MACHINE LEARNING DEPARTMENT

5.1 Linear Algebra
 5 Math and Optimization

Alexander Smola

Introduction to Machine Learning 10-701 http://alex.smola.org/teaching/10-701-15

Vectors

Carnegie Mellon University

Vector space

- Space of objects V that look like vectors ...

- Example - points in 3D space. We can add them up, scale them, subtract them, etc.

$$
(3,2,9)+(1,0.5,-3)=(4,2.5,6)
$$

- Example - polynomials
$\left(3 x^{2}+2 x^{5}+9 x^{6}\right)+\left(x+0.5 x^{5}-3 x^{6}\right)=\left(x+3 x^{2}+2.5 x^{5}+6 x^{6}\right)$

Vector space

- Associativity and commutativity

$$
a+(b+c)=(a+b)+c \text { and } a+b=b+a
$$

- Identity and inverse element

$$
a+0=a \text { for all } a \text { and } a+(-a)=0
$$

- Scalar multiplication

$$
\alpha(\beta a)=(\alpha \beta) a \text { and } 1 a=a \text { for all } a, \alpha, \beta
$$

- Distributive law

$$
(\alpha+\beta) a=\alpha a+\beta a \text { and } \alpha(a+b)=\alpha a+\alpha b
$$

Examples

- Coordinate spaces

- Polynomials

$$
5 x^{2}+9.1 x^{3}
$$

- Function spaces (generalizes polynomials)

$$
\alpha f(x)+\beta g(x) \in V
$$

- Linear systems of equations

$$
\begin{array}{r}
a+3 b+c=0 \\
4 a+2 b+2 c=0
\end{array}
$$

any linear combination holds, too

- Complex numbers

\& Inner Products

Carnegie Mellon University

Metric

- Symmetric distance function $d(a, b)$

- Conditions

$$
\begin{aligned}
d(a, b) & \geq 0 \text { for all } a, b \\
d(a, b) & =0 \text { implies } a=b \\
d(a, b)+d(b, c) & \geq d(a, c) \text { (triangle) }
\end{aligned}
$$

Example

- Euclidean distance

$$
d(a, b)=\sqrt{\sum_{i=1}^{d}\left(a_{i}-b_{i}\right)^{2}}
$$

- Trivial distance

$$
d(a, b)=\sum_{i=1}^{d}\left\{a_{i} \neq b_{i}\right\}
$$

- Linear combination

$$
d(a, b)=d^{\prime}(a, b)+d^{\prime \prime}(a, b)
$$

Norm

- Essentially a translation invariant metric

$$
\begin{array}{rlrl}
\|a\| & \geq 0 \text { for all } a & \\
\|a\| & =0 \text { implies } a=0 & \\
\|\alpha a\| & =\alpha\|a\| & & \text { triangle } \\
\|a+b\| & \leq\|a\|+\|b\| & & \text { inequality }
\end{array}
$$

- From norms to metrics

$$
d(a, b):=\|a-b\|
$$

symmetry, nonnegativity, triangle inequality

Examples

- Euclidean norm

$$
\|a\|_{2}:=\left[\sum_{i=1}^{d} a_{i}^{2}\right]^{\frac{1}{2}}
$$

- Unit ball

$$
B_{1}:=\left\{x \mid \sum_{i=1}^{d} x_{i}^{2} \leq 1\right\}
$$

Examples

- I_{1} norm

$$
\|a\|_{1}:=\left[\sum_{i=1}^{d}\left|a_{i}\right|\right]
$$

- Unit ball

$$
B_{1}:=\left\{x\left|\sum_{i=1}^{d}\right| x_{i} \mid \leq 1\right\}
$$

Examples

- l_{∞} norm
- Unit ball

$$
\begin{aligned}
\|a\|_{\infty} & :=\max _{1 \leq i \leq d}\left|a_{i}\right| \\
B_{\infty} & :=\left\{x\left|\max _{1 \leq i \leq d}\right| x_{i} \mid \leq 1\right\}
\end{aligned}
$$

- l_{p} norm

$$
\|a\|_{p}:=\left[\sum_{i=1}^{d}\left|a_{i}\right|^{p}\right]^{\frac{1}{p}}
$$

Inner (dot) products

- Linear function on vector space

$$
f(\alpha a+b)=\alpha f(a)+f(b)
$$

- This is a vector space in its own right
- Can we find a less awkward notation? Write in terms of coordinates
- How about norms? Dual norm

$$
\langle a, b\rangle:=\sum_{i=1}^{d} a_{i} b_{i}
$$

$$
\|a\|_{*}:=\sup _{\|b\| \leq 1}\langle a, b\rangle
$$

Dual Norms

- Scaling (trivial)

$$
\|a\|_{*}:=\sup _{\|b\| \leq 1}\langle a, b\rangle
$$

- Nonnegativity \& symmetry (trivial)
- Triangle inequality

$$
\begin{aligned}
\left\|a+a^{\prime}\right\|_{*} & =\sup _{\|b\| \leq 1}\left\langle a+a^{\prime}, b\right\rangle \\
& \leq \sup _{\|b\| \leq 1}\langle a, b\rangle+\sup _{\|b\| \leq 1}\left\langle a^{\prime}, b\right\rangle \\
& =\|a\|_{*}+\left\|a^{\prime}\right\|_{*}
\end{aligned}
$$

- Holder inequality

$$
\langle a, b\rangle \leq\|a\|\|b\|_{*}
$$

Examples

- Example for Euclidean norm

$$
\begin{gathered}
\|a\|_{*}:=\sup _{\|b\| \leq 1}\langle a, b\rangle \\
\underset{b}{\operatorname{maximize}} \sum_{i=1}^{d} a_{i} b_{i} \text { subject to } \sum_{i=1}^{d} b_{i}^{2} \leq 1
\end{gathered}
$$

- This is solved for unit vector in the same direction as a, i.e. $\quad b=\|a\|_{2}^{-1} a$
- Dual norm is also Euclidean norm
- Generally, $1 / p+1 / q=1$ for norms

Examples

Carnegie Mellon University

Basis

- Set of elements in vector space
- Linear independence

$$
\sum_{i} \alpha_{i} a_{i}=0 \text { if and only if all } \alpha_{i}=0
$$

- Spans the space for all $v \in V$ there exists $\sum \alpha_{i} a_{i}=v$
- Useful for mapping objects to 'numbers'
- Vector representation
- Inner product
- Linear maps in vector spaces - matrices

Examples

- Euclidean space with canonical basis

- Square integrable functions (L2)

Fourier basis $\sin (a x), \cos (a x)$

- Basis need not be finite set

Not a basis

... but a tight frame (look up wavelet literature)

Carnegie Mellon University

A basis

... but only a frame (look up wavelet literature)

Carnegie Mellon University

Basis decomposition

- How do we solve this ...

$$
\text { for all } v \in V \text { there exists } \sum_{i} \alpha_{i} a_{i}=v
$$

... linear systems are a vector space

$$
\underbrace{\left\langle v, a_{j}\right\rangle}_{=: \beta_{j}}=\left\langle\sum_{i} \alpha_{i} a_{i}, a_{j}\right\rangle=\sum_{i} \alpha_{i} \underbrace{\left\langle a_{i}, a_{j}\right\rangle}_{=: A_{i j}}
$$

- Rewrite in matrix notation

$$
\beta=\alpha^{\top} A
$$

Now we are back to regular matrix/vector

Food for thought

- Basis for vector space of polynomials
- Inner product
- Restrict to homogeneous polynomials?
- Fourier transform
- sin ax, cos ax - how many do we need?

Rotations

Orthogonality

- Solving $\beta=\alpha^{\top} A$ requires work. It would be much nicer without A.
- Orthonormal basis

$$
\left\langle a_{i}, a_{j}\right\rangle=\delta_{i j}
$$

- Gram-Schmidt algorithm for construction

$$
\begin{aligned}
v_{1} & =\left\|a_{1}\right\|^{-1} a_{1} \\
t_{i} & =a_{i}-\sum^{i-1} v_{j}\left\langle a_{i}, v_{j}\right\rangle \text { and } v_{i}=\left\|t_{i}\right\|^{-1} t_{i}
\end{aligned}
$$

Orthogonality follows by induction

Gram Schmidt algorithm

only needs inner products

Orthogonal matrix

- Matrix of orthonormal vectors V
- Product with its transpose

$$
\left[V^{\top} V\right]_{i j}=\sum_{l}\left[v_{i}\right]_{l}\left[v_{j}\right]_{l}=\left\langle v_{i}, v_{j}\right\rangle=\delta_{i j}
$$

- Transpose is also orthogonal
- Product of two is still orthogonal

$$
(U V)^{\top}(U V)=V^{\top} U^{\top} U V=V^{\top} V=1
$$

Useful things

- Keeps inner products

$$
\langle V a, V b\rangle=a^{\top} V^{\top} V b=a^{\top} b
$$

- Keeps lengths invariant, too ...

$$
\|V a\|^{2}=\langle V a, V a\rangle=\langle a, a\rangle=\|a\|^{2}
$$

- We can reconstruct the inner product just from the lengths ... hint ...

$$
\|a+b\|^{2}-\|a-b\|^{2}
$$

- Fourier transform does this, too

Eigenvectors

- Eigenvector \& eigenvalue

$$
M x=\lambda x
$$

(sanity check) Why does M have to be square?

- For nonsymmetric matrix we can only get a Jordan normal form

Eigenvectors for Symmetric Matrices

- Eigenvector \& eigenvalue

$$
M x=\lambda x
$$

- Orthogonality

$$
\lambda_{i}\left\langle x_{i}, x_{j}\right\rangle=\left\langle M x_{i}, x_{j}\right\rangle=\left\langle x_{i}, M x_{j}\right\rangle=\lambda_{j}\left\langle x_{i}, x_{j}\right\rangle
$$ orthogonality whenever eigenvalues don't match

- Within subspace of same eigenvalues trivial.

Positive Semidefinite Matrices

- All eigenvalues are nonnegative
- Equivalent to $x^{\top} M x \geq 0$
- Proof

$$
x^{\top} M x=\left[\sum_{i} \alpha_{i} x_{i}\right]^{\top} M\left[\sum_{j} \alpha_{j} x_{j}\right]=\sum_{i, j} \alpha_{i} \alpha_{j} x_{i}^{\top} M x_{j}=\sum_{i} \alpha_{i}^{2} \lambda_{i} \geq 0
$$

- If all eigenvalues are nonnegative this holds
- If one of them is negative, pick matching eigenvector for contradiction

Norms

- Recall - vector norm

$$
\|a\|_{*}:=\sup _{\|b\| \leq 1}\langle a, b\rangle
$$

- For vectors we get to play with left and right side

$$
\sup _{x, y} x^{\top} M y \text { subject to }\|x\|,\|y\| \leq 1
$$

- Special case - operator norm (l2 space) Picks largest eigenvalue / singular value

Norms

- Frobenius Norm

$$
\|M\|_{\text {Frob }}^{2}=\sum_{i j} M_{i j}^{2}=\sum_{i} \lambda_{i}^{2}
$$

- Trace Norm

$$
\|M\|_{\mathrm{KyFan}}=\sum_{i}\left|\lambda_{i}\right|
$$

- Operator Norm

$$
\|M\|=\max _{i}\left|\lambda_{i}\right|
$$

- Simple inequality (follows from norms)

$$
n^{-1}\|M\|_{\text {KyFan }} \leq n^{-\frac{1}{2}}\|M\|_{\text {Frob }} \leq\|M\|
$$

Trace

- Trace

$$
\operatorname{tr} M:=\sum_{i} M_{i i}
$$

- Commuting property

$$
\operatorname{tr} A B=\sum_{i}\left[\sum_{j} A_{i j} B_{j i}\right]=\sum_{j}\left[\sum_{i} B_{j i} A_{i j}\right]=\operatorname{tr} B A
$$

- Eigenvalue sum

$$
\operatorname{tr} M=\operatorname{tr} U^{\top} \Lambda U=\operatorname{tr} \Lambda U U^{\top}=\operatorname{tr} \Lambda=\sum_{i} \lambda_{i}
$$

Determinant

- Product of all eigenvalues

$$
\operatorname{det} M=\prod_{i} \lambda_{i}=\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) \prod_{i=1}^{n} M_{i \pi(i)}
$$

- Linear in each column of M
- Sign flips due to permutations
- Hence $\operatorname{det}(\mathrm{a}, \mathrm{a}, \ldots$. . $)=0$
- Hence vanishes for linearly dependence
- Computes n-dimensional volume

MACHINE LEARNING DEPARTMENT

5.2 Unconstrained Problems 5 Math and Optimization

Alexander Smola

Introduction to Machine Learning 10-701 http://alex.smola.org/teaching/10-701-15

Convexity 101

Carnegie Mellon University

Convexity 101

- Convex set For $x, x^{\prime} \in X$ it follows that $\lambda x+(1-\lambda) x^{\prime} \in X$ for $\lambda \in[0,1]$
- Convex function

$$
\lambda \lambda f(x)+(1-\lambda) f\left(x^{\prime}\right) \geq f\left(\lambda x+(1-\lambda) x^{\prime}\right) \text { for } \lambda \in[0,1]
$$

Carnegie Mellon University

Convexity 101

- Convex set For $x, x^{\prime} \in X$ it follows that $\lambda x+(1-\lambda) x^{\prime} \in X$ for $\lambda \in[0,1]$
- Convex function

$$
\lambda \lambda f(x)+(1-\lambda) f\left(x^{\prime}\right) \geq f\left(\lambda x+(1-\lambda) x^{\prime}\right) \text { for } \lambda \in[0,1]
$$

Carnegie Mellon University

Convexity 101

- Below-set of convex function is convex

- Convex functions don't have local minima Proof by contradiction - linear interpolation breaks local minimum condition

Convexity 101

- Below-set of convex function is convex

- Convex functions don't have local minima Proof by contradiction - linear interpolation breaks local minimum condition

Convexity 101

- Vertex of a convex set Point which cannot be extrapolated within convex set

$$
\lambda x+(1-\lambda) x^{\prime} \notin X \text { for } \lambda>1 \text { for all } x^{\prime} \in X
$$

- Convex hull

$$
\operatorname{co} X:=\left\{\bar{x} \mid \bar{x}=\sum_{i=1}^{n} \alpha_{i} x_{i} \text { where } n \in \mathbb{N}, \alpha_{i} \geq 0 \text { and } \sum_{i=1}^{n} \alpha_{i} \leq 1\right\}
$$

- Convex hull of set is a convex set

Convexity 101

- Supremum on convex hull

$$
\sup _{x \in X} f(x)=\sup _{x \in \operatorname{coS} X} f(x)
$$

Proof by contradiction

- Maximum over convex function on convex set is obtained on vertex
- Assume that maximum inside line segment
- Then function cannot be convex
- Hence it must be on vertex

One dimensional problems

Require: a, b, Precision ϵ
Set $A=a, B=b$
repeat

$$
\begin{aligned}
& \text { if } f^{\prime}\left(\frac{A+B}{2}\right)>0 \text { then } \\
& B=\frac{A+B}{2} \\
& \text { else }
\end{aligned}
$$

$$
A=\frac{A+B}{2}
$$

end if
until $(B-A) \min \left(\left|f^{\prime}(A)\right|,\left|f^{\prime}(B)\right|\right) \leq \epsilon$

- Key Idea
- For differentiable f search for x with $\mathrm{f}^{\prime}(\mathrm{x})=0$
- Interval bisection (derivative is monotonic)
- Need $\log (A-B)-\log \varepsilon$ to converge
- Can be extended to nondifferentiable problems
(exploit convexity in upper bound and keep 5 points)

Gradient descent

- Key idea

- Gradient points into descent direction
- Locally gradient is good approximation of objective function
- GD with Line Search
- Get descent direction
- Unconstrained line search
- Exponential convergence for strongly convex objective
given a starting point $x \in \operatorname{dom} f$.
repeat

1. $\Delta x:=-\nabla f(x)$.
2. Line search. Choose step size t via exact or backtracking line search.
3. Update. $x:=x+t \Delta x$.
until stopping criterion is satisfied.

Convergence Analysis

- Strongly convex function

$$
f(y) \geq f(x)+\left\langle y-x, \partial_{x} f(x)\right\rangle+\frac{m}{2}\|y-x\|^{2}
$$

- Progress guarantees (minimum \mathbf{x}^{*})

$$
f(x)-f\left(x^{*}\right) \geq \frac{m}{2}\left\|x-x^{*}\right\|^{2}
$$

- Lower bound on the minimum (set $y=x^{*}$)

$$
\begin{aligned}
f(x)-f\left(x^{*}\right) & \leq\left\langle x-x^{*}, \partial_{x} f(x)\right\rangle-\frac{m}{2}\left\|x^{*}-x\right\|^{2} \\
& \leq \sup _{y}\left\langle x-y, \partial_{x} f(x)\right\rangle-\frac{m}{2}\|y-x\|^{2} \\
& =\frac{1}{2 m}\left\|\partial_{x} f(x)\right\|^{2}
\end{aligned}
$$

Convergence Analysis

- Bounded Hessian

$$
\begin{aligned}
f(y) & \leq f(x)+\left\langle y-x, \partial_{x} f(x)\right\rangle+\frac{M}{2}\|y-x\|^{2} \\
\Rightarrow f\left(x+t g_{x}\right) & \leq f(x)-t\left\|g_{x}\right\|^{2}+\frac{M}{2} t^{2}\left\|g_{x}\right\|^{2} \\
& \leq f(x)-\frac{1}{2 M}\left\|g_{x}\right\|^{2}
\end{aligned}
$$

Using strong convexity

$$
\begin{aligned}
\Longrightarrow f\left(x+t g_{x}\right)-f\left(x^{*}\right) & \leq f(x)-f\left(x^{*}\right)-\frac{1}{2 M}\left\|g_{x}\right\|^{2} \\
& \leq f(x)-f\left(x^{*}\right)\left[1-\frac{m}{M}\right]
\end{aligned}
$$

- Iteration bound

$$
\frac{M}{m} \log \frac{f(x)-f\left(x^{*}\right)}{\epsilon}
$$

Basic steps

given a starting point $x \in \operatorname{dom} f$. repeat

1. $\Delta x:=-\nabla f(x)$.
2. Line search. Choose step size t via exact or backtracking line search.
3. Update. $x:=x+t \Delta x$.
until stopping criterion is satisfied.

Basic steps

distribute data over
 several machines

given a starting point $x \in \operatorname{dom} f$. repeat

1. $\Delta x:=-\nabla f(x)$.
2. Line search. Choose step size t via exact or backtracking line search.
3. Update. $x:=x+t \Delta x$.
until stopping criterion is satisfied.

Basic steps

distribute data over several machines

given a starting point $x \in \operatorname{dom} f$. repeat

1. $\Delta x:=-\nabla f(x)$.
2. Line search. Choose step size t via exact or backtracking line search.
3. Update. $x:=x+t \Delta x$.
until stopping criterion is satisfied.

Basic steps

distribute data over several machines

given a starting point $x \in \operatorname{dom} f$. repeat

1. $\Delta x:=-\nabla f(x)$.
2. Line search. Choose step size t via exact or backtracking line search.
3. Update. $x:=x+t \Delta x$. until stopping criterion is satisfied.

update value in search direction and feed back

Basic steps

distribute data over several machines

given a starting point $x \in \operatorname{dom} f$. repeat

1. $\Delta x:=-\nabla f(x)$.
2. Line search. Choose step size t via exact or backtracking line search.
3. Update. $x:=x+t \Delta x$.
until stopping criterion is satisfied.

update value in search direction and feed back

communicate final value

 to each machine
Basic steps

given a starting point $x \in \operatorname{dom} f$.
repeat

1. $\Delta x:=-\nabla f(x)$.
2. Line search. Choose step size t via exact or backtracking line search.
3. Update. $x:=x+t \Delta x$.
until stopping criterion is satisfied.

- Map: compute gradient on subblock and emit
- Reduce: aggregate parts of the gradients
- Communicate the aggregate gradient back to all machines

Basic steps

distribute data over several machines

given a starting point $x \in \operatorname{dom} f$.
repeat

1. $\Delta x:=-\nabla f(x)$.
2. Line search. Choose step size t via exact or backtracking line search.
3. Update. $x:=x+t \Delta x$.
until stopping criterion is satisfied.

- Map: compute gradient on subblock and emit
- Reduce: aggregate parts of the gradients
- Communicate the aggregate gradient back to all machines

Basic steps

distribute data over several machines

given a starting point $x \in \operatorname{dom} f$. repeat

1. $\Delta x:=-\nabla f(x)$.
2. Line search. Choose step size t via exact or backtracking line search.
3. Update. $x:=x+t \Delta x$.
until stopping criterion is satisfied.

- Map: compute gradient on subblock and emit
- Reduce: aggregate parts of the gradients
- Communicate the aggregate gradient back to all machines

Basic steps

- Repeat until converged
- Map: compute function \& derivative at given parameter t
- Reduce: aggregate parts of function and derivative
- Decide based on $f(x)$ and $f^{\prime}(x)$ which interval to pursue
- Send updated parameter to all machines
repeat

1. $\Delta x:=-\nabla f(x)$.
2. Line search. Choose step size t via exact or backtracking line search.
3. Update. $x:=x+t \Delta x$.
until stopping criterion is satisfied.

Basic steps

- Repeat until converged
- Map: compute function \& derivative at given parameter t
- Reduce: aggregate parts of function and derivative
- Decide based on $f(x)$ and $f^{\prime}(x)$ which interval to pursue
- Send updated parameter to all machines
repeat

1. $\Delta x:=-\nabla f(x)$.
2. Line search. Choose step size t via exact or backtracking line search.
3. Update. $x:=x$ until stopping criterion is satisfiea.

update value in search direction and feed back

gie Mellon University

Basic steps

- Repeat until converged
- Map: compute function \& derivative at given parameter t
- Reduce: aggregate parts of function and derivative
- Decide based on $f(x)$ and $f^{\prime}(x)$ which interval to pursue
- Send updated parameter to all machines
repeat

1. $\Delta x:=-\nabla f(x)$.
2. Line search. Choose step size t via exact or backtracking line search.
3. Update. $x:=x$ until stopping criterion is satisfiea.

update value in search direction and feed back

communicate final value

Scalability analysis

- Linear time in number of instances
- Linear storage in problem size, not data
- Logarithmic time in accuracy
- 'perfect' scalability
- 10s of passes through dataset for each iteration (line search is very expensive)
- MapReduce loses state at each iteration
- Single master as bottleneck (important if the state space is several GB)

Carnegie Mellon University

A Better Algorithm

- Avoiding the line search
- Not used in convergence proof anyway
- Simply pick update

$$
x \leftarrow x-\frac{1}{M} \partial_{x} f(x)
$$

- Only single pass through data per iteration
- Only single MapReduce pass per iteration
- Logarithmic iteration bound (as before)

$$
\frac{M}{m} \log \frac{f(x)-f\left(x^{*}\right)}{\epsilon}
$$

Newton Method

- Convex objective function f
- Nonnegative second derivative

$$
\partial_{x}^{2} f(x) \succeq 0
$$

- Taylor expansion

Hessian

$$
f(x+\delta)=f(x)+\left\langle\delta, \partial_{x} f(x)\right\rangle+\frac{1}{2} \delta^{\top} \partial_{x}^{2} f(x) \delta+O\left(\delta^{3}\right)
$$

gradient

- Minimize approximation \& iterate til converged

$$
x \leftarrow x-\left[\partial_{x}^{2} f(x)\right]^{-1} \partial_{x} f(x)
$$

Convergence Analysis

- There exists a region around optimality where Newton's method converges quadratically if f is twice continuously differentiable
- For some region around x^{*} gradient is well approximated by Taylor expansion

$$
\left\|\partial_{x} f\left(x^{*}\right)-\partial_{x} f(x)-\left\langle x^{*}-x, \partial_{x}^{2} f(x)\right\rangle\right\| \leq \gamma\left\|x^{*}-x\right\|^{2}
$$

- Expand Newton update

$$
\begin{aligned}
\left\|x_{n+1}-x^{*}\right\| & =\left\|x_{n}-x^{*}-\left[\partial_{x}^{2} f\left(x_{n}\right)\right]^{-1}\left[\partial_{x} f\left(x_{n}\right)-\partial_{x} f\left(x^{*}\right)\right]\right\| \\
& =\left\|\left[\partial_{x}^{2} f\left(x_{n}\right)\right]^{-1}\left[\partial_{x}^{f}\left(x_{n}\right)\left[x_{n}-x^{*}\right]-\partial_{x} f\left(x_{n}\right)+\partial_{x} f\left(x^{*}\right)\right]\right\| \\
& \leq \gamma\left\|\left[\partial_{x}^{2} f\left(x_{n}\right)\right]^{-1}\right\|\left\|x_{n}-x^{*}\right\|^{2}
\end{aligned}
$$

Convergence Analysis

- Two convergence regimes
- As slow as gradient descent outside the region where Taylor expansion is good

$$
\left\|\partial_{x} f\left(x^{*}\right)-\partial_{x} f(x)-\left\langle x^{*}-x, \partial_{x}^{2} f(x)\right\rangle\right\| \leq \gamma\left\|x^{*}-x\right\|^{2}
$$

- Quadratic convergence once the bound holds

$$
\left\|x_{n+1}-x^{*}\right\| \leq \gamma\left\|\left[\partial_{x}^{2} f\left(x_{n}\right)\right]^{-1}\right\|\left\|x_{n}-x^{*}\right\|^{2}
$$

- Newton method is affine invariant (proof by chain rule)

See Boyd and Vandenberghe, Chapter 9.5 for much more

Newton method rescales space

from Boyd \& Vandenberghe
Carnegie Mellon University

Newton method rescales space

Boyd \& Vandenberghe
Carnegie Mellon University

Parallel Newton Method

- Good rate of convergence
- Few passes through data needed
- Parallel aggregation of gradient and Hessian
- Gradient requires $\mathrm{O}(\mathrm{d})$ data
- Hessian requires $\mathrm{O}\left(\mathrm{d}^{2}\right)$ data
- Update step is $\mathrm{O}\left(\mathrm{d}^{3}\right)$ \& nontrivial to parallelize
- Use it only for low dimensional problems

Key Idea

- Minimizing quadratic function $(K \succeq 0)$

$$
f(x)=\frac{1}{2} x^{\top} K x-l^{\top} x+c
$$

takes cubic time (e.g. Cholesky factorization)

- Matrix vector products and orthogonalization
- Vectors x, x' are K orthogonal if
- m mutually K orthogonal vectors

$$
x^{\top} K x^{\prime}=0
$$

- form a basis

$$
x_{i} \in \mathbb{R}^{m}
$$

- allow expansion
- solve linear system

$$
\begin{aligned}
& z=\sum_{i=1}^{m} x_{i} \frac{x_{i}^{\top} K z}{x_{i}^{\top} K x_{i}} \\
& z=\sum_{i=1}^{m} x_{i} \frac{x_{i}^{\top} y}{x_{i}^{\top} K x_{i}} \text { for } y=K z
\end{aligned}
$$

Proof

- m mutually K orthogonal vectors $x_{i} \in \mathbb{R}^{m}$
- form a basis
- allow expansion
- solve linear system

$$
\begin{aligned}
& z=\sum_{i=1}^{m} x_{i} \frac{x_{i}^{\top} K z}{x_{i}^{\top} K x_{i}} \\
& z=\sum_{i=1}^{m} x_{i} \frac{x_{i}^{\top} y}{x_{i}^{\top} K x_{i}} \text { for } y=K z
\end{aligned}
$$

- Show linear independence by contradiction

$$
\sum_{i} \alpha_{i} x_{i}=0 \text { hence } 0=x_{j}^{\top} K \sum_{i} \alpha_{i} x_{i}=x_{j}^{\top} K x_{j} \alpha_{j}
$$

- Reconstruction - expand z into basis

$$
z=\sum \alpha_{i} x_{i} \text { hence } x_{j}^{\top} K z=x_{j}^{\top} K \sum \alpha_{i} x_{i}=x_{j}^{\top} K x_{j} \alpha_{j}
$$

- For linear system plug in $\mathrm{y}=\mathrm{i}=\mathrm{Kz}$

Conjugate Gradient Descent

- Gradient computation

$$
f(x)=\frac{1}{2} x^{\top} K x-l^{\top} x+c \text { hence } g(x)=K x-l
$$

- Algorithm
initialize x_{0} and $v_{0}=g_{0}=K x_{0}-l$ and $i=0$ repeat

$$
\begin{aligned}
& \quad x_{i+1}=x_{i}-v_{i} \frac{g_{i}^{\top} v_{i}}{v_{i}^{\top} K v_{i}} \\
& g_{i+1}=K x_{i+1}-l \\
& \quad v_{i+1}=-g_{i+1}+v_{i} \frac{g_{i+1}^{\top} K v_{i}}{v_{i}^{\top} K v_{i}} \\
& i \leftarrow i+1 \\
& \text { until } g_{i}=0
\end{aligned}
$$

deflation step

K orthogonal

Proof - Deflation property

$$
\begin{aligned}
x_{i+1} & =x_{i}-v_{i} \frac{g_{i}^{\top} v_{i}}{v_{i}^{\top} K v_{i}} \\
g_{i+1} & =K x_{i+1}-l \\
v_{i+1} & =-g_{i+1}+v_{i} \frac{g_{i+1}^{\top} K v_{i}}{v_{i}^{\top} K v_{i}}
\end{aligned}
$$

- First assume that the vi are K orthogonal and show that xi+1 is optimal in span of $\{\mathrm{v} 1$.. vi\}
- Enough if we show that $v_{j}^{\top} g_{i}=0$ for all $j<i$
- For $\mathrm{j}=\mathrm{i}$ expand

$$
\begin{aligned}
v_{i}^{\top} g_{i+1} & =v_{i}^{\top}\left[K x_{i}-l-K v_{i} \frac{g_{i}^{\top} v_{i}}{v_{i}^{\top} K v_{i}}\right] \\
& =v_{i}^{\top} g_{i}-v_{i}^{\top} K v_{i} \frac{g_{i}^{\top} v_{i}}{v_{i}^{\top} K v_{i}}=0
\end{aligned}
$$

- For smaller ja consequence of K orthogonality

Proof - K orthogonality

$$
\begin{aligned}
x_{i+1} & =x_{i}-v_{i} \frac{g_{i}^{\top} v_{i}}{v_{i}^{\top} K v_{i}} \\
g_{i+1} & =K x_{i+1}-l \\
v_{i+1} & =-g_{i+1}+v_{i} \frac{g_{i+1}^{\top} K v_{i}}{v_{i}^{\top} K v_{i}}
\end{aligned}
$$

- Need to check that vi+1 is K orthogonal to all vj (rest automatically true by construction)

$$
v_{j}^{\top} K v_{i+1}=-v_{j}^{\top} K g_{i+1}+v_{j}^{\top} K v_{i} \frac{g_{i+1}^{\top} K v_{i}}{v_{i}^{\top} K V_{i}}
$$

0 by deflation

0 by K orthogonality

Properties

- Subspace expansion method for optimality ($\mathrm{g}, \mathrm{Kg}, \mathrm{K}^{2} \mathrm{~g}, \mathrm{~K}^{3} \mathrm{~g}, \ldots$)
- Focuses on leading eigenvalues
- Often sufficient to take only a few steps (whenever the eigenvalues decay rapidly)

Extensions

Generic Method	Compute Hessian $K_{i}:=f^{\prime \prime}\left(x_{i}\right)$ and update α_{i}, β_{i} with
	$\alpha_{i}=-\frac{g_{i}^{\top} v_{i}}{v_{i}^{\top} K_{i} v_{i}}$
	$\beta_{i}=\frac{g_{i+1}^{\top} K_{i} v_{i}}{v_{i}^{\top} K_{i} v_{i}}$
	This requires calculation of the Hessian at each iteration.
Fletcher-Reeves [163]	Find α_{i} via a line search and use Theorem 6.20 (iii) for β_{i}
	$\alpha_{i}=\operatorname{argmin}_{\alpha} f\left(x_{i}+\alpha v_{i}\right)$
	$\beta_{i}=\frac{g_{i+1}^{\top} g_{i+1}}{g_{i}^{\top} g_{i}}$
Polak-Ribiere $[398]$	Find α_{i} via a line search
	$\alpha_{i}=\operatorname{argmin}_{\alpha} f\left(x_{i}+\alpha v_{i}\right)$
	$\beta_{i}=\frac{\left(g_{i+1}-g_{i}\right)^{\top} g_{i+1}}{g_{i}^{\top} g_{i}}$
	Experimentally, Polak-Ribiere tends to be better than
	Fletcher-Reeves.

Broyden letcher-Goldfaro-Shanno

Basic Idea

- Newton-like method to compute descent direction

$$
\delta_{i}=B_{i}^{-1} \partial_{x} f\left(x_{i-1}\right)
$$

- Line search on f in direction

$$
x_{i+1}=x_{i}-\alpha_{i} \delta_{i}
$$

- Update B with rank 2 matrix

$$
B_{i+1}=B_{i}+u_{i} u_{i}^{\top}+v_{i} v_{i}^{\top}
$$

- Require that Quasi-Newton condition holds

$$
\begin{gathered}
B_{i+1}\left(x_{i+1}-x_{i}\right)=\partial_{x} f\left(x_{i+1}\right)-\partial_{x} f\left(x_{i}\right) \\
B_{i+1}=B_{i}+\frac{g_{i} g_{i}^{\top}}{\alpha_{i} \delta_{i}^{\top} g_{i}}-\frac{B_{i} \delta_{i} \delta_{i}^{\top} B_{i}}{\delta_{i}^{\top} B_{i} \delta_{i}} \mathrm{Carm}
\end{gathered}
$$

Properties

- Simple rank 2 update for B
- Use matrix inversion lemma to update inverse
- Memory-limited versions L-BFGS
- Use toolbox if possible (TAO, MATLAB) (typically slower if you implement it yourself)
- Works well for nonlinear nonconvex objectives (often even for nonsmooth objectives)

MACHINE LEARNING DEPARTMENT

5.3
 Constrained Problems

5 Math and Optimization

Alexander Smola

Introduction to Machine Learning 10-701 http://alex.smola.org/teaching/10-701-15

Carnegie Mellon University

Constrained Convex Minimization

- Optimization problem minimize $f(x)$
subject to $c_{i}(x) \leq 0$ for all i
- Common constraints
- linear inequality constraints

$$
\left\langle w_{i}, x\right\rangle+b_{i} \leq 0
$$

- quadratic cone constraints

$$
x^{\top} Q x+b^{\top} x \leq c \text { with } Q \succeq 0
$$

- semidefinite constraints

$$
M \succeq 0 \text { or } M_{0}+\sum_{i} x_{i} M_{i} \succeq 0
$$

Constrained Convex Minimization

- Optimization problem minimize $f(x)$
- Common constrain
- linear inequality constraints

$$
\left\langle w_{i}, x\right\rangle+b_{i} \leq 0
$$

- quadratic cone constraints

$$
x^{\top} Q x+b^{\top} x \leq c \text { with } Q \succeq 0
$$

- semidefinite constraints

$$
M \succeq 0 \text { or } M_{0}+\sum_{i} x_{i} M_{i} \succeq 0
$$

Example - Support Vectors

$\underset{w, b}{\operatorname{minimize}} \frac{1}{2}\|w\|^{2}$ subject to $y_{i}\left[\left\langle w, x_{i}\right\rangle+b\right] \geq 1$
Carnegie Mellon University

Lagrange Multipliers

- Lagrange function

$$
L(x, \alpha):=f(x)+\sum_{i=1}^{n} \alpha_{i} c_{i}(x) \text { where } \alpha_{i} \geq 0
$$

- Saddlepoint Condition If there are x^{*} and nonnegative a^{*} such that

$$
L\left(x^{*}, \alpha\right) \leq L\left(x^{*}, \alpha^{*}\right) \leq L\left(x, \alpha^{*}\right)
$$

then x^{*} is an optimal solution to the constrained optimization problem

Proof

$$
L\left(x^{*}, \alpha\right) \leq L\left(x^{*}, \alpha^{*}\right) \leq L\left(x, \alpha^{*}\right)
$$

- From first inequality we see that X^{\star} is feasible

$$
\left(\alpha_{i}-\alpha_{i}^{*}\right) c_{i}\left(x^{*}\right) \leq 0 \text { for all } \alpha_{i} \geq 0
$$

- Setting some $\alpha_{i}=0$ yields KKT conditions

$$
\alpha_{i}^{*} c_{i}\left(x^{*}\right)=0
$$

- Consequently we have

$$
L\left(x^{*}, \alpha^{*}\right)=f\left(x^{*}\right) \leq L\left(x, \alpha^{*}\right)=f(x)+\sum_{i} \alpha_{i}^{*} c_{i}(x) \leq f(x)
$$

This proves optimality

Constraint gymnastics

(all three conditions are equivalent)

- Slater's condition

There exists some x such that for all i

$$
c_{i}(x)<0
$$

- Karlin's condition

For all nonnegative a there exists some x such that

$$
\sum \alpha_{i} c_{i}(x) \leq 0
$$

- Strict constraint qualification

The feasible region contains at least two distinct elements and there exists an x in X such that all $\mathrm{ci}(\mathrm{x})$ are strictly convex at x with respect to X

Necessary Kuhn-Tucker Conditions

- Assume optimization problem
- satisfies the constraint qualifications
- has convex differentiable objective + constraints
- Then the KKT conditions are necessary \& sufficient

$$
\partial_{x} L\left(x^{*}, \alpha^{*}\right)=\partial_{x} f\left(x^{*}\right)+\sum_{i} \alpha_{i}^{*} \partial_{x} c_{i}\left(x^{*}\right)=0\left(\text { Saddlepoint in } x^{*}\right)
$$

$$
\begin{aligned}
& \partial_{\alpha_{i}} L\left(x^{*}, \alpha^{*}\right)=c_{i}\left(x^{*}\right) \\
& \sum_{i} \alpha_{i}^{*} c_{i}\left(x^{*}\right)
\end{aligned}
$$

$$
\leq 0\left(\text { Saddlepoint in } \alpha^{*}\right)
$$

$$
=0(\text { Vanishing KKT-gap })
$$

Yields algorithm for solving optimization problems Solve for saddlepoint and KKT conditions

Proof

$$
\begin{aligned}
f(x)-f\left(x^{*}\right) & \geq\left[\partial_{x} f\left(x^{*}\right)\right]^{\top}\left(x-x^{*}\right) & & \text { (by convexity) } \\
& =-\sum_{i} \alpha_{i}^{*}\left[\partial_{x} c_{i}\left(x^{*}\right)\right]^{\top}\left(x-x^{*}\right) & & \left(\text { by Saddlepoint in } x^{*}\right) \\
& \geq-\sum_{i} \alpha_{i}^{*}\left(c_{i}(x)-c_{i}\left(x^{*}\right)\right) & & \text { (by convexity) } \\
& =\sum_{i} \alpha_{i}^{*} c_{i}(x) & & \text { (by vanishing KKT gap) } \\
& \geq 0 & &
\end{aligned}
$$

Linear and Quadratic Programs

Linear Programs

- Objective

$$
\underset{x}{\operatorname{minimize}} c^{\top} x \text { subject to } A x+d \leq 0
$$

- Lagrange function

$$
L(x, \alpha)=c^{\top} x+\alpha^{\top}(A x+d)
$$

- Optimality conditions

$$
\begin{aligned}
\partial_{x} L(x, \alpha) & =A^{\top} \alpha+c=0 \\
\partial_{\alpha} L(x, \alpha) & =A x+d \leq 0 \\
0 & =\alpha^{\top}(A x+d)
\end{aligned}
$$

- Dual problem

$$
0 \leq \alpha
$$

$\underset{i}{\operatorname{maximize}} d^{\top} \alpha$ subject to $A^{\top} \alpha+c=0$ and $\alpha \geq 0$

Linear Programs

- Objective

$$
\underset{x}{\operatorname{minimize}} c^{\top} x \text { subject to } A x+d \leq 0
$$

- Lagrange function

$$
L(x, \alpha)=c^{\top} x+\alpha^{\top}(A x+d)
$$

- Optimality conditions

$$
\begin{array}{rlr}
\partial_{x} L(x, \alpha) & =A^{\top} \alpha+c=0 \quad \text { plug into } L \\
\partial_{\alpha} L(x, \alpha) & =A x+d \leq 0 \\
0 & =\alpha^{\top}(A x+d)
\end{array}
$$

- Dual problem
$\underset{i}{\operatorname{maximize}} d^{\top} \alpha$ subject to $A^{\top} \alpha+c=0$ and $\alpha \geq 0$
Carnegie Mellon University

Linear Programs

- Objective

$$
\underset{x}{\operatorname{minimize}} c^{\top} x \text { subject to } A x+d \leq 0
$$

- Lagrange function

$$
L(x, \alpha)=c^{\top} x+\alpha^{\top}(A x+d)
$$

- Optimality conditions

$$
\begin{array}{rlr}
\partial_{x} L(x, \alpha) & =A^{\top} \alpha+c=0 \quad \text { plug into } L \\
\partial_{\alpha} L(x, \alpha) & =A x+d \leq 0 & \\
0 & =\alpha^{\top}(A x+d)
\end{array}
$$

- Dual problem
$\underset{i}{\operatorname{maximize}} d^{\top} \alpha$ subject to $A^{\top} \alpha+c=0$ and $\alpha \geq 0$

Linear Programs

- Primal

$$
\underset{x}{\operatorname{minimize}} c^{\top} x \text { subject to } A x+d \leq 0
$$

- Dual

$$
\underset{i}{\operatorname{maximize}} d^{\top} \alpha \text { subject to } A^{\top} \alpha+c=0 \text { and } \alpha \geq 0
$$

- Free variables become equality constraints
- Equality constraints become free variables
- Inequalities become inequalities
- Dual of dual is primal

Quadratic Programs

- Objective

$$
\underset{x}{\operatorname{minimize}} \frac{1}{2} x^{\top} Q x+c^{\top} x \text { subject to } A x+d \leq 0
$$

- Lagrange function

$$
L(x, \alpha)=\frac{1}{2} x^{\top} Q x+c^{\top} x+\alpha^{\top}(A x+d)
$$

- Optimality conditions

$$
\begin{aligned}
\partial_{x} L(x, \alpha) & =Q x+A^{\top} \alpha+c=0 \quad \text { plug info } L \\
\partial_{\alpha} L(x, \alpha) & =A x+d \leq 0 \\
0 & =\alpha^{\top}(A x+d) \\
0 & \leq \alpha
\end{aligned}
$$

Quadratic Program

- Eliminating x from the Lagrangian via

$$
Q x+A^{\top} \alpha+c=0
$$

- Lagrange function

$$
\begin{aligned}
L(x, \alpha) & =\frac{1}{2} x^{\top} Q x+c^{\top} x+\alpha^{\top}(A x+d) \\
& =-\frac{1}{2} x^{\top} Q x+\alpha^{\top} d \\
& =-\frac{1}{2}\left(A^{\top} \alpha+c\right)^{\top} Q^{-1}\left(A^{\top} \alpha+c\right)+\alpha^{\top} d \\
& =-\frac{1}{2} \alpha^{\top} A Q^{-1} A^{\top} \alpha+\alpha^{\top}\left[d-A Q^{-1} c\right]-\frac{1}{2} c^{\top} Q^{-1} c
\end{aligned}
$$

$$
\text { subject to } \alpha \geq 0
$$

Quadratic Program

- Eliminating x from the Lagrangian via
- Lagrange function

$$
Q x+A^{\top} \alpha+c=0
$$

$$
L(x, \alpha)=\frac{1}{2} x^{\top} Q x+c^{\top} x+\alpha^{\top}(A x+d)
$$

$$
=-\frac{1}{2} x^{\top} Q x+\alpha^{\top} d
$$

$$
=-\frac{1}{2}\left(A^{\top} \alpha+c\right)^{\top} Q^{-1}\left(A^{\top} \alpha+c\right)+\alpha^{\top} d
$$

$$
\begin{aligned}
=- & \frac{1}{2} \alpha^{\top} A Q^{-1} A^{\top} \alpha+\alpha^{\top}\left[d-A Q^{-1} c\right]-\frac{1}{2} c^{\top} Q^{-1} c \\
& \text { subject to } \alpha \geq 0
\end{aligned}
$$

Quadratic Programs

- Primal

$$
\underset{x}{\operatorname{minimize}} \frac{1}{2} x^{\top} Q x+c^{\top} x \text { subject to } A x+d \leq 0
$$

- Dual

$$
\underset{\alpha}{\operatorname{minimize}} \frac{1}{2} \alpha^{\top} A Q^{-1} A^{\top} \alpha+\alpha^{\top}\left[A Q^{-1} c-d\right] \text { subject to } \alpha \geq 0
$$

- Dual constraints are simpler
- Possibly many fewer variables
- Dual of dual is not (always) primal (e.g. in SVMs x is in a Hilbert Space)

Interior Point Solvers

Constrained Newton Method

- Objective minimize $f(x)$ subject to $A x=b$
- Lagrange function and optimality conditions

$$
\begin{aligned}
L(x, \alpha) & =f(x)+\alpha^{\top}[A x-b] \\
\partial_{x} L(x, \alpha) & =\partial_{x} f(x)+A^{\top} \alpha=0 \\
\partial_{\alpha} L(x, \alpha) & =A x-b=0
\end{aligned}
$$

yields
optimality

- Taylor expansion of gradient

$$
\partial_{x} f(x)=\partial_{x} f\left(x_{0}\right)+\partial_{x}^{2} f\left(x_{0}\right)\left[x-x_{0}\right]+O\left(\left\|x-x_{0}\right\|^{2}\right)
$$

- Plug back into the constraints and solve

$$
\left[\begin{array}{cc}
\partial_{x}^{2} f\left(x_{0}\right) & A^{\top} \\
A
\end{array}\right]\left[\begin{array}{l}
x \\
\alpha
\end{array}\right]=\left[\begin{array}{c}
\partial_{x}^{2} f\left(x_{0}\right) x_{0}-\partial_{x} f\left(x_{0}\right) \\
b
\end{array}\right]
$$

No need to be initially feasiblellnegie Mellon University

General Strategy

- Optimality conditions

$$
\begin{aligned}
\partial_{x} L\left(x^{*}, \alpha^{*}\right)=\partial_{x} f\left(x^{*}\right)+\sum_{i} \alpha_{i}^{*} \partial_{x} c_{i}\left(x^{*}\right) & =0\left(\text { Saddlepoint in } x^{*}\right) \\
\partial_{\alpha_{i}} L\left(x^{*}, \alpha^{*}\right)=c_{i}\left(x^{*}\right) & \leq 0\left(\text { Saddlepoint in } \alpha^{*}\right) \\
\sum_{i} \alpha_{i}^{*} c_{i}\left(x^{*}\right) & =0(\text { Vanishing KKT-gap })
\end{aligned}
$$

- Solve equations repeatedly.
- Yields primal and dual solution variables
- Yields size of primal/dual gap
- Feasibility not necessary at start
- KKT conditions are problematic - need approximation

Quadratic Programs

- Optimality conditions

$$
\begin{array}{r}
Q x+A^{\top} \alpha+c=0 \\
A x+d+\xi=0 \\
\alpha_{i} \xi_{i}=0
\end{array}
$$

- Relax KKT conditions

$$
\alpha, \xi \geq 0
$$

$$
\alpha_{i} \xi_{i}=0 \text { relaxed to } \alpha_{i} \xi_{i}=\mu
$$

- Solve linearization of nonlinear system

$$
\left[\begin{array}{cc}
Q & A^{\top} \\
A & -D
\end{array}\right]\left[\begin{array}{l}
\delta x \\
\delta \alpha
\end{array}\right]=\left[\begin{array}{l}
c_{x} \\
c_{\alpha}
\end{array}\right]
$$

- Predictor/corrector step for nonlinearity
- Iterate until converged

Implementation details

- Dominant cost is solving reduced KKT system

$$
\left[\begin{array}{cc}
Q & A^{\top} \\
A & -D
\end{array}\right]\left[\begin{array}{l}
\delta x \\
\delta \alpha
\end{array}\right]=\left[\begin{array}{l}
c_{x} \\
c_{\alpha}
\end{array}\right]
$$

Solve linear system with (dense) Q and A

- Solve linear system twice (predictor / corrector)
- Update steps are only taken far enough to ensure nonnegativity of dual and slack
- Tighten up KKT constraints by decreasing μ
- Only 10-20 iterations typically needed

Solver Software

- OOQP
http://pages.cs.wisc.edu/~swright/ooqp/
Object oriented quadratic programming solver
- LOQO
http://www.princeton.edu/~rvdb/loqo/LOQO.html Interior point path following solver
- HOPDM
http://www.maths.ed.ac.uk/~gondzio/software/hopdm.html
Linear and nonlinear infeasible IP solver
- CVXOPT
http://abel.ee.ucla.edu/cvxopt/
Python package for convex optimization
- SeDuMi
http://sedumi.ie.lehigh.edu/
Semidefinite programming solver

Solver Software

- OOQP
http://pages.cs.wisc.edu/~swright/ooqp/
Object oriented quadratic programming solver
- LOQO
http://www.princeton.edu/~rvdb/loqo/LOQO.html Interior point path following solver
- HOPDM
http://www.maths.ed.ac.uk/~gondzio/software/hopdm.html
Linear and nonlinear infeasible IP solver
- CVXOPT
http://abel.ee.ucla.edu/cvxopt/
Python package for convex optimization
- SeDuMi
http://sedumi.ie.lehigh.edu/

nontrivial to
 parallelize

Semidefinite programming solver

Bundle Methods

Carnegie Mellon University

Some optimization problems

- Density estimation

$$
\begin{gathered}
\underset{\theta}{\operatorname{minimize}} \sum_{i=1}^{m}-\log p\left(x_{i} \mid \theta\right)-\log p(\theta) \\
\text { equivalently } \underset{\theta}{\operatorname{minimize}} \sum_{i=1}^{m}\left[g(\theta)-\left\langle\phi\left(x_{i}\right), \theta\right\rangle\right]+\frac{1}{2 \sigma^{2}}\|\theta\|^{2}
\end{gathered}
$$

- Penalized regression
e.g. squared loss

$$
\begin{gathered}
\underset{\theta}{\operatorname{minimize}} \sum_{i=/}^{m} l\left(y_{i}-\left\langle\phi\left(x_{i}\right), \theta\right\rangle\right)+\frac{1}{2 \sigma^{2}}\|\theta\|^{2} \\
\text { regularizer loss }
\end{gathered}
$$

Basic Idea

- Loss

$$
\underset{\theta}{\operatorname{minimize}} \sum_{i=1}^{m} l_{i}(\theta)+\lambda \Omega[\theta]
$$

- Convex but expensive to compute
- Line search just as expensive as new computation
- Gradient almost free with function value computation
- Easy to compute in parallel
- Regularizer
- Convex and cheap to compute and to optimize
- Strategy
- Compute tangents on loss
- Provides lower bound on objective
- Solve dual optimization problem (fewer parameters)

Bundle Method

Lower bound

Regularized Risk Minimization

$$
\underset{w}{\operatorname{minimize}} R_{\mathrm{emp}}[w]+\lambda \Omega[w]
$$

Taylor Approximation for $R_{\mathrm{emp}}[w]$

$$
R_{\mathrm{emp}}[w] \geq R_{\mathrm{emp}}\left[w_{t}\right]+\left\langle w-w_{t}, \partial_{w} R_{\mathrm{emp}}\left[w_{t}\right]\right\rangle=\left\langle a_{t}, w\right\rangle+b_{t}
$$

where $a_{t}=\partial_{w} R_{\text {emp }}\left[w_{t-1}\right]$ and $b_{t}=R_{\text {emp }}\left[w_{t-1}\right]-\left\langle a_{t}, w_{t-1}\right\rangle$.

Bundle Bound

$$
R_{\mathrm{emp}}[w] \geq R_{t}[w]:=\max _{i \leq t}\left\langle a_{i}, w\right\rangle+b_{i}
$$

Regularizer $\Omega[w]$ solves stability problems.

Pseudocode

Initialize $t=0, w_{0}=0, a_{0}=0, b_{0}=0$

repeat

Find minimizer

$$
w_{t}:=\underset{w}{\operatorname{argmin}} R_{t}(w)+\lambda \Omega[w]
$$

Compute gradient a_{t+1} and offset b_{t+1}. Increment $t \leftarrow t+1$.

until $\epsilon_{t} \leq \epsilon$

Convergence Monitor $R_{t+1}\left[w_{t}\right]-R_{t}\left[w_{t}\right]$
Since $R_{t+1}\left[w_{t}\right]=R_{\mathrm{emp}}\left[w_{t}\right]$ (Taylor approximation) we have

$$
R_{t+1}\left[w_{t}\right]+\lambda \Omega\left[w_{t}\right] \geq \min _{w} R_{\text {emp }}[w]+\lambda \Omega[w] \geq R_{t}\left[w_{t}\right]+\lambda \Omega\left[w_{t}\right]
$$

Dual Problem

Good News

Dual optimization for $\Omega[w]=\frac{1}{2}\|w\|_{2}^{2}$ is Quadratic Program regardless of the choice of the empirical risk $R_{\text {emp }}[w]$.
Details

$$
\begin{aligned}
& \underset{\beta}{\operatorname{minimize}} \frac{1}{2 \lambda} \beta^{\top} A A^{\top} \beta-\beta^{\top} b \\
& \text { subject to } \beta_{i} \geq 0 \text { and }\|\beta\|_{1}=1
\end{aligned}
$$

The primal coefficient w is given by $w=-\lambda^{-1} A^{\top} \beta$.
General Result
Use Fenchel-Legendre dual of $\Omega[w]$, e.g. $\|\cdot\|_{1} \rightarrow\|\cdot\|_{\infty}$.
Very Cheap Variant
Can even use simple line search for update (almost as good).

Properties

Parallelization

- Empirical risk sum of many terms: MapReduce
- Gradient sum of many terms, gather from cluster.
- Possible even for multivariate performance scores.
- Data is local. Combine data from competing entities.

Solver independent of loss
No need to change solver for new loss.
Loss independent of solver/regularizer
Add new regularizer without need to re-implement loss.
Line search variant

- Optimization does not require QP solver at all!
- Update along gradient direction in the dual.
- We only need inner product on gradients!

Implementation

Carnegie Mellon University

Guarantees

Theorem

The number of iterations to reach ϵ precision is bounded by

$$
n \leq \log _{2} \frac{\lambda R_{\mathrm{emp}}[0]}{G^{2}}+\frac{8 G^{2}}{\lambda \epsilon}-4
$$

steps. If the Hessian of $R_{\text {emp }}[w]$ is bounded, convergence to any $\epsilon \leq \lambda / 2$ takes at most the following number of steps:

$$
n \leq \log _{2} \frac{\lambda R_{\mathrm{emp}}[0]}{4 G^{2}}+\frac{4}{\lambda} \max \left[0,1-8 G^{2} H^{*} / \lambda\right]-\frac{4 H^{*}}{\lambda} \log 2 \epsilon
$$

Advantages

- Linear convergence for smooth loss
- For non-smooth loss almost as good in practice (as long as smooth on a course scale).
- Does not require primal line search.

Proof idea

Duality Argument

- Dual of $R_{i}[w]+\lambda \Omega[w]$ lower bounds minimum of regularized risk $R_{\text {emp }}[w]+\lambda \Omega[w]$.
- $R_{i+1}\left[w_{i}\right]+\lambda \Omega\left[w_{i}\right]$ is upper bound.
- Show that the gap $\gamma_{i}:=R_{i+1}\left[w_{i}\right]-R_{i}\left[w_{i}\right]$ vanishes.

Dual Improvement

- Give lower bound on increase in dual problem in terms of γ_{i} and the subgradient $\partial_{w}\left[R_{\text {emp }}[w]+\lambda \Omega[w]\right]$.
- For unbounded Hessian we have $\delta \gamma=O\left(\gamma^{2}\right)$.
- For bounded Hessian we have $\delta \gamma=O(\gamma)$.

Convergence

- Solve difference equation in γ_{t} to get desired result.

More

- Dual decomposition methods
- Optimization problem with many constraints
- Replicate variable \& add equality constraints
- Solve relaxed problem
- Gradient descent in dual variables
- Prox operator
- Problems with smooth \& nonsmooth objective
- Generalization of Bregman projections

MACHINE LEARNING DEPARTMENT

5.4 Online Optimization
 5 Math and Optimization

Alexander Smola

 Introduction to Machine Learning 10-701 http://alex.smola.org/teaching/10-701-15

Carnegie Mellon University

Recall ... Perceptron

Carnegie Mellon University

Recall ... Perceptron

The Perceptron

initialize $w=0$ and $b=0$
repeat

$$
\begin{aligned}
& \text { if } y_{i}\left[\left\langle w, x_{i}\right\rangle+b\right] \leq 0 \text { then } \\
& \quad w \leftarrow w+y_{i} x_{i} \text { and } b \leftarrow b+y_{i}
\end{aligned}
$$

end if
until all classified correctly

- Nothing happens if classified correctly
- Weight vector is linear combination
- Classifier is linear combination of $w=\sum_{i \in I} x_{i}$ inner products

$$
f(x)=\sum_{i \in I}\left\langle x_{i}, x\right\rangle+b
$$

- This is SGD on the hinge loss

Stochastic gradient descent

- Empirical risk as expectation

$$
\frac{1}{m} \sum_{i=1}^{m} l\left(y_{i}-\left\langle\phi\left(x_{i}\right), \theta\right\rangle\right)=\mathbf{E}_{i \sim\{1, \ldots m\}}\left[l\left(y_{i}-\left\langle\phi\left(x_{i}\right), \theta\right\rangle\right)\right]
$$

- Stochastic gradient descent (pick random x, y)

$$
\theta_{t+1} \leftarrow \theta_{t}-\eta_{t} \partial_{\theta}\left(y_{t},\left\langle\phi\left(x_{t}\right), \theta_{t}\right\rangle\right)
$$

- Often we require that parameters are restricted to some convex set X, hence we project on it

$$
\begin{gathered}
\theta_{t+1} \leftarrow \pi_{x}\left[\theta_{t}-\eta_{t} \partial_{\theta}\left(y_{t},\left\langle\phi\left(x_{t}\right), \theta_{t}\right\rangle\right)\right] \\
\text { here } \pi_{X}(\theta)=\underset{x \in X}{\operatorname{argmin}}\|x-\theta\|
\end{gathered}
$$

Convergence in Expectation

initial loss

$$
\mathbf{E}_{\bar{\theta}}[l(\bar{\theta})]-l^{*} \leq \frac{R^{2}+L^{2} \sum_{t=0}^{T-1} \eta_{t}^{2}}{2 \sum_{t=0}^{T-1} \eta_{t}} \text { where }
$$

$$
l(\theta)=\mathbf{E}_{(x, y)}[l(y,\langle\phi(x), \theta\rangle)] \text { and } l^{*}=\inf _{\theta \in X} l(\theta) \text { and } \bar{\theta}=\frac{\sum_{t=0}^{T-1} \theta_{t} \eta_{t}}{\sum_{t=0}^{T-1} \eta_{t}}
$$

expected loss

parameter average

- Proof

Show that parameters converge to minimum

$$
\theta^{*} \in \underset{\theta \in X}{\operatorname{argmin}} l(\theta) \text { and set } r_{t}:=\left\|\theta^{*}-\theta_{t}\right\|
$$

Proof

$$
\begin{aligned}
r_{t+1}^{2} & =\left\|\pi_{X}\left[\theta_{t}-\eta_{t} g_{t}\right]-\theta^{*}\right\|^{2} \\
& \leq\left\|\theta_{t}-\eta_{t} g_{t}-\theta^{*}\right\|^{2} \\
& =r_{t}^{2}+\eta_{t}^{2}\left\|g_{t}\right\|^{2}-2 \eta_{t}\left\langle\theta_{t}-\theta^{*}, g_{t}\right\rangle
\end{aligned}
$$

hence $\begin{aligned} \mathbf{E}\left[r_{t+1}^{2}-r_{t}^{2}\right] & \leq \eta_{t}^{2} L^{2}+2 \eta_{t}\left[l^{*}-\mathbf{E}\left[l\left(\theta_{t}\right)\right]\right] \\ & \leq \eta_{t}^{2} L^{2}+2 \eta_{t}\left[l^{*}-\mathbf{E}[l(\bar{\theta})]\right]\end{aligned} \quad$ by convexity

- Summing over inequality for t proves claim
- This yields randomized algorithm for minimizing objective functions (try log times and pick the best / or average median trick)

Rates

- Guarantee

$$
\mathbf{E}_{\bar{\theta}}[l(\bar{\theta})]-l^{*} \leq \frac{R^{2}+L^{2} \sum_{t=0}^{T-1} \eta_{t}^{2}}{2 \sum_{t=0}^{T-1} \eta_{t}}
$$

- If we know R, L, T pick constant learning rate

$$
\eta=\frac{R}{L \sqrt{T}} \text { and hence } \mathbf{E}_{\bar{\theta}}[l(\bar{\theta})]-l^{*} \leq \frac{R[1+1 / T] L}{2 \sqrt{T}}<\frac{L R}{\sqrt{T}}
$$

- If we don't know T pick $\eta_{t}=O\left(t^{-\frac{1}{2}}\right)$ This costs us an additional log term

$$
\mathbf{E}_{\bar{\theta}}[l(\bar{\theta})]-l^{*}=O\left(\frac{\log T}{\sqrt{T}}\right)
$$

Strong Convexity

$$
l_{i}\left(\theta^{\prime}\right) \geq l_{i}(\theta)+\left\langle\partial_{\theta} l_{i}(\theta), \theta^{\prime}-\theta\right\rangle+\frac{1}{2} \lambda\left\|\theta-\theta^{\prime}\right\|^{2}
$$

- Use this to bound the expected deviation

$$
\begin{aligned}
r_{t+1}^{2} & \leq r_{t}^{2}+\eta_{t}^{2}\left\|g_{t}\right\|^{2}-2 \eta_{t}\left\langle\theta_{t}-\theta^{*}, g_{t}\right\rangle \\
& \leq r_{t}^{2}+\eta_{t}^{2} L^{2}-2 \eta_{t}\left[l_{t}\left(\theta_{t}\right)-l_{t}\left(\theta^{*}\right)\right]-2 \lambda \eta_{t} r_{k}^{2}
\end{aligned}
$$

hence $\mathbf{E}\left[r_{t+1}^{2}\right] \leq\left(1-\lambda h_{t}\right) \mathbf{E}\left[r_{t}^{2}\right]-2 \eta_{t}\left[\mathbf{E}\left[l\left(\theta_{t}\right)\right]-l^{*}\right]$

- Exponentially decaying averaging

$$
\bar{\theta}=\frac{1-\sigma}{1-\sigma^{T}} \sum_{t=0}^{T-1} \sigma^{T-1-t} \theta_{t}
$$

and plugging this into the discrepancy yields

$$
l(\bar{\theta})-l^{*} \leq \frac{2 L^{2}}{\lambda T} \log \left[1+\frac{\lambda R T^{\frac{1}{2}}}{2 L}\right] \text { for } \eta=\frac{2}{\lambda T} \log \left[1+\frac{\lambda R T^{\frac{1}{2}}}{22 t_{\text {Carnegie Mellontivgrsity }}}\right.
$$

More variants

- Adversarial guarantees

$$
\theta_{t+1} \leftarrow \pi_{x}\left[\theta_{t}-\eta_{t} \partial_{\theta}\left(y_{t},\left\langle\phi\left(x_{t}\right), \theta_{t}\right\rangle\right)\right]
$$

has low regret (average instantaneous cost) for arbitrary orders (useful for game theory)

- Ratliff, Bagnell, Zinkevich
$O\left(t^{-\frac{1}{2}}\right)$ learning rate
- Shalev-Shwartz, Srebro, Singer (Pegasos)
$O\left(t^{-1}\right)$ learning rate (but need constants)
- Bartlett, Rakhlin, Hazan
(add strong convexity penalty)

Parallel distributed variants

Online Learning

- General Template
- Get instance
- Compute instantaneous gradient
- Update parameter vector
- Problems
- Sequential execution (single core)
- CPU core speed is no longer increasing
- Disk/network bandwidth: 300GB/h
- Does not scale to TBs of data
- Batch subgradient has 50x penalty

Parallel Online Templates

- Data parallel

- Parameter parallel

Carnegie Mellon University

Delayed Updates

- Data parallel
- n processors compute gradients
- delay is $\mathrm{n}-1$ between gradient computation and application
- Parameter parallel
- delay between partial computation and feedback from joint loss
- delay logarithmic in processors

Delayed Updates

- Optimization Problem

- Algorithm

$\underset{w}{\operatorname{minimize}} \sum_{i} f_{i}(w)$

Input: scalar $\sigma>0$ and delay τ
for $t=\tau+1$ to $T+\tau$ do
Obtain f_{t} and incur loss $f_{t}\left(w_{t}\right)$
Compute $g_{t}:=\nabla f_{t}\left(w_{t}\right)$ and set $\eta_{t}=\frac{1}{\sigma(t-\tau)}$
Update $w_{t+1}=w_{t}-\eta_{t} g_{t-\tau}$ end for

Theoretical Guarantees

- Worst case guarantee SGD with delay τ on τ processors is no worse than sequential SGD
- Lower bound is tight Proof: send same instance $\boldsymbol{\tau}$ times
- Better bounds with iid data
- Penalty is covariance in features
- Vanishing penalty for smooth f(w)

Theoretical Guarantees

- Linear function classes

$$
\mathbf{E}\left[f_{i}(w)\right] \leq 4 R L \sqrt{\tau T}
$$

Algorithm converges no worse than with serial execution. Up to a factor of 4 as tight.

- Strong convexity

$$
R[X] \leq \lambda \tau R+\left[\frac{1}{2}+\tau\right] \frac{L^{2}}{\lambda}(1+\tau+\log T)
$$

Each loss function is strongly convex with modulus λ. Constant offset depends on the degree of parallelism.

Nonadversarial Guarantees

- Lipschitz continuous loss gradients

$$
\mathbf{E}[R[X]] \leq\left[28.3 R^{2} H+\frac{2}{3} R L+\frac{4}{3} R^{2} H \log T\right] \tau^{2}+\frac{8}{3} R L \sqrt{T}
$$

Asymptotic rate does no longer depend on amount of parallelism

- Strong convexity and Lipschitz gradients

$$
\mathbf{E}[R[X]] \leq O\left(\tau^{2}+\log T\right)
$$

This only works when the objective function is very close to a parabola (upper and lower bound)

- Lock-free updates (Hogwild - Recht, Wright, Re) http://pages.cs.wisc.edu/~brecht/papers/hogwildTR.pdf)

Lazy updates \& sparsity

- Sparse gradients (easy with I2 regularizer)

$$
w \leftarrow w-\eta_{t} g\left(w, x_{t}\right) x_{t}
$$

- General coordinate-based penalty

$$
\mathbf{E}_{\text {emp }}\left[l\left(x_{i}, y_{i}, w\right)\right]+\lambda \sum_{j} \gamma_{j}\left(w_{j}\right)
$$

- Key insight - we only need to know the accurate value of wj whenever we use it
- Store w_{j} with timestamp of last update
- Before using w_{j} update using past stepsizes
- Approximate sum over stepsizes by integral (Quadrianto et al, 2010; Li and Langford, 2009)

Convergence on TREC

Thousands of Iterations

Convergence on Y!Data

Carnegie Mellon University

Speedup on TREC

Threads
Carnegie Mellon University

MapReduce variant

- Idiot proof simple algorithm
- Perform stochastic gradient on each computer for a random subset of the data (drawn with replacement)
- Average parameters
- Benefits
- No communication during optimization
- Single pass MapReduce
- Latency is not a problem

Guarantees

- Requirements
- Strongly convex loss
- Lipschitz continuous gradient
- Theorem

$$
\mathbf{E}_{w \in D_{\eta}^{T, k}}[c(w)]-\min _{w} c(w) \leq \frac{8 \eta G^{2}}{\sqrt{k \lambda}} \sqrt{\|\partial c\|_{L}}+\frac{8 \eta G^{2}\|\partial c\|_{L}}{k \lambda}+\left(2 \eta G^{2}\right)
$$

- Not sample size dependent
- Regularization limits parallelization
- For runtime

$$
T=\frac{\ln k-(\ln \eta+\ln \lambda)}{2 \eta \lambda}
$$

MACHINE LEARNING DEPARTMENT

5.5 Discrete Problems

5 Math and Optimization

Alexander Smola

Introduction to Machine Learning 10-701 http://alex.smola.org/teaching/10-701-15

Integer programming relaxations

- Optimization problem
$\underset{x}{\operatorname{minimize}} c^{\top} x$ subject to $A x \leq b$ and $x \in \mathbb{Z}^{n}$

- Relax to linear program if vertices are integral since LP has vertex solution

Integer programming relaxations

- Totally unimodular constraint matrix A
- Inverse of each submatrix must be integral
- RHS of constraints must be integral
- Many useful sufficient conditions for TU.

Example - Hungarian Marriage

- Optimization Problem
- n Hungarian men
- n Hungarian women
- Compatibility cij between them

- Find optimal matching

$$
\underset{\pi}{\operatorname{maximize}} \sum_{i j} \pi_{i j} C_{i j}
$$

subject to $\pi_{i j} \in\{0,1\}$ and $\sum_{i} \pi_{i j}=1$ and $\sum_{j} \pi_{i j}=1$

- All vertices of the constraint matrix are integral

Randomization

- Maximum finding
- Very large set of instances
- Find approximate maximum

- Take maximum over subset (59 for 95\% with 95\% confidence)

$$
\begin{aligned}
\operatorname{Pr}\left\{F\left[\max _{i} x_{i}\right]<\epsilon\right\} & =(1-\epsilon)^{n}=\delta \\
\text { hence } n & =\frac{\log \delta}{\log (1-\epsilon)} \leq \frac{-\log \delta}{\epsilon}
\end{aligned}
$$

Randomization

- Find good solution
- Show that expected value is well behaved
- Show that tails are bounded
- Sufficiently large random draw must contain at least one good element (e.g. CM sketch)
- Find good majority
- Show that majority satisfies condition
- Bound probability of minority being overrepresented (e.g. Mean-Median theorem)
- Much more in these books
- Raghavan \& Motwani (Randomized Algorithms)
- Alon \& Spencer (Probabilistic Method)

Submodular maximization

- Submodular function
- Defined on sets
- Diminishing returns property

$$
f(A \cup C)-f(A) \geq f(B \cup C)-f(B) \text { for } A \subseteq B
$$

- Example

For web search results we might have individually

But if we can show only 4 we should probably pick

\downarrow $+$

Submodular maximization

- Optimization problem

$$
\max _{X \in \mathcal{X}} f(X) \text { subject to }|X| \leq k
$$

Often NP hard even to find tight approximation

- Greedy optimization procedure
- Start with empty set X
- Find \mathbf{x} such that $f(X \cup\{x\})$ is maximized
- Add x to the set and repeat until IXI=k

Applications

- Feature selection
- Active learning and experimental design
- Disease spread detection in networks
- Document summarization
- Learning graphical models
- Extensions to
- Weighted item sets
- Decision trees

Further reading

- Nesterov and Vial (expected convergence) http://dl.acm.org/citation.cfm?id=1377347
- Bartlett, Hazan, Rakhlin (strong convexity SGD) http://books.nips.cc/papers/files/nips20/NIPS2007 0699.pdf
- TAO (toolkit for advanced optimization) http://www.mcs.anl.gov/research/projects/tao/
- Ratliff, Bagnell, Zinkevich http://martin.zinkevich.org/publications/ratliff nathan 2007 3.pdf
- Shalev-Shwartz, Srebro, Singer (Pegasos paper) http://dl.acm.org/citation.cfm?id=1273598
- Langford, Smola, Zinkevich (slow learners are fast) http://arxiv.org/abs/0911.0491
- Hogwild (Recht, Wright, Re) http://pages.cs.wisc.edu/~brecht/papers/hogwildTR.pdf

