MACHINE LEARNING DEPARTMENT

7.1 Directed Graphical Models 7 Graphical Models

Alexander Smola

 Introduction to Machine Learning 10-701 http://alex.smola.org/teaching/10-701-15
Directed Graphical Models

Carnegie Mellon University

Brain \& Brawn

Carnegie Mellon University

Brain \& Brawn

$$
\begin{aligned}
p(\text { brain }) & =0.1 \\
p(\text { sports }) & =0.2
\end{aligned}
$$

$p(s, b)=p(s) p(b)$

$p(g, s, b)=p(g \mid s, b) p(s) p(b)$

Brain \& Brawn

element-wise multiply

$$
\begin{aligned}
p(\text { brain }) & =0.1 \\
p(\text { sports }) & =0.2
\end{aligned}
$$

$p(s, b \mid g)=\frac{p(s) p(b) p(g \mid s, b)}{\sum_{s^{\prime}, b^{\prime}} p\left(s^{\prime}\right) p\left(b^{\prime}\right) p\left(g \mid s^{\prime}, b^{\prime}\right)} p(g, s, b)=p(g \mid s, b) p(s) p(b)$
Carnegie Mellon University

Brain \& Brawn

renormalize to 1

$$
\begin{aligned}
p(\text { brain }) & =0.1 \\
p(\text { sports }) & =0.2
\end{aligned}
$$

$$
p(s, b \mid g)=\frac{p(s) p(b) p(g \mid s, b)}{\sum_{s^{\prime}, b^{\prime}} p\left(s^{\prime}\right) p\left(b^{\prime}\right) p\left(g \mid s^{\prime}, b^{\prime}\right)} p(g, s, b)=p(g \mid s, b) p(s) p(b)
$$

Carnegie Mellon University

Brain \& Brawn

$$
\begin{aligned}
p(\text { brain }) & =0.1 \\
p(\text { sports }) & =0.2
\end{aligned}
$$

Carnegie Mellon University

Brain \& Brawn

... some Web 2.0 service

Carnegie Mellon University

... some Web 2.0 service

- Joint distribution (assume a and m are independent)

Carnegie Mellon University

some Web 2.0 service

- Joint distribution (assume a and m are independent)

$$
p(m, a, w)=p(w \mid m, a) p(m) p(a)
$$

- Explaining away

$$
p(m, a \mid w)=\frac{p(w \mid m, a) p(m) p(a)}{\sum_{m^{\prime}, a^{\prime}} p\left(w \mid m^{\prime}, a^{\prime}\right) p\left(m^{\prime}\right) p\left(a^{\prime}\right)}
$$

a and m are dependent conditioned on w

... some Web 2.0 service

Carnegie Mellon University

...
 some Web 2.0 service

MySQL is working Apache is working

Carnegie Mellon University

... some Web 2.0 service

Directed graphical model

- Easier estimation
- 15 parameters for full joint distribution
- 1+1+4+1 for factorizing distribution
- Causal relations
- Inference for unobserved variables

No loops allowed

Carnegie Mellon University

Directed Graphical Model

- Probability distribution
- Iterate over childrenlparents

$$
\begin{aligned}
p(x)= & p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{2}\right) \\
& p\left(x_{4} \mid x_{3}, x_{7}\right) p\left(x_{5} \mid x_{2}, x_{3}, x_{6}\right) \\
& p\left(x_{6} \mid x_{9}\right) p\left(x_{7} \mid x_{6}\right) p\left(x_{8} \mid x_{5}\right) p\left(x_{9}\right)
\end{aligned}
$$

Directed Graphical Model

- Joint probability distribution

$$
p(x)=\prod_{i} p\left(x_{i} \mid x_{\text {parents(i) }}\right)
$$

- Parameter estimation
- If x is fully observed the likelihood breaks up

$$
\log p(x \mid \theta)=\sum_{i} \log p\left(x_{i} \mid x_{\text {parents }(\mathrm{i})}, \theta\right)
$$

- If x is partially observed things get interesting maximization, EM, variational, sampling ...
- If we don't know the structure ...
- Directed graphical models

$$
p(x)=\prod_{i} p\left(x_{i} \mid x_{\text {parents(i) })}\right)
$$

- Explaining away

Independent variables become dependent conditioned on a joint child.

- Observing yields independence

Observed parent makes children independent

- No loops in graph allowed

1 Chain

- Joint distribution

$$
p(a, b, c)=p(a) p(b \mid a) p(c \mid b)
$$

- Conditioning on b

$$
\begin{aligned}
p(a, c \mid b) & =\frac{p(a) p(b \mid a) p(c \mid b)}{\sum_{a^{\prime}, c^{\prime}} p\left(a^{\prime}\right) p\left(b \mid a^{\prime}\right) p\left(c^{\prime} \mid b\right)} \\
& =\frac{p(a) p(b \mid a)}{\sum_{a^{\prime}} p\left(a^{\prime}\right) p\left(b \mid a^{\prime}\right)} \frac{p(c \mid b)}{\sum_{c^{\prime}} p\left(c^{\prime} \mid b\right)}
\end{aligned}
$$

- Conditional independence

$$
a \perp c \mid b
$$

2 Common Cause

- Joint distribution

$$
p(a, b, c)=p(a \mid b) p(b) p(c \mid b)
$$

- a and c are dependent

$$
p(a, c)=\sum_{b} p(a \mid b) p(b) p(c \mid b)
$$

- Conditioning on b creates independence

$$
\begin{gathered}
p(a, c \mid b)=p(a \mid b) p(c \mid b) \\
a \perp c \mid b
\end{gathered}
$$

3 Explaining Away

- Joint distribution

$$
p(a, b, c)=p(a) p(b \mid a, c) p(c)
$$

- a and c are independent
- Conditioning on b creates dependence

$$
p(a, c \mid b)=\frac{p(a) p(b \mid a, c) p(c)}{\sum_{a^{\prime}, c^{\prime}} p\left(a^{\prime}\right) p\left(b \mid a^{\prime}, c^{\prime}\right) p\left(c^{\prime}\right)}
$$

d-Separation

- Given general directed acyclic graph (DAG)
- Determine whether sets A, B of random variables are conditionally independent given C
- Simple algorithm - reachability
- Start in in vertex of A
- Check whether any vertex in B can be reached
- If separated, we have conditional independence

Transition rules

(a)

(a)

(b)

Y

(b)

(b)

(a)

(a)

(b)

(b)

Courtesy of Sam Roweis
Carnegie Mellon University

Transition rules

$$
\mathbf{x}_{2} \perp \mathbf{x}_{3} \mid\left\{\mathbf{x}_{1}, \mathbf{x}_{6}\right\} \quad ?
$$

Carnegie Mellon University

Transition rules

$$
\mathbf{x}_{2} \perp \mathbf{x}_{3} \mid\left\{\mathbf{x}_{1}, \mathbf{x}_{6}\right\} \quad ?
$$

Carnegie Mellon University

Transition rules

$$
\mathbf{x}_{2} \perp \mathbf{x}_{3} \mid\left\{\mathbf{x}_{1}, \mathbf{x}_{6}\right\} \quad ?
$$

Carnegie Mellon University

Transition rules

$$
\mathbf{x}_{2} \perp \mathbf{x}_{3} \mid\left\{\mathbf{x}_{1}, \mathbf{x}_{6}\right\} \quad ?
$$

Summary

- Dependent random variables
- Observing can make things dependent or independent
- Conditional independence simplifies model
- Bayes ball to check properties
- Chains (observing stops dependence)
- Common causes (observing stops dependence)
- Common children (observing creates dependence)

Structures

Carnegie Mellon University

Plates: FOR loops for statisticians

- Repeated dependency structure
- Modeling iid observations

- Supervised learning

$$
\begin{aligned}
& p(X, Y, \theta, w) \\
= & p(\theta) p(w) \prod_{i} p\left(x_{i} \mid \theta\right) p\left(y_{i} \mid x_{i}, w\right)
\end{aligned}
$$

Plates: FOR loops for statisticians

- Repeated dependency structure
- Modeling iid observations

- Supervised learning

$$
\begin{aligned}
& p(X, Y, \theta, w) \\
= & p(\theta) p(w) \prod_{i} p\left(x_{i} \mid \theta\right) p\left(y_{i} \mid x_{i}, w\right)
\end{aligned}
$$

Chains

Markov Chain

Chains

Markov Chain

Plate

Chains

Markov Chain

Plate

Hidden Markov Chain

Carnegie Mellon University

Chains

Markov Chain

Plate

Hidden Markov Chain

user model for traversal through search results
Carnegie Mellon University

Chains

Markov Chain

Plate

Hidden Markov Chain

user model for traversal through search results
Carnegie Mellon University

Chains

Markov Chain

Plate

$$
p(x ; \theta)=p\left(x_{0} ; \theta\right) \prod_{i=1}^{n-1} p\left(x_{i+1} \mid x_{i} ; \theta\right)
$$

Hidden Markov Chain

$$
p(x, y ; \theta)=p\left(x_{0} ; \theta\right) \prod_{i=1}^{n-1} p\left(x_{i+1} \mid x_{i} ; \theta\right) \prod_{i=1}^{\substack{\text { user’s } \\ \text { mindset }}} p\left(y_{i} \mid x_{i}\right)
$$

Factor Graphs

Latent Factors

Observed

Effects

Factor Graphs

- Observed effects

Click behavior, queries, watched news, emails

Factor Graphs

Latent Factors

Observed
Effects

- Observed effects

Click behavior, queries, watched news, emails

- Latent factors

User profile, news content, hot keywords, social connectivity graph, events

Example - PCA/ICA

Example - PCA/ICA

Latent Factors

Observed
Effects

- Observed effects

Click behavior, queries, watched news, emails

$$
x \sim \mathcal{N}\left(\sum_{i=1}^{d} y_{i} v_{i}, \sigma^{2} \mathbf{1}\right) \text { and } p(y)=\prod_{i=1}^{d} p\left(y_{i}\right)
$$

Example - PCA/ICA

Latent Factors

Observed
Effects

- Observed effects

Click behavior, queries, watched news, emails

$$
x \sim \mathcal{N}\left(\sum_{i=1}^{d} y_{i} v_{i}, \sigma^{2} \mathbf{1}\right) \text { and } p(y)=\prod_{i=1}^{d} p\left(y_{i}\right)
$$

Example - PCA/ICA

Latent Factors

Observed
Effects

- Observed effects

Click behavior, queries, watched news, emails

$$
x \sim \mathcal{N}\left(\sum_{i=1}^{d} y_{i} v_{i}, \sigma^{2} \mathbf{1}\right) \text { and } p(y)=\prod_{i=1}^{d} p\left(y_{i}\right)
$$

Example - PCA/ICA

Latent Factors

Observed
Effects

- Observed effects

Click behavior, queries, watched news, emails

$$
x \sim \mathcal{N}\left(\sum_{i=1}^{d} y_{i} v_{i}, \sigma^{2} \mathbf{1}\right) \text { and } p(y)=\prod_{i=1}^{d} p\left(y_{i}\right)
$$

- $p(y)$ is Gaussian for PCA. General for ICA

Cocktail party problem

Sources

Separated
Sources

Carnegie Mellon University

Recommender Systems

Carnegie Mellon University

Recommender Systems

- Users u
- Movies m
- Ratings r (but only for a subset of users)

Carnegie Mellon University

Recommender Systems

- Users u
- Movies m
- Ratings r (but only for a subset of users)

Recommender Systems

news,
SearchMonkey answers
social
ranking OMG
personals

- Users u
- Movies m
- Ratings r (but only for a subset of users)

Challenges

engineering

machine learning

Carnegie Mellon University

Challenges

- How to design models
- Common (engineering) sense
- Computational tractability

engineering

machine learning

Challenges

- How to design models
- Common (engineering) sense
- Computational tractability
- Dependency analysis

engineering

machine learning

Challenges

- How to design models
- Common (engineering) sense
- Computational tractability
- Dependency analysis

engineering

- Inference
- Easy for fully observed situations
- Many algorithms if not fully observed
- Dynamic programming / message passing

Summary

- Repeated structure - encode with plate
- Chains, bipartite graphs, etc (more later)
- Plates can intersect
- Not all variables are observed

Carnegie Mellon University

MACHINE LEARNING DEPARTMENT

7.2 Dynamic Programming 7 Graphical Models

Alexander Smola

Introduction to Machine Learning 10-701 http://alex.smola.org/teaching/10-701-15

Chains

$$
p(x ; \theta)=p\left(x_{0} ; \theta\right) \prod_{i=1}^{n-1} p\left(x_{i+1} \mid x_{i} ; \theta\right)
$$

Transition Matrices x0

x0 \begin{tabular}{|l|l|}
\hline 0 \& 0.4

\hline 1 \& 0.6

\hline

\quad

\hline 0 \& 0.2 \& 0.1

\hline 1 \& 0.8 \& 0.9

\hline
\end{tabular}

	x 2	
	0	1
0	0	1
1	1	0

Unraveling the chain

$$
\begin{aligned}
& p\left(x_{1}\right)=\sum_{x_{0}} p\left(x_{1} \mid x_{0}\right) p\left(x_{0}\right) \Longleftrightarrow \pi_{1}=\Pi_{0 \rightarrow 1} \pi_{0} \\
& p\left(x_{2}\right)=\sum_{x_{1}} p\left(x_{2} \mid x_{1}\right) p\left(x_{1}\right) \Longleftrightarrow \pi_{2}=\Pi_{1 \rightarrow 2} \pi_{1}=\Pi_{1 \rightarrow 2} \Pi_{0 \rightarrow 1} \pi_{0} \\
& \text { Carnegie } \mathbf{M}
\end{aligned}
$$

Chains

$$
p(x ; \theta)=p\left(x_{0} ; \theta\right) \prod_{i=1}^{n-1} p\left(x_{i+1} \mid x_{i} ; \theta\right)
$$

- Transition matrices

$x 0=[0.4 ; 0.6]$;
Pi1 = [0.2 0.1; 0.8 0.9];
Pi2 $=$ [0.8 0.5; 0.2 0.5];
Pi3 = [0 1; 1 0];
$x 3=P i 3$ * Pi2 * Pi1 * $x 0=$ [0.45800; 0.54200]
Carnegie Mellon University

Markov Chains

- First order chain

$$
p(X)=p\left(x_{0}\right) \prod p\left(x_{i+1} \mid x_{i}\right)
$$

- Second order

$$
p(X)=p\left(x_{0}, x_{1}\right) \prod_{i} p\left(x_{i+1} \mid x_{i}, x_{i-1}\right)
$$

Markov Chains

- First order chain

$$
p(X)=p\left(x_{0}\right) \prod p\left(x_{i+1} \mid x_{i}\right)
$$

- Second order

$$
p(X)=p\left(x_{0}, x_{1}\right) \prod p\left(x_{i+1} \mid x_{i}, x_{i-1}\right)
$$

Mark Reid @mdreid
Markov In Chains \#MLBandNames
Collapse \& Reply $\boldsymbol{\text { LI Retweet }} \star$ Favorite $\bullet \bullet$ More

=

Chains

$$
p(x ; \theta)=p\left(x_{0} ; \theta\right) \prod_{i=1}^{n-1} p\left(x_{i+1} \mid x_{i} ; \theta\right)
$$

Chains

$$
\begin{aligned}
& p\left(x_{i}\right)=p\left(x_{0} \theta\right) \prod_{i=1}^{n-1} \prod_{(x+1 \mid x ; \theta)} \quad x 0 \rightarrow x 1 \rightarrow x(x) \rightarrow x
\end{aligned}
$$

Chains

$$
p(x, \theta)=p\left(x_{0} \cdot \theta\right) \prod_{i=1}^{n} \prod_{1}^{p\left(x_{1}+1\right.}\left(x_{;} \theta\right)
$$

$$
=\sum_{x_{1}, \ldots x_{i-1}, x_{i+1} \ldots x_{n}}^{\sum_{:=l_{1}\left(x_{1}\right)}^{x_{0}}\left[l_{0}\left(x_{0}\right) p\left(x_{1} \mid x_{0}\right)\right] \prod_{j=2}^{n} p\left(x_{j} \mid x_{j-1}\right)} \xrightarrow{\sim}
$$

Chains

$$
\begin{aligned}
& p(x ; \theta)=p\left(x_{0} ; \theta\right) \prod_{i=1}^{n-1} p\left(x_{i+1} \mid x_{i} ; \theta\right) \quad \times 0 \rightarrow \times 2 \rightarrow \times 3 \\
& p\left(x_{i}\right)=\sum_{x_{0}, \ldots x_{i-1}, x_{i+1} \ldots x_{n}}^{\underbrace{p\left(x_{0}\right)}_{:=l_{0}\left(x_{0}\right)} \prod_{j=1}^{n} p\left(x_{j} \mid x_{j-1}\right), ~} \\
& =\sum_{x_{1}, \ldots x_{i-1}, x_{i+1} \ldots x_{n}}^{\sum_{:=l_{1}\left(x_{1}\right)}^{\sum_{x_{0}}}\left[l_{0}\left(x_{0}\right) p\left(x_{1} \mid x_{0}\right)\right] \prod_{j=2}^{n} p\left(x_{j} \mid x_{j-1}\right)} \xrightarrow{\longrightarrow} \\
& =\sum_{x_{2}, \ldots x_{i-1}, x_{i+1} \ldots x_{n}} \underbrace{\sum_{x_{1}}\left[l_{1}\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right)\right] \prod_{j=3}^{n} p\left(x_{j} \mid x_{j-1}\right), ~}
\end{aligned}
$$

Chains

$$
\begin{aligned}
& p(x ; \theta)=p\left(x_{0} ; \theta\right) \prod_{i=1}^{n-1} p\left(x_{i+1} \mid x_{i} ; \theta\right) \quad \mathrm{x} 0 \rightarrow \mathrm{X} 1 \rightarrow \mathrm{x} 2 \rightarrow \mathrm{x} 3 \\
& p\left(x_{i}\right)=l_{i}\left(x_{i}\right) \sum_{x_{i+1} \ldots x_{n}} \prod_{j=i}^{n-1} p\left(x_{j+1} \mid x_{j}\right)
\end{aligned}
$$

$$
=l_{i}\left(x_{i}\right) \sum_{x_{i+1} \ldots, x_{n-1}} \prod_{j=i}^{n-2} p\left(x_{j+1} \mid x_{j}\right) \underbrace{\sum_{x_{n}} p\left(x_{n} \mid x_{n-1}\right)}_{=r_{n-1}\left(x_{n-1}\right)}
$$

$$
=l_{i}\left(x_{i}\right) \sum_{x_{i+1} \cdots r_{n-2}} \prod_{j=i}^{n-3} p\left(x_{j+1} \mid x_{j}\right) \underbrace{\sum_{x_{n-1}} p\left(x_{n-1} \mid x_{n-2}\right) r_{n-1}\left(x_{n-1}\right)}
$$

Chains

$$
\begin{aligned}
& p(x ; \theta)=p\left(x_{0} ; \theta\right) \prod_{i=1}^{n-1} p\left(x_{i+1} \mid x_{i} ; \theta\right) \quad \mathrm{x} 0 \rightarrow \mathrm{X} 1 \rightarrow \mathrm{x} 2 \rightarrow \mathrm{x} 3 \\
& p\left(x_{i}\right)=l_{i}\left(x_{i}\right) \sum_{x_{i+1} \ldots x_{n}} \prod_{j=i}^{n-1} p\left(x_{j+1} \mid x_{j}\right)
\end{aligned}
$$

$$
=l_{i}\left(x_{i}\right) \sum_{x_{i+1} \ldots, x_{n-1}} \prod_{j=i}^{n-2} p\left(x_{j+1} \mid x_{j}\right) \underbrace{\sum_{x_{n}} p\left(x_{n} \mid x_{n-1}\right)}_{i=r_{n-1}\left(x_{n-1}\right)} \quad \rightarrow \mathrm{x}
$$

$$
\begin{gathered}
=l_{i}\left(x_{i}\right) \sum_{x_{i+1} \ldots x_{n-2}} \prod_{j=i}^{n-3} p\left(x_{j+1} \mid x_{j}\right) \\
\pi_{i}=\prod_{i}^{i} \Pi_{j-1 \rightarrow j} \pi_{0} \\
\sum_{:=r_{n-2}\left(x_{n-2}\right)}^{x_{n-1}} p\left(x_{n-1} \mid x_{n-2}\right) r_{n-1}\left(x_{n-1}\right)
\end{gathered}
$$

$$
j_{j=1}
$$

Chains

$$
p(x ; \theta)=p\left(x_{0} ; \theta\right) \prod_{i=1}^{n-1} p\left(x_{i+1} \mid x_{i} ; \theta\right)
$$

$$
x 0 \rightarrow x 1 \rightarrow x_{2}-x_{3}
$$

$$
n-1
$$

$$
p\left(x_{i}\right)=l_{i}(x
$$

$$
=l_{i}(x \text { not needed for directed graphs }
$$ that are already normalized ... but good to know ...

$$
\begin{aligned}
&=l_{i}(x x_{i+1} \ldots x_{n-2} \\
& \pi_{i}=\prod_{j=1}^{i} \\
& j=1 \rightarrow j \\
& \pi_{0}
\end{aligned}
$$

$$
-1\left(x_{n-1}\right)
$$

Chains

$$
\begin{aligned}
& p\left(x_{1 \ldots n-1} \mid x_{n} ; \theta\right)=p\left(x_{0} \mid \theta\right) \prod_{i=1}^{n-1} p\left(x_{i+1} \mid x_{i} ; \theta\right) \\
& p\left(x_{i} \mid x_{n}\right)=l_{i}\left(x_{i}\right) \sum_{x_{i+1} \ldots x_{n-1}} \prod_{j=i} p\left(x_{j+1} \mid x_{j}\right) \\
& =l_{i}\left(x_{i}\right) \sum_{x_{i+1} \ldots x_{n-1}} \prod_{j=i}^{n-2} p\left(x_{j+1} \mid x_{j}\right) \underbrace{p\left(x_{n} \mid x_{n-1}\right)}_{:=r_{n-1}\left(x_{n-1}\right)} \\
& =l_{i}\left(x_{i}\right) \sum_{x_{i+1} \ldots x_{n-2}} \prod_{j=i}^{n-3} p\left(x_{j+1} \mid x_{j}\right) \sum_{:=r_{n-2}\left(x_{n-2}\right)}^{\sum_{x_{n-1}} p\left(x_{n-1} \mid x_{n-2}\right) r_{n-1}\left(x_{n-1}\right)}
\end{aligned}
$$

Chains

$$
p(x ; \theta)=p\left(x_{0} ; \theta\right) \prod_{i=1}^{n-1} p\left(x_{i+1} \mid x_{i} ; \theta\right) \quad \mathrm{x} 0 \rightarrow \mathrm{X} \mid \rightarrow \times 2 \rightarrow \times 3
$$

- Forward recursion

$$
l_{0}\left(x_{0}\right):=p\left(x_{0}\right) \text { and } l_{i}\left(x_{i}\right):=\sum_{x_{i-1}} l_{i-1}\left(x_{i-1}\right) p\left(x_{i} \mid x_{i-1}\right)
$$

- Backward recursion

$$
r_{n}\left(x_{n}\right):=1 \text { and } r_{i}\left(x_{i}\right):=\sum r_{i+1}\left(x_{i+1}\right) p\left(x_{i+1} \mid x_{i}\right)
$$

- Marginalization \& conditioning ${ }^{x_{i+1}}$

$$
\begin{aligned}
p\left(x_{i}\right) & =l_{i}\left(x_{i}\right) r_{i}\left(x_{i}\right) \\
p\left(x_{-i} \mid x_{i}\right) & =\frac{p(x)}{p\left(x_{i}\right)} \\
p\left(x_{i}, x_{i+1}\right) & =l_{i}\left(x_{i}\right) p\left(x_{i+1} \mid x_{i}\right) r_{i}\left(x_{i+1}\right)
\end{aligned}
$$

Chains

$$
\begin{aligned}
l_{i} & =\Pi_{i} l_{i-1} \\
r_{i} & =\Pi_{i}^{\top} r_{i+1}
\end{aligned}
$$

- Send forward messages starting from left node

$$
m_{i-1 \rightarrow i}\left(x_{i}\right)=\sum_{x_{i-1}} m_{i-2 \rightarrow i-1}\left(x_{i-1}\right) f\left(x_{i-1}, x_{i}\right)
$$

- Send backward messages starting from right node

$$
m_{i+1 \rightarrow i}\left(x_{i}\right)=\sum_{x_{i+1}} m_{i+2 \rightarrow i+1}\left(x_{i+1}\right) f\left(x_{i}, x_{i+1}\right)
$$

Example - inferring lunch

current

- Initial probability

$$
p(x 0=t)=p(x 0=b)=0.5
$$

- Stationary transition matrix
- On fifth day observed at Tazza d'oro $p(x 5=t)=1$
- Distribution on day 3
- Left messages to 3
- Right messages to 3
- Renormalize

Example - inferring lunch

current


```
> Pi = [0.9, 0.2; 0.1 0.8]
Pi =
            0.90000 0.20000
            0.10000 0.80000
> l1 = [0.5; 0.5];
> l3 = Pi * Pi * l1
13 =
            0.58500
            0.41500
> r5 = [1; 0];
> r3 = Pi' * Pi' * r5
    r3 =
            0.83000
            0.34000
> (13 .* r3) / sum(13 .* r3)
ans =
    0.77483
    0.22517
```


Trees

- Forward/Backward messages as normal for chain - When we have more edges for a vertex use ...

Trees

Carnegie Mellon University

Trees

Carnegie Mellon University

Trees

$$
\begin{aligned}
& l_{1}\left(x_{1}\right)=\sum_{x_{0}} p\left(x_{0}\right) p\left(x_{1} \mid x_{0}\right) \\
& l_{2}\left(x_{2}\right)=\sum_{x_{1}} l_{1}\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& r_{7}\left(x_{7}\right)=\sum_{x_{8}} p\left(x_{8} \mid x_{7}\right) \\
& r_{6}\left(x_{6}\right)=\sum_{x_{7}} r_{7}\left(x_{7}\right) p\left(x_{7} \mid x_{6}\right)
\end{aligned}
$$

Trees

$l_{1}\left(x_{1}\right)=\sum_{x_{0}} p\left(x_{0}\right) p\left(x_{1} \mid x_{0}\right)$

$$
l_{2}\left(x_{2}\right)=\sum_{x_{1}} l_{1}\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right)
$$

$r_{7}\left(x_{7}\right)=\sum_{x_{8}} p\left(x_{8} \mid x_{7}\right)$
$r_{6}\left(x_{6}\right)=\sum_{x_{7}} r_{7}\left(x_{7}\right) p\left(x_{7} \mid x_{6}\right)$

$$
r_{2}\left(x_{2}\right)=\sum_{x_{6}} r_{6}\left(x_{6}\right) p\left(x_{6} \mid x_{2}\right)
$$

Trees

Trees

Carnegie Mellon University

Trees

Carnegie Mellon University

Junction Template

- Order of computation
- Dependence does not matter (only matters for parametrization)

Trees

- Forward/Backward messages as normal for chain
- When we have more edges for a vertex use ...

$$
m_{2 \rightarrow 3}\left(x_{3}\right)=\sum_{x_{2}} m_{1 \rightarrow 2}\left(x_{2}\right) m_{6 \rightarrow 2}\left(x_{2}\right) f\left(x_{2}, x_{3}\right)
$$

Trees

- Forward/Backward messages as normal for chain
- When we have more edges for a vertex use ...

$$
m_{2 \rightarrow 3}\left(x_{3}\right)=\sum_{x_{2}} m_{1 \rightarrow 2}\left(x_{2}\right) m_{6 \rightarrow 2}\left(x_{2}\right) f\left(x_{2}, x_{3}\right)
$$

Trees

- Forward/Backward messages as normal for chain
- When we have more edges for a vertex use ...

$$
m_{2 \rightarrow 3}\left(x_{3}\right)=\sum_{x_{2}} m_{1 \rightarrow 2}\left(x_{2}\right) m_{6 \rightarrow 2}\left(x_{2}\right) f\left(x_{2}, x_{3}\right)
$$

Trees

- Forward/Backward messages as normal for chain
- When we have more edges for a vertex use ...

$$
m_{2 \rightarrow 3}\left(x_{3}\right)=\sum_{x_{2}} m_{1 \rightarrow 2}\left(x_{2}\right) m_{6 \rightarrow 2}\left(x_{2}\right) f\left(x_{2}, x_{3}\right)
$$

Trees

- Forward/Backward messages as normal for chain
- When we have more edges for a vertex use ...

$$
\begin{aligned}
& m_{2 \rightarrow 3}\left(x_{3}\right)=\sum_{x_{2}} m_{1 \rightarrow 2}\left(x_{2}\right) m_{6 \rightarrow 2}\left(x_{2}\right) f\left(x_{2}, x_{3}\right) \\
& m_{2 \rightarrow 6}\left(x_{6}\right)=\sum_{x_{2}} m_{1 \rightarrow 2}\left(x_{2}\right) m_{3 \rightarrow 2}\left(x_{2}\right) f\left(x_{2}, x_{6}\right)
\end{aligned}
$$

Trees

- Forward/Backward messages as normal for chain
- When we have more edges for a vertex use ...

$$
\begin{aligned}
& m_{2 \rightarrow 3}\left(x_{3}\right)=\sum_{x_{2}} m_{1 \rightarrow 2}\left(x_{2}\right) m_{6 \rightarrow 2}\left(x_{2}\right) f\left(x_{2}, x_{3}\right) \\
& m_{2 \rightarrow 6}\left(x_{6}\right)=\sum_{x_{2}} m_{1 \rightarrow 2}\left(x_{2}\right) m_{3 \rightarrow 2}\left(x_{2}\right) f\left(x_{2}, x_{6}\right)
\end{aligned}
$$

Trees

- Forward/Backward messages as normal for chain
- When we have more edges for a vertex use ...

$$
\begin{aligned}
& m_{2 \rightarrow 3}\left(x_{3}\right)=\sum_{x_{2}} m_{1 \rightarrow 2}\left(x_{2}\right) m_{6 \rightarrow 2}\left(x_{2}\right) f\left(x_{2}, x_{3}\right) \\
& m_{2 \rightarrow 6}\left(x_{6}\right)=\sum_{x_{2}} m_{1 \rightarrow 2}\left(x_{2}\right) m_{3 \rightarrow 2}\left(x_{2}\right) f\left(x_{2}, x_{6}\right)
\end{aligned}
$$

Trees

- Forward/Backward messages as normal for chain
- When we have more edges for a vertex use ...

$$
\begin{aligned}
& m_{2 \rightarrow 3}\left(x_{3}\right)=\sum_{x_{2}} m_{1 \rightarrow 2}\left(x_{2}\right) m_{6 \rightarrow 2}\left(x_{2}\right) f\left(x_{2}, x_{3}\right) \\
& m_{2 \rightarrow 6}\left(x_{6}\right)=\sum_{x_{2}} m_{1 \rightarrow 2}\left(x_{2}\right) m_{3 \rightarrow 2}\left(x_{2}\right) f\left(x_{2}, x_{6}\right)
\end{aligned}
$$

Trees

- Forward/Backward messages as normal for chain
- When we have more edges for a vertex use ...

$$
\begin{aligned}
& m_{2 \rightarrow 3}\left(x_{3}\right)=\sum_{x_{2}} m_{1 \rightarrow 2}\left(x_{2}\right) m_{6 \rightarrow 2}\left(x_{2}\right) f\left(x_{2}, x_{3}\right) \\
& m_{2 \rightarrow 6}\left(x_{6}\right)=\sum_{x_{2}} m_{1 \rightarrow 2}\left(x_{2}\right) m_{3 \rightarrow 2}\left(x_{2}\right) f\left(x_{2}, x_{6}\right) \\
& m_{2 \rightarrow 1}\left(x_{1}\right)=\sum_{x_{2}} m_{3 \rightarrow 2}\left(x_{2}\right) m_{6 \rightarrow 2}\left(x_{2}\right) f\left(x_{1}, x_{2}\right)
\end{aligned}
$$

Trees

- Forward/Backward messages as normal for chain
- When we have more edges for a vertex use ...

$$
\begin{aligned}
& m_{2 \rightarrow 3}\left(x_{3}\right)=\sum_{x_{2}} m_{1 \rightarrow 2}\left(x_{2}\right) m_{6 \rightarrow 2}\left(x_{2}\right) f\left(x_{2}, x_{3}\right) \\
& m_{2 \rightarrow 6}\left(x_{6}\right)=\sum_{x_{2}} m_{1 \rightarrow 2}\left(x_{2}\right) m_{3 \rightarrow 2}\left(x_{2}\right) f\left(x_{2}, x_{6}\right) \\
& m_{2 \rightarrow 1}\left(x_{1}\right)=\sum_{x_{2}} m_{3 \rightarrow 2}\left(x_{2}\right) m_{6 \rightarrow 2}\left(x_{2}\right) f\left(x_{1}, x_{2}\right)
\end{aligned}
$$

Trees

- Forward/Backward messages as normal for chain
- When we have more edges for a vertex use ...

$$
\begin{aligned}
& m_{2 \rightarrow 3}\left(x_{3}\right)=\sum_{x_{2}} m_{1 \rightarrow 2}\left(x_{2}\right) m_{6 \rightarrow 2}\left(x_{2}\right) f\left(x_{2}, x_{3}\right) \\
& m_{2 \rightarrow 6}\left(x_{6}\right)=\sum_{x_{2}} m_{1 \rightarrow 2}\left(x_{2}\right) m_{3 \rightarrow 2}\left(x_{2}\right) f\left(x_{2}, x_{6}\right) \\
& m_{2 \rightarrow 1}\left(x_{1}\right)=\sum_{x_{2}} m_{3 \rightarrow 2}\left(x_{2}\right) m_{6 \rightarrow 2}\left(x_{2}\right) f\left(x_{1}, x_{2}\right)
\end{aligned}
$$

Trees

- Forward/Backward messages as normal for chain
- When we have more edges for a vertex use ...

$$
\begin{aligned}
& m_{2 \rightarrow 3}\left(x_{3}\right)=\sum_{x_{2}} m_{1 \rightarrow 2}\left(x_{2}\right) m_{6 \rightarrow 2}\left(x_{2}\right) f\left(x_{2}, x_{3}\right) \\
& m_{2 \rightarrow 6}\left(x_{6}\right)=\sum_{x_{2}} m_{1 \rightarrow 2}\left(x_{2}\right) m_{3 \rightarrow 2}\left(x_{2}\right) f\left(x_{2}, x_{6}\right) \\
& m_{2 \rightarrow 1}\left(x_{1}\right)=\sum_{x_{2}} m_{3 \rightarrow 2}\left(x_{2}\right) m_{6 \rightarrow 2}\left(x_{2}\right) f\left(x_{1}, x_{2}\right)
\end{aligned}
$$

Trees

Trees

- Joint distribution over latent state and observations
- To compute conditional probability we normalize

$$
p(x, z)=p(x) \prod_{i} p\left(z_{i} \mid x_{i}\right)=\prod_{i, j \in T} f\left(x_{i}, x_{j}\right) \prod_{i} g\left(x_{i}, z_{i}\right)
$$

Trees

Summary

- Markov chains
- Present only depends on recent past
- Higher order - longer history.
- Dynamic programming
- Exponential if brute force.
- Linear in chain if we iterate.
- For junctions treat like chains but integrate signals from all sources.
- Exponential in the history size.

Junction Trees

$$
f\left(x_{1}, x_{2}\right) f\left(x_{2}, x_{3}\right) f\left(x_{2}, x_{4}\right)
$$

Junction Trees

$$
f\left(x_{1}, x_{2}\right) f\left(x_{2}, x_{3}\right) f\left(x_{2}, x_{4}\right)
$$

Junction Trees

$$
f\left(x_{1}, x_{2}\right) f\left(x_{2}, x_{3}\right) f\left(x_{2}, x_{4}\right)
$$

Junction Trees

$$
f\left(x_{1}, x_{2}\right) f\left(x_{2}, x_{3}\right) f\left(x_{2}, x_{4}\right)
$$

$$
m_{i \rightarrow j}\left(x_{j}\right)=\sum_{x_{i}} f\left(x_{i}, x_{j}\right) \prod_{l \neq j} m_{l \rightarrow i}\left(x_{j}\right)
$$

clique potential

Junction Trees

Carnegie Mellon University

Junction Trees

$$
m_{245 \rightarrow 234}\left(x_{24}\right)
$$

$$
=\sum_{x_{5}} f\left(x_{245}\right) m_{12 \rightarrow 245}\left(x_{2}\right) m_{457 \rightarrow 245}\left(x_{45}\right)
$$

$=\sum_{x_{5}} f\left(x_{245}\right) m_{12 \rightarrow 245}\left(x_{2}\right) m_{457 \rightarrow+25\left(x_{55}\right)}$
clique separator set

Carnegie Mellon University

Junction Trees

$$
=\sum_{x_{5}} f\left(x_{245}\right) m_{12 \rightarrow 245}\left(x_{2}\right) m_{457 \rightarrow 245}\left(x_{45}\right)
$$

separator

 setCarnegie Mellon University
$m_{245 \rightarrow 234}\left(x_{24}\right)$
clique
potential

Junction Trees

$$
m_{245 \rightarrow 234}\left(x_{24}\right)
$$

$$
=\sum_{x_{5}} f\left(x_{245}\right) m_{12 \rightarrow 245}\left(x_{2}\right) m_{457 \rightarrow 245}\left(x_{45}\right)
$$

$=\sum_{x_{5}} f\left(x_{245}\right) m_{12 \rightarrow 245\left(x_{2}\right) m_{457}+245\left(x_{55}\right)}$
clique separator set

Carnegie Mellon University

Junction Trees

$$
m_{245 \rightarrow 234}\left(x_{24}\right)
$$

$$
=\sum_{x_{5}} f\left(x_{245}\right) m_{12 \rightarrow 245}\left(x_{2}\right) m_{457 \rightarrow 245}\left(x_{45}\right)
$$

$=\sum_{x_{5}} f\left(x_{245}\right) m_{12 \rightarrow 245\left(x_{2}\right) m_{457}+245\left(x_{55}\right)}$
clique separator set

Carnegie Mellon University

Junction Trees

$$
m_{245 \rightarrow 234}\left(x_{24}\right)
$$

$$
=\sum_{x_{5}} f\left(x_{245}\right) m_{12 \rightarrow 245}\left(x_{2}\right) m_{457 \rightarrow 245}\left(x_{45}\right)
$$

$=\sum_{x_{5}} f\left(x_{245}\right) m_{12 \rightarrow 245\left(x_{2}\right) m_{457}+245\left(x_{55}\right)}$
clique separator set

Carnegie Mellon University

Caution

Carnegie Mellon University

Caution

Carnegie Mellon University

Caution

This is not a tree

Caution

This is not a tree

Graph triangulation

Carnegie Mellon University

Graph triangulation

Carnegie Mellon University

Graph triangulation

Carnegie Mellon University

Graph triangulation

Separator set increases
Carnegie Mellon University

Graph triangulation

Separator set increasces
Carnegie Mellon University

Graph triangulation

Separator set increaseses
Carnegie Mellon University

Graph triangulation

Separator set increases

Carnegie Mellon University

Update equations

$$
p\left(x_{B}\right) \propto f\left(x_{B}\right) \prod_{A \sim B} m_{A \rightarrow B}\left(x_{A \cap B}\right)
$$

Update equations

$$
p\left(x_{B}\right) \propto f\left(x_{B}\right) \prod_{A \sim B} m_{A \rightarrow B}\left(x_{A \cap B}\right)
$$

Update equations

$$
p\left(x_{B}\right) \propto f\left(x_{B}\right) \prod_{A \sim B} m_{A \rightarrow B}\left(x_{A \cap B}\right)
$$

Update equations

$$
p\left(x_{B}\right) \propto f\left(x_{B}\right) \prod_{A \sim B} m_{A \rightarrow B}\left(x_{A \cap B}\right)
$$

2D grid

- Nontrivial to generate junction tree (problem clumps together)

images
Carnegie Mellon University

3D grid

movies, CAT scans
Carnegie Mellon University

3D grid

movies, CAT scans
Carnegie Mellon University

Summary

- (Directed) graphical model
- Build clique graph
- Luck if it's a tree
- If not, need to add edges to make it a tree
- Tree width increases
- In many realistic cases exact inference is not possible - need approximation techniques.
- Same operations as for tree. Just now with more variables

Recall - dynamic programming

$$
\begin{aligned}
& p\left(x_{i} \mid x_{n}\right)=l_{i}\left(x_{i}\right) \sum_{x_{i+1}, x_{n-1}} \prod_{i=1}^{n-1} p\left(x_{j+1} \mid x_{j}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =l_{i}\left(x_{i}\right) \sum_{x_{i+1}, \ldots, r_{n-2}} \prod_{j=i} p\left(x_{j+1} \mid x_{j}\right) \underbrace{\sum_{x_{n-1}} p\left(x_{n-1} \mid x_{n-2}\right) r_{n-1}\left(x_{n-1}\right)}_{:=r_{n-2}\left(x_{n-2}\right)}
\end{aligned}
$$

- The reason for efficient computation is the fact that we can swap multiplication and addition.
- Are there other such pairs?

Generalized Distributive Law

- Dynamic programming uses only additions and multiplications,
- Replace them with equivalent operations from other semirings
- Semiring
- 'addition' and 'summation' equivalent
- Associative law $(a+b)+c=a+(b+c)$
- Distributive law

$$
a(b+c)=a b+a c
$$

Generalized Distributive Law

- Integrating out probabilities (sum, product)

$$
a \cdot(b+c)=a \cdot b+a \cdot c
$$

- Finding the maximum (max, +)

$$
a+\max (b, c)=\max (a+b, a+c)
$$

- Set algebra (union, intersection)

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

- Boolean semiring (AND, OR)
- Probability semiring (log +, +)
- Tropical semiring (min, +)

Chains ... again

$$
\begin{aligned}
\bar{s} & =\max _{x} s\left(x_{0}\right)+\sum_{i=1}^{n-1} s\left(x_{i+1} \mid x_{i}\right) \\
\bar{s} & =\max _{x_{0} \ldots n} \underbrace{s\left(x_{0}\right)}_{:=l_{0}\left(x_{0}\right)}+\sum_{j=1}^{n} s\left(x_{j} \mid x_{j-1}\right) \\
& =\max _{x_{1} \ldots n}^{\max _{x_{0}}\left[l_{0}\left(x_{0}\right) s\left(x_{1} \mid x_{0}\right)\right]}+\underbrace{n}_{:=l_{1}\left(x_{1}\right)} s\left(x_{j} \mid x_{j-1}\right) \\
& =\max _{x_{2} \ldots n}^{\max _{x_{1}}\left[l_{1}\left(x_{1}\right) s\left(x_{2} \mid x_{1}\right)\right]}+\sum_{j=2}^{n} s\left(x_{j} \mid x_{j-1}\right)
\end{aligned} \rightarrow \times \rightarrow
$$

Junction Trees

$$
m_{i \rightarrow j}\left(x_{j}\right)=\max _{x_{i}} f\left(x_{i}, x_{j}\right)+\sum_{l \neq j} m_{l \rightarrow i}\left(x_{j}\right)
$$

clique potential

Junction Trees

Carnegie Mellon University

No loops allowed

$$
s\left(x_{1}, x_{2}\right)+s\left(x_{2}, x_{3}\right)+s\left(x_{3}, x_{4}\right)+s\left(x_{4}, x_{1}\right)
$$

Often use it anyway --- Loopy Belief Propagation (Turbo Codes, Markov Random Fields, etc.)

No loops allowed

$$
s\left(x_{1}, x_{2}\right)+s\left(x_{2}, x_{3}\right)+s\left(x_{3}, x_{4}\right)+s\left(x_{4}, x_{1}\right)
$$

Often use it anyway --- Loopy Belief Propagation (Turbo Codes, Markov Random Fields, etc.)

No loops allowed

$$
s\left(x_{1}, x_{2}\right)+s\left(x_{2}, x_{3}\right)+s\left(x_{3}, x_{4}\right)+s\left(x_{4}, x_{1}\right)
$$

Often use it anyway --- Loopy Belief Propagation (Turbo Codes, Markov Random Fields, etc.)

No loops allowed

$$
s\left(x_{1}, x_{2}\right)+s\left(x_{2}, x_{3}\right)+s\left(x_{3}, x_{4}\right)+s\left(x_{4}, x_{1}\right)
$$

Often use it anyway --- Loopy Belief Propagation (Turbo Codes, Markov Random Fields, etc.)

No loops allowed

$$
s\left(x_{1}, x_{2}\right)+s\left(x_{2}, x_{3}\right)+s\left(x_{3}, x_{4}\right)+s\left(x_{4}, x_{1}\right)
$$

Often use it anyway --- Loopy Belief Propagation (Turbo Codes, Markov Random Fields, etc.)

No loops allowed

$$
s\left(x_{1}, x_{2}\right)+s\left(x_{2}, x_{3}\right)+s\left(x_{3}, x_{4}\right)+s\left(x_{4}, x_{1}\right)
$$

Often use it anyway --- Loopy Belief Propagation (Turbo Codes, Markov Random Fields, etc.)

No loops allowed

$$
s\left(x_{1}, x_{2}\right)+s\left(x_{2}, x_{3}\right)+s\left(x_{3}, x_{4}\right)+s\left(x_{4}, x_{1}\right)
$$

$$
s\left(x_{2}, x_{3}\right)+s\left(x_{3}, x_{4}\right)
$$

$s\left(x_{1}, x_{2}\right)+s\left(x_{4}, x_{1}\right)$

Often use it anyway --- Loopy Belief Propagation (Turbo Codes, Markov Random Fields, etc.)

MACHINE LEARNING DEPARTMENT

7.3 Practical Inference 7 Graphical Models

Alexander Smola

 Introduction to Machine Learning 10-701 http://alex.smola.org/teaching/10-701-15

Clustering

Carnegie Mellon University

Density Estimation

$$
p(X \mid \theta)=\prod_{i=1}^{m} p\left(x_{i} \mid \theta\right)
$$

- Draw latent parameter Θ
- For all i draw observed x_{i} given Θ
- What if the basic model doesn't fit all data?

One size doesn't fit all

$$
p(X, Y \mid \theta, \sigma, \mu)=\prod_{i=1}^{n} p\left(x_{i} \mid y_{i}, \sigma, \mu\right) p\left(y_{i} \mid \theta\right)
$$

Carnegie Mellon University

What can we cluster?

Carnegie Mellon University

What can we cluster?

mails

users

queries

locations

spammers
abuse
ads
events

Mixture of Gaussians

- Draw cluster ID y from discrete distribution
- Draw data x from Gaussian for cluster y
- Prior for discrete distribution - Dirichlet
- Prior for Gaussians - Gauss-Wishart
- Problem: we don’t know y

- If we knew the parameters we could get y

$$
p(y \mid x, \theta) \propto p(x \mid y, \theta) p(y \mid \theta)
$$

- If we knew y we could get the parameters (estimate normal distribution)

k-means

- Fixed uniform variance for all Gaussians
- Fixed uniform distribution over clusters
- Initialize centers with random subset of points
- Find most likely cluster y for x (ignores p(y) ...)

$$
y_{i}=\underset{y}{\operatorname{argmax}} p\left(x_{i} \mid y, \sigma, \mu\right)
$$

- Find most likely center for given cluster

$$
\mu_{y}=\frac{1}{n_{y}} \sum_{i}\left\{y_{i}=y\right\} x_{i}
$$

- Repeat until converged

k-means

- Pro
- simple algorithm
- can be implemented by MapReduce passes
- Con
- no proper probabilistic representation
- can get stuck easily in local minima

k-means

partitioning

initialization

Carnegie Mellon University

k-means

partitioning

update

partitioning

Bayesian Inference

- Complete bipartite graph of dependence between y and the model parameters.
- Cannot generate a thin junction tree.
- Exact inference is impossible.
- We need approximations
huge messages

Loopy belief propagation

- Don't worry about junction tree
- Just send messages between vertices
- Still expensive for high degree vertices such as clusters
- Exact messages and potentials are too complicated

$$
\left[\prod_{i=1}^{m} \mu_{y_{i} \rightarrow \theta}(\theta)\right] \cdot \psi(\theta)
$$

Maximum a posteriori

- Approximate integral by mode of distribution
- Easy (see k-means)
- OK for unimodal distribution
- Misses out on large modes
- Can get stuck in local maxima

Sampling

- Sample subset of variables while keeping the rest fixed
- Iterate until converged
- Draw several samples
- Gibbs sampler

Draw one group at a time and iterate

$$
\begin{aligned}
y_{i} & \sim p\left(y_{i} \mid X, Y^{-i}, \theta, \mu, \Sigma\right) \\
\theta & \sim p(\theta \mid X, Y, \mu, \Sigma) \\
(\mu, \Sigma) & \sim p(\mu, \Sigma \mid X, \theta, Y)
\end{aligned}
$$

Variational Inference

- Approximate graphical model by simpler one

$$
q(\theta) \prod_{i=1}^{m} q\left(y_{i} \mid \theta\right) \prod_{j=1}^{k} q\left(\mu_{j}, \Sigma_{j}\right)
$$

- Minimize 'distance’ between models
- Often methods are combined into hybrid approach

Variational Inference

- Approximate graphical model by simpler one

$$
q(\theta) \prod_{i=1}^{m} q\left(y_{i} \mid \theta\right) \prod_{j=1}^{k} q\left(\mu_{j}, \Sigma_{j}\right)
$$

- Minimize 'distance’ between models
- Often methods are combined into hybrid approach

$\underset{\gamma}{\operatorname{minimize}} D\left(q_{\gamma}(Y, \theta, \mu, \Sigma) \mid p(Y, \theta, \mu, \Sigma \mid X)\right)$

Variational Inference and EM

Carnegie Mellon University

Nonconvex Optimization

- Optimization Problem

Find the parameters (clusters, probabilities) for the mixture of Gaussians problem

$$
\underset{\theta, \mu, \sigma}{\operatorname{maximize}} p(X \mid \theta, \sigma, \mu)=\underset{\theta, \mu, \sigma}{\operatorname{maximize}} \sum_{Y} \prod_{i=1}^{n} p\left(x_{i} \mid y_{i}, \sigma, \mu\right) p\left(y_{i} \mid \theta\right)
$$

This problem is nonconvex and difficult to solve

- Key idea

If we knew $p(y \mid x)$ we could estimate the remaining parameters easily and vice versa

DC Programming

- Find convex upper bound
- Minimize it

Expectation Maximization

Carnegie Mellon University

Expectation Maximization

- Variational Bound

$$
\begin{aligned}
\log p(x ; \theta) & \geq \log p(x ; \theta)-D(q(y) \| p(y \mid x ; \theta)) \\
& =\int d q(y)[\log p(x ; \theta)+\log p(y \mid x ; \theta)-\log q(y)] \\
& =\int d q(y) \log p(x, y ; \theta)-\int d q(y) \log q(y)
\end{aligned}
$$

Expectation Maximization

- Variational Bound

$$
\begin{aligned}
& \log p(x ; \theta) \geq \log p(x ; \theta)-D(q(y) \| p(y \mid x ; \theta)) \\
&=\int d q(y)[\log p(x ; \theta)+\log p(y \mid x ; \theta)-\log q(y)] \\
&=\int d q(y) \log p(x, y ; \theta)-\int d q(y) \log q(y) \\
& q(y)=p(y \mid x ; \theta)
\end{aligned}
$$

Expectation Maximization

- Variational Bound

$$
\begin{aligned}
\log p(x ; \theta) & \geq \log p(x ; \theta)-D(q(y) \| p(y \mid x ; \theta)) \\
& =\int d q(y)[\log p(x ; \theta)+\log p(y \mid x ; \theta)-\log q(y)] \\
& =\int d q(y) \log p(x, y ; \theta)-\int d q(y) \log q(y)
\end{aligned}
$$

Expectation Maximization

- Variational Bound

$$
\begin{aligned}
\log p(x ; \theta) & \geq \log p(x ; \theta)-D(q(y) \| p(y \mid x ; \theta)) \\
& =\int d q(y)[\log p(x ; \theta)+\log p(y \mid x ; \theta)-\log q(y)] \\
& =\int d q(y) \log p(x, y ; \theta)-\int d q(y) \log q(y)
\end{aligned}
$$

Expectation Maximization

- Variational Bound

$$
\begin{aligned}
\log p(x ; \theta) & \geq \log p(x ; \theta)-D(q(y) \| p(y \mid x ; \theta)) \\
& =\int d q(y)[\log p(x ; \theta)+\log p(y \mid x ; \theta)-\log q(y)] \\
& =\int d q(y) \log p(x, y ; \theta)-\int d q(y) \log q(y)
\end{aligned}
$$

Expectation Maximization

- Variational Bound

$$
\begin{aligned}
\log p(x ; \theta) & \geq \log p(x ; \theta)-D(q(y) \| p(y \mid x ; \theta)) \\
& =\int d q(y)[\log p(x ; \theta)+\log p(y \mid x ; \theta)-\log q(y)] \\
& =\int d q(y) \log p(x, y ; \theta)-\int d q(y) \log q(y)
\end{aligned}
$$

- This inequality is tight for $p(y \mid x)=q(y)$

$$
q(y)=p(y \mid x ; \theta) \quad \text { find bound }
$$

Expectation Maximization

- Variational Bound

$$
\begin{aligned}
\log p(x ; \theta) & \geq \log p(x ; \theta)-D(q(y) \| p(y \mid x ; \theta)) \\
& =\int d q(y)[\log p(x ; \theta)+\log p(y \mid x ; \theta)-\log q(y)] \\
& =\int d q(y) \log p(x, y ; \theta)-\int d q(y) \log q(y)
\end{aligned}
$$

- This inequality is tight for $p(y \mid x)=q(y)$
- Expectation step

$$
q(y)=p(y \mid x ; \theta) \quad \text { find bound }
$$

Expectation Maximization

- Variational Bound

$$
\begin{aligned}
\log p(x ; \theta) & \geq \log p(x ; \theta)-D(q(y) \| p(y \mid x ; \theta)) \\
& =\int d q(y)[\log p(x ; \theta)+\log p(y \mid x ; \theta)-\log q(y)] \\
& =\int d q(y) \log p(x, y ; \theta)-\int d q(y) \log q(y)
\end{aligned}
$$

- This inequality is tight for $p(y \mid x)=q(y)$
- Expectation step

$$
q(y)=p(y \mid x ; \theta)
$$

- Maximization step

$$
\theta^{*}=\underset{\theta}{\operatorname{argmax}} \int d q(y) \log p(x, y ; \theta)
$$

Expectation Maximization

- Variational Bound

$$
\begin{aligned}
\log p(x ; \theta) & \geq \log p(x ; \theta)-D(q(y) \| p(y \mid x ; \theta)) \\
& =\int d q(y)[\log p(x ; \theta)+\log p(y \mid x ; \theta)-\log q(y)] \\
& =\int d q(y) \log p(x, y ; \theta)-\int d q(y) \log q(y)
\end{aligned}
$$

- This inequality is tight for $p(y \mid x)=q(y)$
- Expectation step

$$
q(y)=p(y \mid x ; \theta)
$$

- Maximization step

$$
\theta^{*}=\underset{\theta}{\operatorname{argmax}} \int d q(y) \log p(x, y ; \theta)
$$

Expectation Step

- Factorizing distribution
- E-Step

$$
q(Y)=\prod_{i} q_{i}(y)
$$

$$
\begin{aligned}
q_{i}(y) & \propto p\left(x_{i} \mid y_{i}, \mu, \sigma\right) p\left(y_{i} \mid \theta\right) \text { hence } \\
m_{i y} & :=\frac{1}{(2 \pi)^{\frac{d}{2}}\left|\Sigma_{y}\right|^{\frac{1}{2}}} \exp \left[-\frac{1}{2}\left(x_{i}-\mu_{y}\right) \Sigma_{y}^{-1}\left(x_{i}-\mu_{y}\right)\right] p(y) \\
q_{i}(y) & =\frac{m_{i y}}{\sum_{y^{\prime}} m_{i y^{\prime}}}
\end{aligned}
$$

Maximization Step

- Log-likelihood

$$
\log p(X, Y \mid \theta, \mu, \sigma)=\sum_{i=1}^{n} \log p\left(x_{i} \mid y_{i}, \mu, \sigma\right)+\log p\left(y_{i} \mid \theta\right)
$$

- Cluster distribution (weighted Gaussian MLE)

$$
n_{y}=\sum_{i} q_{i}(y)
$$

- Cluster probabilities

$$
\begin{aligned}
\mu_{y} & =\frac{1}{n_{y}} \sum_{i=1}^{n} q_{i}(y) x_{i} \\
\Sigma_{y} & =\frac{1}{n_{y}} \sum_{i=1}^{n} q_{i}(y) x_{i} x_{i}^{\top}-\mu_{y} \mu_{y}^{\top}
\end{aligned}
$$

$$
\theta^{*}=\underset{\theta}{\operatorname{argmax}} \sum_{i=1}^{n} \sum_{y} q_{i}(y) \log p\left(y_{i} \mid \theta\right) \text { hence } p(y \mid \theta)=\frac{n_{y}}{n}
$$

EM Clustering in action

Carnegie Mellon University

Problem

Estimates will diverge

(infinite variance, zero probability, tiny clusters)

Carnegie Mellon University

Solution

- Use priors for
- Dirichlet distribution for cluster probabilities
- Gauss-Wishart for Gaussian
- Cluster distribution
$\mu_{y}=\frac{1}{n_{y}} \sum_{i=1}^{n} q_{i}(y) x_{i}$
$n_{y}=n_{0}+\sum_{i} q_{i}(y) \quad \Sigma_{y}=\frac{1}{n_{y}} \sum_{i=1}^{n} q_{i}(y) x_{i} x_{i}^{\top}+\frac{n_{0}}{n_{y}} \mathbf{1}-\mu_{y} \mu_{y}^{\top}$
- Cluster probabilities

$$
p(y \mid \theta)=\frac{n_{y}}{n+k \cdot n_{0}}
$$

Is maximization (always) good?

Sampling

- Key idea
- Want accurate distribution of the posterior
- Sample from posterior distribution rather than maximizing it
- Problem - direct sampling is usually intractable
- Solutions
- Markov Chain Monte Carlo (complicated)
- Gibbs Sampling (somewhat simpler)

$$
x \sim p\left(x \mid x^{\prime}\right) \text { and then } x^{\prime} \sim p\left(x^{\prime} \mid x\right)
$$

Gibbs sampling

- Gibbs sampling:
- In most cases direct sampling not possible
- Draw one set of variables at a time

Gibbs sampling

- Gibbs sampling:
- In most cases direct sampling not possible
- Draw one set of variables at a time

(b,g) - draw p(.,g)

Gibbs sampling

- Gibbs sampling:
- In most cases direct sampling not possible
- Draw one set of variables at a time

$$
\begin{aligned}
& (b, g) \text { - draw } p(., g) \\
& (g, g) \text { - draw } p(g, .)
\end{aligned}
$$

Gibbs sampling

- Gibbs sampling:
- In most cases direct sampling not possible
- Draw one set of variables at a time

$$
\begin{aligned}
& (\mathrm{b}, \mathrm{~g}) \text { - draw } \mathrm{p}(., \mathrm{g}) \\
& (\mathrm{g}, \mathrm{~g}) \text { - draw } \mathrm{p}(\mathrm{~g}, .) \\
& (\mathrm{g}, \mathrm{~g}) \text { - draw } \mathrm{p}(., \mathrm{g})
\end{aligned}
$$

Gibbs sampling

- Gibbs sampling:
- In most cases direct sampling not possible
- Draw one set of variables at a time

$$
\begin{aligned}
& (b, g)-\text { draw } p(., g) \\
& (g, g)-\text { draw } p(g, .) \\
& (g, g) \text { - draw } p(., g) \\
& (b, g) \text { - draw } p(b, .)
\end{aligned}
$$

Gibbs sampling

- Gibbs sampling:
- In most cases direct sampling not possible
- Draw one set of variables at a time

(b,g) - draw p(.,g)
(g, g) - draw $p(g,$.
(g,g) - draw p(.,g)
(b,g) - draw p(b,.)
(b,b) ...

Gibbs sampling for clustering

Carnegie Mellon University

Gibbs sampling for clustering

Carnegie Mellon University

Gibbs sampling for clustering

cluster labels
Carnegie Mellon University

Gibbs sampling for clustering

resample cluster model

Carnegie Mellon University

Gibbs sampling for clustering

resample

cluster labels

Carnegie Mellon University

Gibbs sampling for clustering

resample cluster model

Carnegie Mellon University

Gibbs sampling for clustering

resample
cluster labels
Carnegie Mellon University

Gibbs sampling for clustering

resample cluster model e.g. Mahout Dirichlet Process glustering

Inference Algorithm $=$ Model

Corollary: EM $=$ Clustering ... but some algorithms and models are good match ...

MACHINE LEARNING DEPARTMENT

7.4 Models 7 Graphical Models

Alexander Smola

 Introduction to Machine Learning 10-701 http://alex.smola.org/teaching/10-701-15

Clustering and Hidden Markov Models

- Clustering - no dependence between observations
- Hidden Markov Model - dependence between states

Applications

- Speech recognition (soundltext)
- Optical character recognition (writingltext)
- Gene finding (DNA sequencelgenes)
- Activity recognition (accelerometerlactivity)

Inference

$$
p(x, y)=p\left(y_{1}\right)\left[\prod_{i=1}^{m-1} p\left(y_{i+1} \mid y_{i}\right) p\left(x_{i} \mid y_{i}\right)\right] p\left(x_{m} \mid y_{m}\right)
$$

- Summing over y possible via dynamic programming - Log-likelihood is nonconvex

Variational Approximation

- Lower bound on log-likelihood

$$
\log p(x ; \theta) \geq \int d q(y) \log p(x, y ; \theta)-\int d q(y) \log q(y)
$$

- Inequality holds for any q
- Find q within subset Q to tighten inequality
- Find parameters to maximize for fixed q
- Inference for graphical models where joint probability computation is infeasible

Variational Approximation

- Variational approximation via

$$
q(y)=q\left(y_{1}\right) \prod_{x=2}^{m} q\left(y_{i} \mid y_{i-1}\right)
$$

- Compute p(xly) via dynamic programming

Variational Method

- Initialize parameters somehow
- Set $q(x)=p(x \mid y)$

Dynamic programming yields chain

- Maximizing the log-likelihod w.r.t. q

$$
\log p(x ; \theta) \geq \int d q(y) \log p(x, y ; \theta)-\int d q(y) \log q(y)
$$

$$
\begin{aligned}
& p(x, y)=p\left(y_{1}\right)\left[\prod_{i=1}^{m-1} p\left(y_{i+1} \mid y_{i}\right) p\left(x_{i} \mid y_{i}\right)\right] p\left(x_{m} \mid y_{m}\right) \\
& q(\mathrm{y} 1)
\end{aligned}
$$

Parameter Estimation

$\mathbf{E}_{y \sim q}[\log p(x, y ; \theta)]=\mathbf{E}_{y_{1} \sim q} \log p\left(y_{1} ; \theta\right)+\sum_{i=1} \mathbf{E}_{y_{i} \sim q} \log p\left(x_{i} \mid y_{i} ; \theta\right)$

$$
+\sum_{i=1}^{m-1} \mathbf{E}_{y_{i+1}, y_{i} \sim q} \log p\left(y_{i+1} \mid y_{i} ; \theta\right)
$$

- $p\left(y_{1}\right)$

Since we have $\mathbf{E}_{q\left(y_{1}\right)}\left[\log p\left(y_{1}\right)\right]$ set $\mathrm{p}\left(\mathrm{y}_{1}\right)=\mathrm{q}\left(\mathrm{y}_{1}\right)$

- p(xilyi)

Same as clustering e.g. for Gaussians

$$
\begin{aligned}
\mu_{y} & =\frac{1}{n_{y}} \sum_{i=1}^{n} q_{i}(y) x_{i} \\
\Sigma_{y} & =\frac{1}{n_{y}} \sum_{i=1}^{n} q_{i}(y) x_{i} x_{i}^{\top}-\mu_{y} \mu_{y}^{\top}
\end{aligned}
$$

Parameter Estimation

$\mathbf{E}_{y \sim q}[\log p(x, y ; \theta)]=\mathbf{E}_{y_{1} \sim q} \log p\left(y_{1} ; \theta\right)+\sum_{i=1} \mathbf{E}_{y_{i} \sim q} \log p\left(x_{i} \mid y_{i} ; \theta\right)$

$$
+\sum_{i=1}^{m-1} \mathbf{E}_{y_{i+1}, y_{i} \sim q} \log p\left(y_{i+1} \mid y_{i} ; \theta\right)
$$

- Maximum likelihood estimate for p(y'ly)

$$
\sum_{i=1}^{m-1} q\left(y_{i+1}=a, y_{i}=b\right) \log p(a \mid b)
$$

$$
\text { hence } p(a \mid b)=\frac{\sum_{i=1}^{m-1} q\left(y_{i+1}=a, y_{i}=b\right)}{\sum_{i=1}^{m-1} q\left(y_{i}=b\right)}
$$

Smoothed Estimates

- Laplace prior on latent state distribution
- Uniform distribution over states
- Alternatively assume that state remains

$$
p(a \mid b)=\frac{n_{a \mid b}+\sum_{i=1}^{m-1} q\left(y_{i+1}=a, y_{i}=b\right)}{n_{b}+\sum_{i=1}^{m-1} q\left(y_{i}=b\right)}
$$

transition

 smootheraggregate mass

Carnegie Mellon University

Beyond mixtures

taxonomies
topics

Carnegie Mellon University

'Unsupervised' Models

Density Estimation

webpages
news
users
ads
queries
images

'Unsupervised' Models

'Unsupervised' Models

Density
 Estimation

Factor
Analysis

Carnegie Mellon University

'Supervised' Models

Classification Regression

spam filtering tiering crawling categorization bid estimation tagging

Carnegie Mellon University

Chains

Markov Chain

Carnegie Mellon University

Chains

Markov Chain

Hidden Markov Model Kalman Filter

Collaborative Models

Carnegie Mellon University

Collaborative Models

Collaborative Filtering

Carnegie Mellon University

Collaborative Models

Collaborative Filtering

Current Webpage Ranking

Carnegie Mellon University

Collaborative Models

Collaborative Filtering

Webpage Ranking

Carnegie Mellon University

Collaborative Models

Collaborative

Filtering
no obvious features

Webpage Ranking

Carnegie Mellon University

Collaborative Models

Collaborative

Filtering
no obvious features

massive
feature engineering
Webpage Ranking

Carnegie Mellon University

Collaborative Models

Collaborative
Filtering
no obvious features

massive
feature engineering
Webpage Ranking

Data Integration

Carnegie Mellon University

Data Integration

Data Integration

Data Integration

Data Integration

Topic Models

Carnegie Mellon University

Topic Models

Topic Models

Carnegie Mellon University

Topic Models

Topic Models

Simplical Mixtures

Topic Models

Topic Models

Simplical Mixtures

Upstream Conditioning

Downstream Conditioning

MACHINE LEARNING DEPARTMENT

7.5 Undirected Graphical Models 7 Graphical Models

Alexander Smola

 Introduction to Machine Learning 10-701 http://alex.smola.org/teaching/10-701-15

Blunting the arrows

Carnegie Mellon University

Chicken and Egg

Carnegie Mellon University

Chicken and Egg

encode the correlation via the clique potential between cand e $p(c, e) \propto \exp \psi(c, e)$

Chicken and Egg

Chicken and Egg

$$
p(c, e)=\frac{\exp \psi(c, e)}{\sum_{c^{\prime}, e^{\prime}} \exp \psi\left(c^{\prime}, e^{\prime}\right)}
$$

$$
=\exp [\psi(c, e)-g(\psi)] \text { where } g(\psi)=\log \sum_{c, e} \exp \psi(c, e)
$$

we know that chicken and egg are correlated

... some web service

Carnegie Mellon University

... some web service

$$
\begin{gathered}
p(w \mid m, a) p(m) p(a) \\
m \not \Perp \perp \mid w
\end{gathered}
$$

... some web service

$p(m, w, a) \propto \phi(m, w) \phi(w, a)$ $m \Perp a \mid w$

easier
 "modeling"

Undirected Graphical Models

Key Concept
Observing nodes makes remainder conditionally independent

Undirected Graphical Models

Key Concept
Observing nodes makes remainder conditionally independent

Undirected Graphical Models

Key Concept
Observing nodes makes remainder conditionally independent

Undirected Graphical Models

Key Concept
Observing nodes makes remainder conditionally independent

Undirected Graphical Models

Key Concept
Observing nodes makes remainder conditionally independent

Undirected Graphical Models

Key Concept
Observing nodes makes remainder conditionally independent

Undirected Graphical Models

Key Concept
Observing nodes makes remainder conditionally independent

Undirected Graphical Models

Key Concept
Observing nodes makes remainder conditionally independent

Cliques

ie Mellon University

Cliques

Cliques

maximal fully connected subgraph

Carnegie Mellon University

Cliques

maximal fully connected subgraph

Carnegie Mellon University

Hammersley Clifford Theorem

If density has full support then it decomposes into products of clique potentials

$$
p(x)=\prod_{c} \psi_{c}\left(x_{c}\right)
$$

Directed vs.
 Undirected

- Causal description
- Normalization automatic
- Intuitive
- Requires knowledge of dependencies
- Conditional independence tricky (Bayes Ball algorithm)
- Noncausal description (correlation only)
- Intuitive
- Easy modeling
- Normalization difficult
- Conditional independence easy to read off (graph connectivity)

Carnegie Mellon University

Exponential Family Recap

- Density function

$$
\begin{aligned}
p(x ; \theta) & =\exp (\langle\phi(x), \theta\rangle-g(\theta)) \\
\text { where } g(\theta) & =\log \sum_{x^{\prime}} \exp \left(\left\langle\phi\left(x^{\prime}\right), \theta\right\rangle\right)
\end{aligned}
$$

- Log partition function generates cumulants

$$
\begin{aligned}
\partial_{\theta} g(\theta) & =\mathbf{E}[\phi(x)] \\
\partial_{\theta}^{2} g(\theta) & =\operatorname{Var}[\phi(x)]
\end{aligned}
$$

- g is convex (second derivative is p.s.d.)

Log Partition Function

$$
\begin{aligned}
p(x \mid \theta) & =e^{\langle\phi(x), \theta\rangle-g(\theta)} \quad \quad \text { Unconditional mod } \\
g(\theta) & =\log \sum_{x} e^{\langle\phi(x), \theta\rangle} \\
\partial_{\theta} g(\theta) & =\frac{\sum_{x} \phi(x) e^{\langle\phi(x), \theta\rangle}}{\sum_{x} e^{\langle\phi(x), \theta\rangle}}=\sum_{x} \phi(x) e^{\langle\phi(x), \theta\rangle-g(\theta)}
\end{aligned}
$$

$$
p(y \mid \theta, x)=e^{\langle\phi(x, y), \theta\rangle-g(\theta \mid x)}
$$

Conditional model

$$
g(\theta \mid x)=\log \sum_{y} e^{\langle\phi(x, y), \theta\rangle}
$$

$$
\partial_{\theta} g(\theta \mid x)=\frac{\sum_{y} \phi(x, y) e^{\langle\phi(x, y), \theta\rangle}}{\sum_{y} e^{\langle\phi(x, y), \theta\rangle}}=\sum_{y} \begin{gathered}
\phi(x, y) e^{\langle\phi(x, y), \theta\rangle-g(\theta \mid x)} \\
\text { Carnegie Mellon University }
\end{gathered}
$$

Estimation

- Conditional log-likelihood
$\log p(y \mid x ; \theta)=\langle\phi(x, y), \theta\rangle-g(\theta \mid x)$
- Log-posterior (Gaussian Prior)

$$
\begin{aligned}
\log p(\theta \mid X, Y) & =\sum_{i} \log \left(y_{i} \mid x_{i} ; \theta\right)+\log p(\theta)+\text { const. } \\
& =\left\langle\sum_{i} \phi\left(x_{i}, y_{i}\right), \theta\right\rangle-\sum_{i} g\left(\theta \mid x_{i}\right)-\frac{1}{2 \sigma^{2}}\|\theta\|^{2}+\text { const. }
\end{aligned}
$$

- First order optimality conditions

Logistic Regression

- Label space
$\phi(x, y)=y \phi(x)$ where $y \in\{ \pm 1\}$
- Log-partition function
$g(\theta \mid x)=\log \left[e^{1 \cdot\langle\phi(x), \theta\rangle}+e^{-1 \cdot\langle\phi(x), \theta\rangle}\right]=\log 2 \cosh \langle\phi(x), \theta\rangle$
- Convex minimization problem

$\underset{\theta}{\operatorname{minimize}} \frac{1}{2 \sigma^{2}}\|\theta\|^{2}+\sum_{i} \log 2 \cosh \left\langle\phi\left(x_{i}\right), \theta\right\rangle-y_{i}\left\langle\phi\left(x_{i}, \theta\right\rangle\right.$
- Prediction

$$
p(y \mid x, \theta)=\frac{e^{y\langle\phi(x), \theta\rangle}}{e^{\langle\phi(x), \theta\rangle}+e^{-\langle\phi(x), \theta\rangle}}=\frac{1}{1+e^{-2 y\langle\phi(x), \theta\rangle}}
$$

Logistic Regression

- Label space
$\phi(x, y)=y \phi(x)$ where $y \in\{ \pm 1\}$
- Log-partition function
$g(\theta \mid x)=\log \left[e^{1 \cdot\langle\phi(x), \theta\rangle}+e^{-1 \cdot\langle\phi(x), \theta\rangle}\right]=\log 2 \cosh \langle\phi(x), \theta\rangle$
- Convex minimization problem $\underset{\theta}{\operatorname{minimize}} \frac{1}{2 \sigma^{2}}\|\theta\|^{2}+\sum_{i} \log 2 \cosh \left\langle\phi\left(x_{i}\right), \theta\right\rangle-y_{i}\left\langle\phi\left(x_{i}, \theta\right\rangle\right.$
- Prediction

GP Classification

$$
p(y \mid x, \theta)=\frac{e^{y\langle\phi(x), \theta\rangle}}{e^{\langle\phi(x), \theta\rangle}+e^{-\langle\phi(x), \theta\rangle}}=\frac{1}{1+e^{-2 y\langle\phi(x), \theta\rangle}}
$$

Exponential Clique Decomposition

$$
p(x)=\prod_{c} \psi_{c}\left(x_{c}\right)
$$

Theorem: Clique decomposition holds in sufficient statistics

$$
\phi(x)=\left(\ldots, \phi_{c}\left(x_{c}\right), \ldots\right) \text { and }\langle\phi(x), \theta\rangle=\sum_{c}\left\langle\phi_{c}\left(x_{c}\right), \theta_{c}\right\rangle
$$

Corollary: we only need expectations on cliques

$$
\mathbf{E}_{x}[\phi(x)]=\left(\ldots, \mathbf{E}_{x_{c}}\left[\phi_{c}\left(x_{c}\right)\right], \ldots\right)
$$

Carnegie Mellon University

Conditional Random Fields

Conditional Random Fields

- Compute distribution over marginal and adjacent labels
- Take conditional expectations
- Take update step (batch or online)
- More general techniques for computing normalization via message passing ...

Examples

Carnegie Mellon University

Chains

$$
p(x)=\prod_{i} \psi_{i}\left(x_{i}, x_{i+1}\right)
$$

Carnegie Mellon University

Chains

$$
p(x)=\prod_{i} \psi_{i}\left(x_{i}, x_{i+1}\right)
$$

Carnegie Mellon University

Chains

$$
p(x)=\prod \psi_{i}\left(x_{i}, x_{i+1}\right)
$$

$$
p(x, y)=\prod \psi_{i}^{x}\left(x_{i}, x_{i+1}\right) \psi_{i}^{x y}\left(x_{i}, y_{i}\right)
$$

Carnegie Mellon University

Chains

$$
P(x)=\prod_{i} \psi_{i}\left(x_{i}, x_{i+1}\right)
$$

$$
p(x, y)=\prod \psi_{i}^{x}\left(x_{i}, x_{i+1}\right) \psi_{i}^{x y}\left(x_{i}, y_{i}\right)
$$

Carnegie Mellon University

Chains

Dynamic Programming

$$
=: f_{i}\left(x_{i}, x_{i+1}\right)
$$

$$
\begin{aligned}
& l_{1}\left(x_{1}\right)=1 \text { and } l_{i+1}\left(x_{i+1}\right)=\sum_{x_{i}} l_{i}\left(x_{i}\right) f_{i}\left(x_{i}, x_{i+1}\right) \\
& r_{n}\left(x_{n}\right)=1 \text { and } r_{i}\left(x_{i}\right)=\sum_{x_{i+1}} r_{i+1}\left(x_{i+1}\right) f_{i}\left(x_{i}, x_{i+1}\right)
\end{aligned}
$$

Named Entity Tagging

Carnegie Mellon University

Trees + Ontologies

- Ontology classification (e.g. YDir, DMOZ)

Carnegie Mellon University

Spin Glasses + Images

observed pixels

 real image$$
p(x \mid y)=\prod \psi^{\mathrm{right}}\left(x_{i j}, x_{i+1, j}\right) \psi^{\mathrm{up}}\left(x_{i j}, x_{i, j+1}\right) \psi^{x y}\left(x_{i j}, y_{i j}\right)
$$

Carnegie Mellon University

Spin Glasses + Images

observed pixels real image

long range interactions

$$
p(x \mid y)=\prod_{i j} \psi^{\mathrm{right}}\left(x_{i j}, x_{i+1, j}\right) \psi^{\mathrm{up}}\left(x_{i j}, x_{i, j+1}\right) \psi^{x y}\left(x_{i j}, y_{i j}\right)
$$

Carnegie Mellon University

Image Denoising

Li\&Huttenlocher, ECCV'08
Carnegie Mellon University

Semi-Markov Models

phrase segmentation, activity recognition, motion data analysis Shi, Smola, Altun, Vishwanathan, Li, 2007-2009

Carnegie Mellon University

2D CRF for Webpages

web page information extraction, segmentation, annotation Bo, Zhu, Nie, Wen, Hon, 2005-2007

Carnegie Mellon University

Summary

- Directed Graphical Models
- Dependence
- Inference for fully observed models
- Incomplete information / variational and sampling inference
- Undirected Graphical Models
- Hammersley Clifford decomposition
- Conditional independence
- Junction trees
- Dynamic Programming
- Generalized Distributive Law
- Naive Message Passing
- Inference techniques
- Sampling (Gibbs and Monte Carlo)
- Variational methods (EM, extensions)

