi|yi)
#

p(xm|ym)

=
X

y3,...,ym

"

X

y2

h(y2)p(y3|y2)p(x2|y2)
#

| {z }

:=f3(y3)

"

m�1
Y

i=3

p(yi+1|yi)p(xi|yi)
#

p(xm|ym)

Variational Approximation

• Lower bound on log-likelihood  
 

• Inequality holds for any q
• Find q within subset Q to tighten inequality
• Find parameters to maximize for fixed q

• Inference for graphical models where joint
probability computation is infeasible  

log p(x; �) �
Z

dq(y) log p(x, y; �)�
Z

dq(y) log q(y)

Variational Approximation
3.3 Applications 107

x1 x2 x3 x4

y4

xm

y3y2y1

...
ym

i=1..m

xi xi+1

yi

Fig. 3.6. A simple hidden Markov model. The variables x
i

are observed, while the
states y

i

responsible for generating x
i

are unknown. The graph on the right is an
equivalent representation as a plate. Our notation is slightly sloppy by not dealing
explicitly with the last hidden state y10 which does not have a child y11. That said,
since y11 is an unobserved child node in the DAG, it integrates out without any
further e↵ect on the joint probability distribution.

The problem when performing inference in a HMM is that, just as before
in clustering, the hidden variables yi are unknown. We can use the EM-
algorithm for inference. However, unlike before, estimating p(Y|X, ✓) is no
trivial task, since the random variables depend on each other. We now dis-
cuss this estimation in detail, since it is a good introduction to the world of
dynamic programming. We will use these techniques extensively Section ??
when dealing with undirected graphical models and what is known as mes-
sage passing.
The joint likelihood of the model in Figure 3.6 can be written as

p(x, y) = p(y1)

"

m�1
Y

i=1

p(yi+1|yi)p(xi|yi)
#

p(xm|ym) (3.25)

If we want to compute the likelihood of x we need too perform a sum over
all values of y. That is, we need to compute

p(x) =
X

y1,...,ym

p(y1)

"

m�1
Y

i=1

p(yi+1|yi)p(xi|yi)
#

p(xm|ym) (3.26)

=
X

y2,...,ym

"

X

y1

p(y1)p(y2|y1)p(x1|y1)
#

| {z }

:=f2(y2)

"

m�1
Y

i=2

p(yi+1|yi)p(xi|yi)
#

p(xm|ym)

=
X

y3,...,ym

"

X

y2

h(y2)p(y3|y2)p(x2|y2)
#

| {z }

:=f3(y3)

"

m�1
Y

i=3

p(yi+1|yi)p(xi|yi)
#

p(xm|ym)

3.3 Applications 107

x1 x2 x3 x4

y4

xm

y3y2y1

...
ym

i=1..m

xi xi+1

yi

Fig. 3.6. A simple hidden Markov model. The variables x
i

are observed, while the
states y

i

responsible for generating x
i

are unknown. The graph on the right is an
equivalent representation as a plate. Our notation is slightly sloppy by not dealing
explicitly with the last hidden state y10 which does not have a child y11. That said,
since y11 is an unobserved child node in the DAG, it integrates out without any
further e↵ect on the joint probability distribution.

The problem when performing inference in a HMM is that, just as before
in clustering, the hidden variables yi are unknown. We can use the EM-
algorithm for inference. However, unlike before, estimating p(Y|X, ✓) is no
trivial task, since the random variables depend on each other. We now dis-
cuss this estimation in detail, since it is a good introduction to the world of
dynamic programming. We will use these techniques extensively Section ??
when dealing with undirected graphical models and what is known as mes-
sage passing.
The joint likelihood of the model in Figure 3.6 can be written as

p(x, y) = p(y1)

"

m�1
Y

i=1

p(yi+1|yi)p(xi|yi)
#

p(xm|ym) (3.25)

If we want to compute the likelihood of x we need too perform a sum over
all values of y. That is, we need to compute

p(x) =
X

y1,...,ym

p(y1)

"

m�1
Y

i=1

p(yi+1|yi)p(xi|yi)
#

p(xm|ym) (3.26)

=
X

y2,...,ym

"

X

y1

p(y1)p(y2|y1)p(x1|y1)
#

| {z }

:=f2(y2)

"

m�1
Y

i=2

p(yi+1|yi)p(xi|yi)
#

p(xm|ym)

=
X

y3,...,ym

"

X

y2

h(y2)p(y3|y2)p(x2|y2)
#

| {z }

:=f3(y3)

"

m�1
Y

i=3

p(yi+1|yi)p(xi|yi)
#

p(xm|ym)

• Variational approximation via  
 

• Compute p(x|y) via dynamic programming

q(y) = q(y1)
mY

x=2

q(y
i

|y
i�1)

Variational Method
• Initialize parameters somehow
• Set 

Dynamic programming yields chain
• Maximizing the log-likelihod w.r.t. q

q(x) = p(x|y)

log p(x; �) �
Z

dq(y) log p(x, y; �)�
Z

dq(y) log q(y)

3.3 Applications 107

x1 x2 x3 x4

y4

xm

y3y2y1

...
ym

i=1..m

xi xi+1

yi

Fig. 3.6. A simple hidden Markov model. The variables x
i

are observed, while the
states y

i

responsible for generating x
i

are unknown. The graph on the right is an
equivalent representation as a plate. Our notation is slightly sloppy by not dealing
explicitly with the last hidden state y10 which does not have a child y11. That said,
since y11 is an unobserved child node in the DAG, it integrates out without any
further e↵ect on the joint probability distribution.

The problem when performing inference in a HMM is that, just as before
in clustering, the hidden variables yi are unknown. We can use the EM-
algorithm for inference. However, unlike before, estimating p(Y|X, ✓) is no
trivial task, since the random variables depend on each other. We now dis-
cuss this estimation in detail, since it is a good introduction to the world of
dynamic programming. We will use these techniques extensively Section ??
when dealing with undirected graphical models and what is known as mes-
sage passing.
The joint likelihood of the model in Figure 3.6 can be written as

p(x, y) = p(y1)

"

m�1
Y

i=1

p(yi+1|yi)p(xi|yi)
#

p(xm|ym) (3.25)

If we want to compute the likelihood of x we need too perform a sum over
all values of y. That is, we need to compute

p(x) =
X

y1,...,ym

p(y1)

"

m�1
Y

i=1

p(yi+1|yi)p(xi|yi)
#

p(xm|ym) (3.26)

=
X

y2,...,ym

"

X

y1

p(y1)p(y2|y1)p(x1|y1)
#

| {z }

:=f2(y2)

"

m�1
Y

i=2

p(yi+1|yi)p(xi|yi)
#

p(xm|ym)

=
X

y3,...,ym

"

X

y2

h(y2)p(y3|y2)p(x2|y2)
#

| {z }

:=f3(y3)

"

m�1
Y

i=3

p(yi+1|yi)p(xi|yi)
#

p(xm|ym)

q(y1) q(yi+1|yi) q(yi)q(yi)

Parameter Estimation

• p(y1) 
Since we have set p(y1) = q(y1)

• p(xi|yi) 
Same as clustering  
e.g. for Gaussians

Eq(y1)[log p(y1)]

µy =
1
ny

nX

i=1

qi(y)xi

⌃y =
1
ny

nX

i=1

qi(y)xix
>
i � µyµ

>
y

3.3 Applications 109

respect to the distribution q(y) := p(y|x; ✓). Plugging in (3.25) yields

Ey⇠q [log p(x, y; ✓)] =Ey1⇠q log p(y1; ✓) +
m
X

i=1

Ey
i

⇠q log p(xi|yi; ✓)

+
m�1
X

i=1

Ey
i+1,yi⇠q log p(yi+1|yi; ✓) (3.30)

Note that it is precisely the expectations with respect to yi and with respect
to (yi, yi+1) that we need to compute the expected log-likelihood. Assuming
that we are dealing with a HMM clustering model with Gaussian outputs,
that is yi 2 {1, . . . , k} and xi|yi ⇠ N(µy

i

,�2
y
i

), we obtain update equations
very similar to clustering. In fact, only (??) needs changing. Eq. (??) and
(??) remain unchanged. The di↵erence is that now instead of estimating
p(yi|✓) we have the equations

p(y1; ✓) = q(y1) and p(yi+1 = a|yi = b; ✓) =
1

m� 1

m
X

j=1

q(yj+1 = a|yj = b)

In other words, we pick the transition probabilities p(yi+1|yi) as the aver-
age over the posterior transition probabilities p(yi+1|yi, x). Only the initial
probability p(y1) is treated di↵erently. The probabilities p(xi|yi), also called
emission probabilities, are identical to what is done in a clustering model.
While the above model is deceptively simple — we have a transition

between a given number of states which emit Gaussian random variables,
they form the basis of advanced speech [BM90] and handwriting recognition
[LBBH98] algorithms and they have found widespread applications to bioin-
formatics [DEKM98]. There exist countless variants on the HMM theme. See
e.g. Figure 3.7 for some examples.

3.3.2 Kalman Filter

So far we assumed that the hidden state yi is discrete and that the observa-
tions xi are generated by a mixture of distributions (in our case Gaussians).
Let us now consider the case where yi 2 Rn and xi 2 Rm and moreover
where all distributions are Gaussians. We assume that

y1 ⇠ N(µ1,⌃1) and (3.31a)

yi+1|yi ⇠ N(µy +Ayi,⌃y) and (3.31b)

xi|yi ⇠ N(µx +Byi,⌃x) (3.31c)

Parameter Estimation

• Maximum likelihood estimate for p(y’|y)

3.3 Applications 109

respect to the distribution q(y) := p(y|x; ✓). Plugging in (3.25) yields

Ey⇠q [log p(x, y; ✓)] =Ey1⇠q log p(y1; ✓) +
m
X

i=1

Ey
i

⇠q log p(xi|yi; ✓)

+
m�1
X

i=1

Ey
i+1,yi⇠q log p(yi+1|yi; ✓) (3.30)

Note that it is precisely the expectations with respect to yi and with respect
to (yi, yi+1) that we need to compute the expected log-likelihood. Assuming
that we are dealing with a HMM clustering model with Gaussian outputs,
that is yi 2 {1, . . . , k} and xi|yi ⇠ N(µy

i

,�2
y
i

), we obtain update equations
very similar to clustering. In fact, only (??) needs changing. Eq. (??) and
(??) remain unchanged. The di↵erence is that now instead of estimating
p(yi|✓) we have the equations

p(y1; ✓) = q(y1) and p(yi+1 = a|yi = b; ✓) =
1

m� 1

m
X

j=1

q(yj+1 = a|yj = b)

In other words, we pick the transition probabilities p(yi+1|yi) as the aver-
age over the posterior transition probabilities p(yi+1|yi, x). Only the initial
probability p(y1) is treated di↵erently. The probabilities p(xi|yi), also called
emission probabilities, are identical to what is done in a clustering model.
While the above model is deceptively simple — we have a transition

between a given number of states which emit Gaussian random variables,
they form the basis of advanced speech [BM90] and handwriting recognition
[LBBH98] algorithms and they have found widespread applications to bioin-
formatics [DEKM98]. There exist countless variants on the HMM theme. See
e.g. Figure 3.7 for some examples.

3.3.2 Kalman Filter

So far we assumed that the hidden state yi is discrete and that the observa-
tions xi are generated by a mixture of distributions (in our case Gaussians).
Let us now consider the case where yi 2 Rn and xi 2 Rm and moreover
where all distributions are Gaussians. We assume that

y1 ⇠ N(µ1,⌃1) and (3.31a)

yi+1|yi ⇠ N(µy +Ayi,⌃y) and (3.31b)

xi|yi ⇠ N(µx +Byi,⌃x) (3.31c)

m�1X

i=1

q(yi+1 = a, yi = b) log p(a|b)

hence p(a|b) =
Pm�1

i=1 q(yi+1 = a, yi = b)
Pm�1

i=1 q(yi = b)

effective sample

Smoothed Estimates
• Laplace prior on latent state distribution

• Uniform distribution over states
• Alternatively assume that state remains

p(a|b) =
na|b +

Pm�1
i=1 q(yi+1 = a, yi = b)

nb +
Pm�1

i=1 q(yi = b)

transition
smoother aggregate

mass

G
raphical M

odel Zoology

Models

Inference
Methods

Statistics

Efficient
Computation

Dynamic
Programming

Message
Passing Convex

Optimization

Exact

Gibbs
Sampling

k-means
(direct)

variational
EM

Exponential
Families

Conjugate
Prior

l1, l2 Priors

l1, l2 Priors

Mixtures
Clusters

Chains
HMM

Factor
Models

Matrix
Factorization

MRF
CRF

directed
undirected

Sampling

Debugging

Spam
Filtering

Clustering

Document
Understanding User

Modeling

Advertising

Exploration

Segmentation

Prediction
(time series)

Classification

Annotation

Novelty
Detection

Performance
Tuning

System
Design Your data

Beyond mixtures

taxonomies

topics

chains

‘Unsupervised’ Models

Θ

x x x

Density
Estimation Θ

x

Novelty Detection
forecasting

intrusion detection

webpages
news
users
ads

queries
images

‘Unsupervised’ Models

Θ

x x x

Density
Estimation Θ

x

Θ

y y y

Clustering

x x xw

Θ

y

xw

Novelty Detection
forecasting

intrusion detection

webpages
news
users
ads

queries
images

‘Unsupervised’ Models

Θ

x x x

Density
Estimation Θ

x

x x’ x’’

Factor
Analysis

Θ’Θ

‘Supervised’ Models
ΘClassification

Regression

y y y

w

Θ

yw

x x x xspam filtering
tiering

crawling
categorization
bid estimation

tagging

Chains

Θ

x x x

Markov
Chain Θ

x

Chains

Θ

x x x

Markov
Chain Θ

x

Θ

y y y

Hidden
Markov Model
Kalman Filter

x x xw

Θ

y

xw

Collaborative Models

Collaborative Models

r

Collaborative
Filtering

u m

Collaborative Models

r

Collaborative
Filtering

u m

d
Webpage
Ranking

r

q

Current

Collaborative Models

r

Collaborative
Filtering

u m

d’ q’d
Webpage
Ranking

r

q

Collaborative Models

r

Collaborative
Filtering

u m

d’ q’d
Webpage
Ranking

r

q

no obvious
features

Collaborative Models

r

Collaborative
Filtering

u m

d’ q’d
Webpage
Ranking

r

q

no obvious
features massive

feature engineering

Collaborative Models

r

Collaborative
Filtering

u m

d’ q’d
Webpage
Ranking

r

q

u u’personalized

no obvious
features massive

feature engineering

Data Integration

u
Webpage
Ranking

d

r
q

Data Integration

u
Webpage
Ranking

d

r
q

a

c
Display

Advertising

Data Integration

u
Webpage
Ranking

d

r
q

a

c
Display

Advertising

Data Integration

u
Webpage
Ranking

d

r
q

a

c
Display

Advertising

nNews d

Data Integration

u
Webpage
Ranking

d

r
q

a

c
Display

Advertising

nNews d

p

Answers
t

Topic Models

Topic Models

β

α
Topic

Models

z

θ

w

Ψ

Topic Models

β

α
Topic

Models

z

θ

w

Ψ

Simplical
Mixtures

Topic Models

β

α
Topic

Models

z

θ

w

Ψ

Simplical
Mixtures

Upstream
Conditioning

Downstream
Conditioningzd

zu

7.5 Undirected Graphical Models
7 Graphical Models

Alexander Smola
Introduction to Machine Learning 10-701
http://alex.smola.org/teaching/10-701-15

http://alex.smola.org/teaching/10-701-15

Blunting the arrows

Chicken and Egg

Chicken and Egg

p(c|e)p(e|c)

Chicken and Egg

p(c|e)p(e|c)

Chicken and Egg

we know that
chicken and egg

are correlated

either chicken or egg

Chicken and Egg

p(c, e) / exp (c, e)

encode the correlation
via the clique potential

between c and e
we know that

chicken and egg
are correlated

either chicken or egg

Chicken and Egg

we know that
chicken and egg

are correlated

either chicken or egg

Chicken and Egg

we know that
chicken and egg

are correlated

either chicken or egg

p(c, e) =

exp (c, e)P
c0,e0 exp (c0, e0

)

= exp [(c, e)� g()] where g() = log

X

c,e

exp (c, e)

... some web service

MySQL Apache

Website

p(w|m, a)p(m)p(a)

Website

m 6?? a|w

... some web service

MySQL Apache

Website

p(w|m, a)p(m)p(a)

Website

m 6?? a|w

MySQL Apache

Website

Site affects
MySQL

Site affects
Apache

p(m, w, a) / �(m, w)�(w, a)

Website

m ?? a|w

... some web service

MySQL Apache

Website

p(w|m, a)p(m)p(a)

Website

m 6?? a|w

MySQL Apache

Website

Site affects
MySQL

Site affects
Apache

p(m, w, a) / �(m, w)�(w, a)

Website

m ?? a|w

easier
“debugging”

easier
“modeling”

Undirected Graphical Models

Key Concept
Observing nodes makes remainder

conditionally independent

Undirected Graphical Models

Key Concept
Observing nodes makes remainder

conditionally independent

Undirected Graphical Models

Key Concept
Observing nodes makes remainder

conditionally independent

Undirected Graphical Models

Key Concept
Observing nodes makes remainder

conditionally independent

Undirected Graphical Models

Key Concept
Observing nodes makes remainder

conditionally independent

Undirected Graphical Models

Key Concept
Observing nodes makes remainder

conditionally independent

Undirected Graphical Models

Key Concept
Observing nodes makes remainder

conditionally independent

Undirected Graphical Models

Key Concept
Observing nodes makes remainder

conditionally independent

Cliques

Cliques

maximal fully connected subgraph

Cliques

maximal fully connected subgraph

Cliques

maximal fully connected subgraph

Hammersley Clifford Theorem

p(x) =
Y

c

 c(xc)

If density has full support then it decomposes
into products of clique potentials

Directed vs. Undirected
• Causal description
• Normalization automatic
• Intuitive
• Requires knowledge of

dependencies
• Conditional independence

tricky (Bayes Ball algorithm)

• Noncausal description
(correlation only)

• Intuitive
• Easy modeling
• Normalization difficult
• Conditional independence

easy to read off (graph
connectivity)

Exponential Families 
and Graphical Models

vs.

Exponential Family Recap
• Density function  
 
 

• Log partition function generates cumulants 
 
 

• g is convex (second derivative is p.s.d.)

p(x; �) = exp (h⇥(x), �i � g(�))

where g(�) = log

X

x

0

exp (h⇥(x0
), �i)

@✓g(✓) = E [�(x)]

@

2
✓g(✓) = Var [�(x)]

Log Partition Function
Unconditional model

p(y|�, x) = e⇥⇥(x,y),�⇤�g(�|x)

g(�|x) = log

X

y

e⇥⇥(x,y),�⇤

⇤�g(�|x) =

P
y ⇥(x, y)e⇥⇥(x,y),�⇤
P

y e⇥⇥(x,y),�⇤ =

X

y

⇥(x, y)e⇥⇥(x,y),�⇤�g(�|x)

p(x|✓) = e

h�(x),✓i�g(✓)

g(✓) = log

X

x

e

h�(x),✓i

@

✓

g(✓) =

P
x

�(x)e

h�(x),✓i
P

x

e

h�(x),✓i =

X

x

�(x)e

h�(x),✓i�g(✓)

Conditional model

Estimation
• Conditional log-likelihood

• Log-posterior (Gaussian Prior) 
 
 
 

• First order optimality conditions

log p(y|x; ✓) = h�(x, y), ✓i � g(✓|x)

log p(✓|X,Y) =

X

i

log(yi|xi; ✓) + log p(✓) + const.

=

*
X

i

�(xi, yi), ✓

+
�

X

i

g(✓|xi)�
1

2�

2
k✓k2

+ const.

X

i

�(x
i

, y

i

) =
X

i

E
y|xi

[�(x
i

, y)] +
1
�

2
✓

prior
maxent
model

expensive

Logistic Regression
• Label space

• Log-partition function

• Convex minimization problem 
 

• Prediction

x

y

�(x, y) = y�(x) where y 2 {±1}

g(✓|x) = log

h
e

1·h�(x),✓i
+ e

�1·h�(x),✓i
i

= log 2 cosh h�(x), ✓i

minimize

✓

1

2�

2
k✓k2

+

X

i

log 2 cosh h�(xi), ✓i � yi h�(xi, ✓i

p(y|x, ✓) =
e

yh�(x),✓i

e

h�(x),✓i + e

�h�(x),✓i =
1

1 + e

�2yh�(x),✓i

Logistic Regression
• Label space

• Log-partition function

• Convex minimization problem 
 

• Prediction

x

y

�(x, y) = y�(x) where y 2 {±1}

g(✓|x) = log

h
e

1·h�(x),✓i
+ e

�1·h�(x),✓i
i

= log 2 cosh h�(x), ✓i

minimize

✓

1

2�

2
k✓k2

+

X

i

log 2 cosh h�(xi), ✓i � yi h�(xi, ✓i

p(y|x, ✓) =
e

yh�(x),✓i

e

h�(x),✓i + e

�h�(x),✓i =
1

1 + e

�2yh�(x),✓i

GP Classification

Exponential Clique Decomposition

p(x) =
Y

c

 c(xc)

Theorem: Clique decomposition holds in sufficient statistics
�(x) = (. . . , �c(xc), . . .) and h�(x), ✓i =

X

c

h�c(xc), ✓ci

Corollary: we only need expectations on cliques
E

x

[�(x)] = (. . . ,E
xc [�

c

(x
c

)] , . . .)

Conditional Random Fields
y

x

�(x) = (y1�x

(x1), . . . , yn

�

x

(x
n

), �
y

(y1, y2), . . . ,�y

(y
n�1, yn

))

h�(x), ✓i =
X

i

h�
x

(x
i

, y

i

), ✓
x

i +
X

i

h�
y

(y
i

, y

i+1), ✓y

i

g(✓|x) =
X

y

Y

i

f

i

(y
i

, y

i+1) where

f

i

(y
i

, y

i+1) = e

h�
x

(x
i

,y

i

),✓
x

i+h�
y

(y
i

,y

i+1),✓y

i

dynamic
programming

Conditional Random Fields
• Compute distribution over marginal and adjacent labels
• Take conditional expectations
• Take update step (batch or online)

• More general techniques for computing normalization
via message passing ...

Examples

x

p(x) =
Y

i

 i(xi, xi+1)

Chains

x

p(x) =
Y

i

 i(xi, xi+1)

Chains

x

p(x) =
Y

i

 i(xi, xi+1)

Chains

x

y

p(x, y) =
Y

i

x

i

(x
i

, x

i+1) xy

i

(x
i

, y

i

)

x

p(x) =
Y

i

 i(xi, xi+1)

Chains

p(x|y) /
Y

i

x

i

(x
i

, x

i+1) xy

i

(x
i

, y

i

)
| {z }

=:fi(xi,xi+1)

x

y

p(x, y) =
Y

i

x

i

(x
i

, x

i+1) xy

i

(x
i

, y

i

)

Chains

p(x|y) /
Y

i

x

i

(x
i

, x

i+1) xy

i

(x
i

, y

i

)
| {z }

=:fi(xi,xi+1)

x

y

Dynamic Programming
l1(x1) = 1 and l

i+1(xi+1) =
X

xi

l

i

(x
i

)f
i

(x
i

, x

i+1)

r

n

(x
n

) = 1 and r

i

(x
i

) =
X

xi+1

r

i+1(xi+1)fi

(x
i

, x

i+1)

Named Entity Tagging

p(x|y) /
Y

i

x

i

(x
i

, x

i+1) xy

i

(x
i

, y

i

)
| {z }

=:fi(xi,xi+1)

x

y

Trees + Ontologies

• Ontology classification (e.g. YDir, DMOZ)

x

y

y

y

y

y

y y

Document

Labels p(y|x) =
Y

i

 (yi, yparent(i), x)

Spin Glasses + Images

x
y

observed pixels
real image

p(x|y) =
Y

ij

right(x
ij

, x

i+1,j

) up(x
ij

, x

i,j+1) xy(x
ij

, y

ij

)

Spin Glasses + Images

x
y

observed pixels
real image

p(x|y) =
Y

ij

right(x
ij

, x

i+1,j

) up(x
ij

, x

i,j+1) xy(x
ij

, y

ij

)

long range interactions

Image Denoising

Li&Huttenlocher, ECCV’08

Semi-Markov Models
• Flexible length of an episode
• Segmentation between episodes

classification

CRF

SMM

phrase segmentation, activity recognition, motion data analysis
Shi, Smola, Altun, Vishwanathan, Li, 2007-2009

2D CRF for Webpages

web page information extraction, segmentation, annotation
Bo, Zhu, Nie, Wen, Hon, 2005-2007

Summary
• Directed Graphical Models

• Dependence
• Inference for fully observed models
• Incomplete information / variational and sampling inference

• Undirected Graphical Models
• Hammersley Clifford decomposition
• Conditional independence
• Junction trees

• Dynamic Programming
• Generalized Distributive Law
• Naive Message Passing

• Inference techniques
• Sampling (Gibbs and Monte Carlo)
• Variational methods (EM, extensions)

