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Normal Distribution
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The Normal Distribution



Gaussians in Space



Gaussians in Space

samples in R2



The Normal Distribution
• Density for scalar variables 
 

• Density in d dimensions

• Principal components
• Eigenvalue decomposition
• Product representation
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Recall - Gaussian is in the 
Exponential Family

• Binomial Distribution
• Discrete Distribution  

(ex is unit vector for x)
• Gaussian
• Poisson (counting measure 1/x!)
• Dirichlet, Beta, Gamma, 

Wishart, ...
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The Normal Distribution
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Why do we care?
• Central limit theorem shows that in the limit all 

averages behave like Gaussians
• Easy to estimate parameters (MLE) 
 
 

• Distribution with largest uncertainty (entropy) for 
a given mean and covariance.

• Works well even if the assumptions are wrong
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Why do we care?
• Central limit theorem shows that in the limit all 

averages behave like Gaussians
• Easy to estimate parameters (MLE) 
 
 
 
X: data  
m: sample size  
 
mu    = (1/m)*sum(X,2)  
sigma = (1/m)*X*X’- mu*mu’ 
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Sampling from a Gaussian
• Case 1 - We have a normal distribution (randn) 

• We want 
• Recipe:                where               and  
• Proof: 

• Case 2 - Box-Müller transform for U[0,1]
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Sampling from a Gaussian
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Sampling from a Gaussian
• Cumulative distribution function  
 
 
Draw radial and angle component separately 
 
tmp1 = rand()  
tmp2 = rand()  
r    = sqrt(-2*log(tmp1))  
x1   = r*sin(tmp2/(2*pi))  
x2   = r*cos(tmp2/(2*pi))  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Sampling from a Gaussian
• Cumulative distribution function  
 
 
Draw radial and angle component separately 
 
tmp1 = rand()  
tmp2 = rand()  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Why can we use tmp1 
instead of 1-tmp1?
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Data Visualization

• 53 Blood and urine samples from 65 people
• Difficult to see the correlations between features

H-WBC H-RBC H-Hgb H-Hct H-MCV H-MCH H-MCHCH-MCHC
A1 8.0000 4.8200 14.1000 41.0000 85.0000 29.0000 34.0000 
A2 7.3000 5.0200 14.7000 43.0000 86.0000 29.0000 34.0000 
A3 4.3000 4.4800 14.1000 41.0000 91.0000 32.0000 35.0000 
A4 7.5000 4.4700 14.9000 45.0000 101.0000 33.0000 33.0000 
A5 7.3000 5.5200 15.4000 46.0000 84.0000 28.0000 33.0000 
A6 6.9000 4.8600 16.0000 47.0000 97.0000 33.0000 34.0000 
A7 7.8000 4.6800 14.7000 43.0000 92.0000 31.0000 34.0000 
A8 8.6000 4.8200 15.8000 42.0000 88.0000 33.0000 37.0000 
A9 5.1000 4.7100 14.0000 43.0000 92.0000 30.0000 32.0000 
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Data Visualization

• Spectral format (65 curves, one for each person)
• Difficult to compare different patients



Data Visualization
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Data Visualization
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Even 3 dimensions are already difficult. How to extend this?



Compact Summaries via PCA

minimize
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Compact Summaries via PCA
• Is there a representation better than the coordinate axes?
• Is it really necessary to show all the 53 dimensions?

• What if there are strong correlations between features?
• What if there’s some additive noise?
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Compact Summaries via PCA
• Is there a representation better than the coordinate axes?
• Is it really necessary to show all the 53 dimensions?

• What if there are strong correlations between features?
• What if there’s some additive noise?

• Find the smallest subspace that keeps most information
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Compact Summaries via PCA
maximize 

this
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Compact Summaries via PCA
• Subspace optimization  
 
 
 
 

• Signal to Noise ratio optimization
• Assume data x is generated with additive noise 

• Joint covariance matrix is 
• Joint eigenvalues are              , so we can ignore 

everything below the noise threshold 

maximize 
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2d dataset



First principal axis



Second principal axis



Eigenfaces (PCA on images)



Eigenfaces (PCA on images)



When projecting strange data
• Original images
• Reconstruction doesn’t look like the original 



Inference

Inference

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 24

p(weight|height) =

p(height,weight)
p(height) / p(height,weight)



Correlating weight and heightA simple problem

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 23



Correlating weight and heightA simple problem

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 23

assume Gaussian correlation



Inference

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 24

p(weight|height) =

p(height,weight)
p(height) / p(height,weight)



Inference

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 24

p(weight|height) =

p(height,weight)
p(height) / p(height,weight)
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The gory mathInference in Normal Distributions

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 27

Correlated Observations
Assume that the random variables t 2 Rn, t0 2 Rn0 are
jointly normal with mean (µ, µ0) and covariance matrix K

p(t, t0) / exp

 
�1

2


t� µ
t0 � µ0

�> 
Ktt Ktt0

K>
tt0 Kt0t0

��1


t� µ
t0 � µ0

�!
.

Inference
Given t, estimate t0 via p(t0|t). Translation into machine
learning language: we learn t0 from t.

Practical Solution
Since t0|t ⇠ N(µ̃, ˜K), we only need to collect all terms in
p(t, t0) depending on t0 by matrix inversion, hence

˜K = Kt0t0 �K>
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�1

tt Ktt0 and µ̃ = µ0 + K>
tt0
⇥
K�1

tt (t� µ)

⇤
| {z }
independent of t0

Handbook of Matrices, Lütkepohl 1997 (big timesaver)



Mini Summary
• Normal distribution 

• Sampling from  
Use               where               and  

• Estimating mean and variance  
 

• Conditional distribution is Gaussian, too!
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6.2 Gaussian Processes
6 Bayesian Kernel Methods
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http://alex.smola.org/teaching/10-701-15

http://alex.smola.org/teaching/10-701-15


Gaussian Process



Gaussian ProcessGaussian Process

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 28

Key Idea
Instead of a fixed set of random variables t, t0 we assume
a stochastic process t : X ! R, e.g. X = Rn.
Previously we had X = {age, height, weight, . . .}.

Definition of a Gaussian Process
A stochastic process t : X ! R, where all
(t(x

1

), . . . , t(xm)) are normally distributed.
Parameters of a GP

Mean µ(x) := E[t(x)]

Covariance Function k(x, x0) := Cov(t(x), t(x0))

Simplifying Assumption
We assume knowledge of k(x, x0) and set µ = 0.



Gaussian Process
• Sampling from a Gaussian Process

• Points x where we want to sample
• Compute covariance matrix X
• Can only obtain values at those points!
• In general entire function f(x) is NOT available



Gaussian Process

only looks smooth 
(evaluated at many points)

• Sampling from a Gaussian Process
• Points x where we want to sample
• Compute covariance matrix X
• Can only obtain values at those points!
• In general entire function f(x) is NOT available



Gaussian Process

p(t|X) = (2⇡)�
m
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where Kij = k(xi, xj) and µi = µ(xi)

• Sampling from a Gaussian Process
• Points x where we want to sample
• Compute covariance matrix X
• Can only obtain values at those points!
• In general entire function f(x) is NOT available



Kernels ...Gaussian Processes and Kernels

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 35

Covariance Function
Function of two arguments
Leads to matrix with nonnegative eigenvalues
Describes correlation between pairs of observations

Kernel
Function of two arguments
Leads to matrix with nonnegative eigenvalues
Similarity measure between pairs of observations

Lucky Guess
We suspect that kernels and covariance functions are
the same . . . yes!



Mini Summary
• Gaussian Process

• Think distribution over function values (not functions)
• Defined by mean and covariance function

• Generates vectors of arbitrary dimensionality (via X)
• Covariance function via kernels
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Another Example

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 45

Gaussian Process 
Regression



InferenceInference

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 24

p(weight|height) =

p(height,weight)
p(height) / p(height,weight)

Gaussian Processes for Inference

X = {height,weight}



Joint Gaussian Model
• Random variables (t,t’) are drawn from GP 
 

• Observe subset t
• Predict t’ using 

• Linear expansion (precompute things)
• Predictive uncertainty is data independent 

Good for experimental design
• Predictive uncertainty is data independent
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Inference in Normal Distributions

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 27

Correlated Observations
Assume that the random variables t 2 Rn, t0 2 Rn0 are
jointly normal with mean (µ, µ0) and covariance matrix K

p(t, t0) / exp
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Inference
Given t, estimate t0 via p(t0|t). Translation into machine
learning language: we learn t0 from t.

Practical Solution
Since t0|t ⇠ N(µ̃, ˜K), we only need to collect all terms in
p(t, t0) depending on t0 by matrix inversion, hence
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Linear Gaussian Process RegressionExample: Linear Regression

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 38

Linear kernel: k(x, x0) = hx, x0i
Kernel matrix X>X
Mean and covariance
˜K = X 0>X 0 � X 0>X(X>X)

�1X>X 0
= X 0>

(1� PX)X 0.

µ̃ = X 0>⇥
X(X>X)

�1t
⇤

µ̃ is a linear function of X 0.
Problem

The covariance matrix X>X has at most rank n.
After n observations (x 2 Rn) the variance vanishes.
This is not realistic.
“Flat pancake” or “cigar” distribution.



Degenerate Covariance

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 39

Degenerate Covariance



Degenerate Covariance

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 39

x t

Degenerate Covariance



Degenerate Covariance

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 39

x t y

‘fatten up’ 
covariance

Degenerate Covariance



Degenerate Covariance

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 39

x t y

‘fatten up’ 
covariance

Degenerate Covariance



Degenerate Covariance

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 39

x t y

‘fatten up’ 
covariance

t ⇠ N(µ,K)

yi ⇠ N(ti,�
2)

Degenerate Covariance



Additive NoiseAdditive Noise

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 40

Indirect Model
Instead of observing t(x) we observe y = t(x) + ⇠, where
⇠ is a nuisance term. This yields

p(Y |X) =

Z mY

i=1

p(yi|ti)p(t|X)dt

where we can now find a maximum a posteriori solution
for t by maximizing the integrand (we will use this later).

Additive Normal Noise
If ⇠ ⇠ N(0, �2

) then y is the sum of two Gaussian ran-
dom variables.
Means and variances add up.

y ⇠ N(µ, K + �21).



Training Data

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 41

Data



Predictive meanMean ~k>(x)(K + �21)

�1y

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 42

k(x,X)>(K(X,X) + �

21)�1
y



VarianceVariance k(x, x) + �2 � ~k>(x)(K + �21)

�1~k(x)

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 43



Putting it all togetherPutting everything together . . .

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 44



Putting it all togetherAnother Example

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 45



Ugly detailsThe ugly details

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 46

Covariance Matrices
Additive noise

K = K
kernel

+ �21

Predictive mean and variance
˜K = Kt0t0 �K>

tt0K
�1

tt Ktt0 and µ̃ = K>
tt0K
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tt t

Pointwise prediction
Ktt = K + �21

Kt0t0 = k(x, x) + �2

Ktt0 = (k(x
1

, x), . . . , k(xm, x))

Plug this into the mean and covariance equations.

With Noise
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Pseudocode

ktrtr   = k(xtrain,xtrain) + sigma2 * eye(mtr) 
ktetr   = k(xtest,xtrain) 
ktete   = k(xtest,xtest) 

alpha   = ytr/ktrtr %better if you use cholesky 
yte     = ktetr * alpha 
sigmate = ktete + sigma2 * eye(mte) + ...  
          ktetr * (ktetr/ktrtr)’

K̃ = Kt0t0 + �21�K>
tt0

�
Ktt + �21
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The connection between SVM and GPThe Support Vector Connection

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 36

Gaussian Process on Parameters
t ⇠ N(µ, K) where Kij = k(xi, xj)

Linear Model in Feature Space
t(x) = h�(x), wi + µ(x) where w ⇠ N(0,1)

The covariance between t(x) and t(x0) is then given by
Ew [h�(x), wihw, �(x0)i] = h�(x), �(x0)i = k(x, x0)

Conclusion
A small weight vector in “feature space”, as commonly
used in SVM amounts to observing t with high p(t).

Log prior � log p(t) () Margin kwk2

Will get back to this later again.

Linear model in feature space 
induces a Gaussian Process



Mini Summary
• Latent variables t drawn from a Gaussian Process
• Observations y are t corrupted with noise
• Observations y are drawn from Gaussian Process 

• Estimate y’|y,x,x’ (matrix inversion)

• SVM kernel is GP kernel

µ ! µ and K ! K + �21

K̃ = Kt0t0 + �21�K>
tt0
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��1
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and µ̃ = µ0 +K>
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Noisy Data

Alex J. Smola: Exponential Families for Estimation, Page 15

Gaussian Process 
Classification



Gaussian Process Classification
• Regression

• Data y is scalar
• Connection to t is by additive noise  
 
 

• (Binary) Classification
• Data y in {-1, 1}
• Connection to t is by logistic model

x t y

t ⇠ N(µ,K) and yi ⇠ N(ti,�
2)

i.e. p(yi|ti) =
�
2⇡�2

�� 1
2 e�

1
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2
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1
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Logistic function

p(yi|ti) =
1

1 + e�yiti



Recall - Binomial Distribution
• Features
• Domain is {-1, 1}
• Normalization

• Probability

�(x) = x
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Logistic function



Gaussian Process Classification
• Regression  
 
We can integrate out the latent variable t.

• Classification  
Closed form solution is not possible  
  
(we cannot solve the integral in t). 

t ⇠ N(µ,K) and yi ⇠ N(ti,�
2) hence y ⇠ N(µ,K + �21)

t ⇠ N(µ,K) and yi ⇠ Logistic(ti)

p(t|y, x) / p(t|x)
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/ exp
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Gaussian Process Classification
• Integrating out t,t’  
 
 
is very very expensive (e.g. MCMC)

• Maximum a Posteriori approximation
• Find
• Ignore correlation in test data (horrible)
• Find
• Estimate

p(y0|y, x, x0) =

Z
d(t, t0)p(y0|t0)p(y|t)p(t, t0|x, x0)

ˆ

t := argmax
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0
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ˆ
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)

y
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0
(x

0
))



Maximum a Posteriori Approximation
• Step 1 - maximize p(t|y,x)

• Step 2 - find t’|t for MAP estimate of t 
 

• Step 3 - estimate p(y’|t’)

minimize

t

1

2

t>K�1t+
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i=1

log

�
1 + e�yiti

�
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Clean DataA Toy Example

Alex J. Smola: Exponential Families for Estimation, Page 14



Noisy DataNoisy Data

Alex J. Smola: Exponential Families for Estimation, Page 15



Connection to SVMs
• SVM objective  
 

• Logistic regression objective (MAP estimation) 

• Reparametrize 

minimize

t

1

2

t>K�1t+
mX

i=1

log

�
1 + e�yiti

�

minimize

↵

1

2

↵>K↵+

mX

i=1

max (0, 1� yi[K↵]i)

↵ = K�1t

minimize

↵

1

2

↵>K↵+

mX

i=1

log (1 + exp yi[K↵]i)



More loss functions

• Logistic 
• Huberized loss 

• Soft margin

8
><

>:

0 if f(x) > 1
1
2 (1� f(x))2 if f(x) 2 [0, 1]
1
2 � f(x) if f(x) < 0

max(0, 1� f(x))

(asymptotically) 
linear

(asymptotically) 0

log

h
1 + e�f(x)

i



Mini Summary
• Latent variables drawn from Gaussian Process
• Observation drawn from logistic model

• Impossible to integrate out latent variables
• Maximum a posteriori inference  

(with many hacks to make it scale)
• Optimization problem is similar to SVM 

(different loss and parametrization               )
• Advanced topic - adjusting K via prior on k

↵ = K�1t
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regularization operators and Support Vector Kernels 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• Scholkopf, Smola, Herbrich, 2001; A Generalized Representer Theorem 
alex.smola.org/papers/2001/SchHerSmo01.pdf

• Teo, Globerson, Roweis, Smola, 2008; Convex Learning with Invariances 
http://machinelearning.wustl.edu/mlpapers/paper_files/NIPS2007_1047.pdf

• Rasmussen, 2006; Gaussian Processes for Machine Learning  
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.86.3414
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