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Real Hardware



Machines
•CPU 
–8-64 cores (Intel/AMD servers) 
–2-3 GHz (close to 1 IPC per core peak) - over 100 GFlops/socket 
–8-32 MB Cache (essentially accessible at clock speed) 
–Vectorized multimedia instructions (AVX 256bit wide, e.g. add, multiply, logical) 

•RAM 
–16-256 GB depending on use 
–3-8 memory banks (each 32bit wide - atomic writes!) 
–DDR3 (up to 100GB/s per board, random access 10x slower) 

•Harddisk 
–4 TB/disk 
–100 MB/s sequential read from SATA2 
–5ms latency for 10,000 RPM drive, i.e. random access is slow 

•Solid State Drives 
–500 MB/s sequential read 
–Random writes are really expensive (read-erase-write cycle for a block) 

Bulk transfer is at least 10x faster



The real joy of hardware

Jeff Dean’s Stanford slides



Why a single machine is not enough
• Data (lower bounds)

• 10-100 Billion documents (webpages, e-mails, ads, tweets)
• 100-1000 Million users on Google, Facebook, Twitter, Hotmail
• 1 Million days of video on YouTube
• 100 Billion images on Facebook

• Processing capability for single machine 1TB/hour 
But we have much more data

• Parameter space for models is too big for a single machine  
Personalize content for many millions of users

• Process on many cores and many machines simultaneously



Cloud pricing
• Google Compute Engine and Amazon EC2  
 
 
 

• Storage
$10,000/year

Spot instances 
much cheaper



Real Hardware
• Can and will fail
• Spot instances much cheaper (but can lead to 

preemption). Design algorithms for it!



Distribution Strategies



Concepts
• Variable and load distribution

• Large number of objects (a priori unknown)
• Large pool of machines (often faulty)
• Assign objects to machines such that

• Object goes to the same machine (if possible)
• Machines can be added/fail dynamically 

• Consistent hashing (elements, sets, proportional)
• Overlay networks (peer to peer routing)

• Location of object is unknown, find route
• Store object redundantly / anonymously

symmetric (no master), dynamically scalable, fault tolerant



Hash functions
• Mapping h from domain X to integer range 
• Goal

• We want a uniform distribution (e.g. to distribute objects)
• Naive Idea

• For each new x, compute random h(x)
• Store it in big lookup table
• Perfectly random
• Uses lots of memory (value, index structure)
• Gets slower the more we use it
• Cannot be merged between computers

• Better Idea
• Use random number generator with seed x
• As random as the random number generator might be ...
• No memory required
• Can be merged between computers
• Speed independent of number of hash calls

[1, . . . N ]

X



Hash function
• n-ways independent hash function

• Set of hash functions H
• Draw h from H at random
• For n instances in X their hash [h(x1), ... h(xn)] is essentially 

indistinguishable from n random draws from [1 ... N]
• For a formal treatment see Maurer 1992 (incl. permutations) 

ftp://ftp.inf.ethz.ch/pub/crypto/publications/Maurer92d.pdf

• For many cases we only need 2-ways independence (harder proof) 
 

• In practice use MD5 or Murmur Hash for high quality 
https://code.google.com/p/smhasher/

• Fast linear congruential generator 
for constants a, b, c see http://en.wikipedia.org/wiki/Linear_congruential_generator 

for all x, y Pr

y2H
{h(x) = h(y)} =

1

N

ax+ bmod c

https://sites.google.com/site/murmurhash/
http://en.wikipedia.org/wiki/Linear_congruential_generator


Argmin Hash
• Consistent hashing  
 

• Uniform distribution over machine pool M
• Fully determined by hash function h. No need to ask master
• If we add/remove machine m’ all but O(1/m) keys remain  
 

• Consistent hashing with k replications 
 

• If we add/remove a machine only O(k/m) need reassigning
• Cost to assign is O(m). This can be expensive for 1000 servers

m(key) = argmin
m2M

h(key,m)

Pr {m(key) = m0} =
1

m

m(key, k) = k smallest
m2M

h(key,m)



Distributed Hash Table
• Fixing the O(m) lookup

• Assign machines to ring via hash h(m)
• Assign keys to ring
• Pick machine nearest to key to the left

• O(log m) lookup
• Insert/removal only affects neighbor 

(however, big problem for neighbor)
• Uneven load distribution  

(load depends on segment size)
• Insert machine more than once to fix this
• For k term replication, simply pick the k 

leftmost machines (skip duplicates)

ring of N keys
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D2 - Distributed Hash Table
• For arbitrary node segment size is minimum 

 over (m-1) independent uniformly distributed 
• random variables

• Density is given by derivative

• Expected segment length is   
(follows from symmetry)

• Probability of exceeding expected  
segment length (for large m)

Pr {x � c} =
mY
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Storage



RAID
• Redundant array of inexpensive disks (optional fault tolerance)

• Aggregate storage of many disks
• Aggregate bandwidth of many disks

• RAID 0 - stripe data over disks (good bandwidth, faulty)
• RAID 1 - mirror disks (mediocre bandwidth, fault tolerance)
• RAID 5 - stripe data with 1 disk for parity (good bandwidth, fault tolerance)
• Even better - use error correcting code for fault tolerance,  

e.g. (4,2) code, i.e. two disks out of 6 may fail



RAID

what if a 
machine dies?

• Redundant array of inexpensive disks (optional fault tolerance)
• Aggregate storage of many disks
• Aggregate bandwidth of many disks

• RAID 0 - stripe data over disks (good bandwidth, faulty)
• RAID 1 - mirror disks (mediocre bandwidth, fault tolerance)
• RAID 5 - stripe data with 1 disk for parity (good bandwidth, fault tolerance)
• Even better - use error correcting code for fault tolerance,  

e.g. (4,2) code, i.e. two disks out of 6 may fail



Distributed replicated file systems
• Internet workload

• Bulk sequential writes
• Bulk sequential reads
• No random writes (possibly random reads)
• High bandwidth requirements per file
• High availability / replication

• Non starters
• Lustre (high bandwidth, but no replication outside racks)
• Gluster (POSIX, more classical mirroring, see Lustre)
• NFS/AFS/whatever - doesn’t actually parallelize



Google File System / HadoopFS

• Chunk servers hold blocks of the file (64MB per chunk)
• Replicate chunks (chunk servers do this autonomously). Bandwidth and fault tolerance
• Master distributes, checks faults, rebalances (Achilles heel)
• Client can do bulk read / write / random reads

Ghemawat, Gobioff, Leung, 2003



Google File System / HDFS
• Client requests chunk from master
• Master responds with replica location
• Client writes to replica A
• Client notifies primary replica
• Primary replica requests data from replica A
• Replica A sends data to Primary replica (same process for replica B)
• Primary replica confirms write to client
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• Can control replication factor for 

hotspots / load balancing
• Deserialize master state by loading data 

structure as flat file from disk (fast)
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Google File System / HDFS
• Client requests chunk from master
• Master responds with replica location
• Client writes to replica A
• Client notifies primary replica
• Primary replica requests data from replica A
• Replica A sends data to Primary replica (same process for replica B)
• Primary replica confirms write to client only one 

write needed

• Master ensures nodes are live
• Chunks are checksummed
• Can control replication factor for 

hotspots / load balancing
• Deserialize master state by loading data 

structure as flat file from disk (fast)

Achilles heel



CEPH/CRUSH
• No single master
• Chunk servers deal with replication / balancing on their own
• Chunk distribution using proportional consistent hashing
• Layout plan for data - effectively a sampler with given marginals 

Research question - can we adjust the probabilities based on statistics?

http://ceph.newdream.org (Weil et al., 2006)

http://ceph.newdream.org


CEPH/CRUSH

• Various sampling schemes (ensure that no unnecessary data is moved)
• In the simplest case proportional consistent hashing from pool of objects 

(pick k disks out of n for block with given ID)
• Can incorporate replication/bandwidth scaling like RAID  

(stripe block over several disks, error correction)



CEPH/CRUSH

• Various sampling schemes (ensure that no unneccessary data is moved)
• In the simplest case proportional consistent hashing from pool of objects 

(pick k disks out of n for block with given ID)
• Can incorporate replication/bandwidth scaling like RAID  

(stripe block over several disks, error correction)

adding a disk



CEPH/CRUSH fault 
plain replication striped data
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Map Reduce



Map Reduce
• 1000s of (faulty) machines
• Lots of jobs are mostly embarrassingly parallel  

(except for a sorting/transpose phase)
• Functional programming origins

• Map(key,value) 
processes each (key,value) pair and outputs a new (key,value) pair

• Reduce(key,value) 
reduces all instances with same key to aggregate

• Example - extremely naive wordcount
• Map(docID, document) 

for each document emit many (wordID, count) pairs
• Reduce(wordID, count) 

sum over all counts for given wordID and emit (wordID, aggregate)
from Ramakrishnan, Sakrejda, Canon, DoE 2011
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Map Reduce

Ghemawat & Dean, 2003

map(key,value) reduce(key,value)

easy fault tolerance  
(simply restart workers)

moves computation to data

disk based inter process 
communication



Map Combine Reduce
• Combine aggregates keys before sending to reducer (save bandwidth)
• Map must be stateless in blocks
• Reduce must be commutative in data
• Fault tolerance

• Start jobs where the data is  
(move code note data - nodes run the file system, too)

• Restart machines if maps fail (have replicas)
• Restart reducers based on intermediate data

• Good fit for many algorithms
• Good if only a small number of MapReduce iterations needed
• Need to request machines at each iteration (time consuming)
• State lost in between maps
• Communication only via file I/O



Example - Gradient Descent
• Objective  

• Algorithm
• compute gradient 

• On each data point via Map(i,data)
• Sum gradient via Reduce(coordinate)

• perform update step (better with line search) 

• repeat

minimize
w

mX

i=1

l(xi, yi, w) +
�

2
kwk2

g :=
mX

i=1

@wl(xi, yi, w)

w  w � ⌘(g + �w)



Dryad & S4



Dryad

• Directed acyclic graph
• System optimizes parallelism
• Different types of IPC  

(memory FIFO/network/file)
• Tight integration with .NET 

(allows easy prototyping)

Map

Reduce

DAG

Isard et al., 2007



DRYAD

graph description language



DRYAD

automatic graph refinement



S4
• Directed acyclic graph (want Dryad-like features)
• Real-time processing of data (as stream)
• Scalability (decentralized & symmetric)
• Fault tolerance
• Consistency for keys

• Processing elements
• Ingest (key, value) pair
• Capabilities tied to ID
• Clonable (for scaling)

• Simple implementation e.g. via consistent hashing

http://incubator.apache.org/s4/ Neumeyer et al, 2010



S4
processing element

click through rate estimation



Spark



Resilient Distributed Datasets
• Data is transformed by processing
• Store intermediate data using lineage
• Driver controls work

Zaharia et al., 2012 



Beyond MapReduce

rich language & preprocessor



Improvement over MapReduce

logistic regression k-means





Machine Learning Problems
• Many models have O(1) blocks of O(n) terms 

(LDA, logistic regression, recommender systems)
• More terms than what fits into RAM 

(personalized CTR, large inventory, action space)
• Local model typically fits into RAM
• Data needs many disks for distribution
• Decouple data processing from aggregation  

• Optimize for the 80% of all ML problems



General parallel algorithm template

client

server

• Clients have local view of parameters
• P2P is infeasible since O(n2) connections
• Synchronize with parameter server

• Reconciliation protocol  
average parameters, lock variables

• Synchronization schedule  
asynchronous, synchronous, episodic

• Load distribution algorithm 
uniform distribution, fault tolerance, recovery

Smola & Narayanamurthy, 2010, VLDB 
Gonzalez et al., 2012, WSDM 
Shervashidze et al., 2013, WWW



Communication pattern
client

server

client syncs to 
many masters

master serves 
many clients

put(keys,values,clock), get(keys,values,clock)



Architecture

High-performance and multi-threaded linear algebra
operations are provide between parameters and local
training data.

There are two challenges. One is flexible and efficient
communication between workers and servers. A nature
thought is viewing it as a distribute key-value system. The
standard API that setting and getting a key, however, is
potentially inefficient. Because both key and value are
often basic types such as integers and float, the overhead
associated sending a single key value pair would be large.

Our insight comes from that a large portion of machine
learning algorithms represents parameters as mathemat-
ical objects, such as vectors, matrices or tensors. On a
logic time (or an iteration), typically a part of the object
is updated. For example, a segment of vector, or a row
of the matrix. From the key-value system perspective,
it is equivalence to synchronization a range of keys each
time. This batched communication pattern could reduces
the overhead and make it easy to do optimization. Further-
more, it allows us to build an efficient vector clocks which
supports the flexible consistency requirement of machine
learning tasks.

The other challenge comes from the fault tolerances.
We implemented the system. and did awesome experi-

ments.
We briefly compare parameter server with other general

purpose machine learning systems, more details will be
provided in Section 6. Graphlab is .... Table ?? compare
the features.

Furthermore, parameter server is highly efficient. Fig-
ure 1 compared the largest experiments public carried by
both general purpose and specific systems. parameter
server is of several magnitude order larger than general
system, and even larger than the specific systems.

2 Architecture

2.1 Overview
An instance of parameter server can simultaneously run
more than one different algorithms. In parameter server,
Nodes are grouped into a server group and several worker
groups, which are shown in Figure 2. A server node in the
server group maintain a partition of the globally shared
parameters. They communicate with each other to repli-
cate and/or to migrate parameters for reliability and scal-
ing. There is a server manager node maintaining a con-
sistent view of the metadata of the servers, such as the
liveness and the assignment of parameters. It may backup
its metadata in Paxos for fault tolerance, and communi-
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Figure 1: Comparison of the public largest machine learn-
ing experiments each system performed.

server nodesserver 
manager

resource
manager /

paxos

task 
scheduler

worker 
nodes

training data

Figure 2: Architecture of parameter server.

cate with the cluster resource manager when adding or
removing server nodes.

Each worker group runs an application. A worker typ-
ically stores locally a portion of training data to com-
putes local statistics such as gradients. Workers commu-
nicate only with the server nodes, updating and retriev-
ing the shared parameters. There is a scheduler node for
each worker group. It assigns tasks to workers and mon-
itors their progress. If workers are added or removed,
it reschedules unfinished tasks. Similar to the server
manager, the scheduler may backup workers’ progress in
Paxos, and communicate with the cluster resource man-
ager.

The parameter server supports several independent pa-

2



Keys arranged in a DHT
• Virtual servers

• loadbalancing
• multithreading

• DHT
• contiguous key range for 

clients
• easy bulk sync
• easy insertion of servers

• Replication
• Machines hold replicas
• Easy fallback
• Easy insertion / repair

Server 3

Server 2

Server 1

key



Key layout

servers
1
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Key layout

copy

original
servers
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4
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Key layout

servers
1
2
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6

segment merger



Key layout

partial copy

servers
1
2

4
5

A B C D E



Recovery / server insertion

• Precopy server content to new candidate (3)
• After precopy ended,  send log
• For k virtual servers this causes O(k-2) delay
• Consistency using vector clocks

servers
1
2

4
5

A B C D E

3



Message Aggregation on Server

Algorithm 1 Set range R of node i into t:
Require: S1, . . . ,Sn are the existing ranges

1: for S 2 {Si : Si \R 6= ;} do
2: if S ✓ R then
3: vci(S) t

4: else
5: a max(S0

,R0
) and b min(S1

,R1
)

6: split S into [S0
, a), [a, b), [b,S1

)

7: vci([a, b)) t

8: end if
9: end for

4.2 Message
Messages carry the data communicated between nodes. It
consists of a list of key-value pairs and the timestamp:

vc(R), (k1, v1), . . . , (kp, vp), 8i, ki 2 R

The keys may be a subset of all available keys within
range R. For the missing keys, we assign them the same
timestamp but with 0 or unchanged values.

There are several ways to reduce the size of a message.
First of all, the vector clock can only has the sender’s time.
For example, when a worker push data to a server, the
worker doesn’t necessary to send others time except for it-
self. Secondly, the keys a node sending to another may be
unchanged if the same range will be communicated again.
For example, when a node push keys to a server, it may
pull the same keys from the server. Many machine learn-
ing algorithms also iterates on the same training data with
keys fixed on each iteration. Then is desirable for the re-
ceiver to cache the keys. So that if the sender will send the
same keys again, it only need to send a signature of this
key lists.

Thirdly, even if a subset of keys will be send again,
which may due to the user-defined filter, we can still make
use of the cached keys of the receiver by padding 0 in the
according value. Then we compress the values. There are
several compression algorithms such as Snappy and Zlib
which are fast on both compression and decompression,
and also efficient to remove 0s.

4.3 Consistent Hashing
The basic idea comes from distributed hash tables [10,
26], where both key-value pairs and server nodes are in-
serted into the hash ring. Each node manages the key seg-
ment starting with its insertion point to the next point by

ever, we didn’t implement it yet, because in practice we find n and m
are reasonable small.

owned 
by S1

duplicated 
by S1

key ring

S2

S1

S3

S4

Figure 6: Server node layout

other nodes in the anticlockwise direction, which is called
the anticlockwise neighbor. In the example shown on Fig-
ure 6, the server nodes manages segments of the same
color. Different to performing key discovery and routing
as [18], we use a consistent hashing for assignment and
we store the mapping from key segments to nodes in a
server manager, which backups the data by Paxos [19], as
implemented in Zookeeper. Note that, to facilitate load-
balancing, a physical server node contains several virtual
server nodes, so they are inserted multiple times into the
ring.

4.4 Replica and Consistency

W1 S1 S2

1. push x 2. f(x) 3. send f(x)

4. ack5. ack

W1

S1 S2
1a. push x

2. f(x+y) 3. send f(x+y)

4. ack

5a. ack

W2
1b. push x

5b. ack

Figure 7:
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Consistency models
0 1 2 3

0 1 2 3

0 1 2 3

(a) Sequential

(b) Eventual

(c) Bounded delay 

4

4

4

Figure 5: Example consistency model expressed by task
DAG dependency.

Sequential. In sequential consistency, all tasks are exe-
cuted one by one. The next task can be started only
if the previous one has finished.

Eventual. Eventual consistency is the opposite of se-
quential consistency. The parameter server will not
stall regardless of the availability of resources. For
instance, [27] describe such a system. However, this
is only recommendable whenever the underlying al-
gorithms are robust with regard to delays.

Bounded Delay. When a maximal delayed time ⌧ is set,
a new task will be blocked until all previous task ⌧

times ago have been finished. In other word, if we
use the iteration number as the (logic) time and set
⌧ = 2, then calling do_iteration(4) will be
blocked if any do_iteration(t) with t < 3 has
not been finished yet. Thus, if ⌧ = 0, we get the
sequential consistency model. While for an infinite
delay ⌧ = 1, we have the best-effect model [27].

The DAG can be traversed by either the callee or the
caller. For the former, the caller sends all tasks with their
dependencies to the callee, then the callee executes them
by its local DAG execution engine. In this way, the syn-
chronization is minimized between the caller and callee.
However, sometimes it is more convenient to use the lat-
ter. For instance, the scheduler may increase or decrease
the maximal delay according to the progress of the algo-
rithm. So the DAG is dynamic, then letting the caller tra-
verse the DAG simplify the programming.

3.5.2 User-defined Filters

The user-defined filters allow fine granularity control of
the data consistency within a task. It provides selective
synchronization on individual key-value pairs. One exam-
ple is the significantly modified filter, which only pushes
entries that have been changed more than by a significant
amount, e.g.

|wk � w

(synced)
k | > �.

That is, we send the key pair (k,wk) only if it is signif-
icantly changed since the last time it has been synchro-
nized. An intuitive choice is using a large � at the begin-
ning of the optimization, and then continuously decreas-
ing � when approaching a solution.

Another example, will be shown in Section 5.1, consid-
ers the optimal condition of the objective function. The
workers do not push local gradients which possibly would
not changed the according parameters to the servers.

4 Implementation
From the implementation aspect, it is more convenient to
view parameter server as a distributed key-value system.
A key-value pair may be an entry of the shared parame-
ters, where a key is often an integer or a string and a value
is often a number. It also may present a task with task
identity as the key and function augments or return results
as the value.

4.1 Vector Clock
To implement the task dependency, each key-value pair is
associated with a timestamp. Due to the potential complex
dependencies, timestamp is generated by vector clock.
Comparing to scalar clock, the vector clock tracks the
clock of individual nodes. Take the aggregation as an ex-
amples again, assume the server need to wait the value
pushed from all worker at an iteration. By vector clock,
the server is able to know the data from which workers
has been received. So if any worker join or leave, the
server only need to contact these workers, rather than ask
for restarting all pushes again.

A naive implementation of the vector clock is impracti-
cal. The number of nodes may go beyond thousand, main-
taining a thousand length vector for each key is expen-
sive. However, note that, by our design, each task asso-
ciates with a range of key-value pairs and they can share
the same timestamp. Therefore, we only need to have a
ranged vector clock.

Assume vci(k) is the time of key k of node i. Given
range R = [R0

,R1
), then the ranged vector clock

vci(R) = t means for any key k 2 R, vci(k) = t. Algo-
rithm 1 shows how to update a ranged vector clock. When
the range will be set is aligned with the existing ranges,
only the time is modified. Otherwise, we split the exist-
ing ranges. Each update increase at most two ranges. Let
n be the total number of unique ranges updated by tasks,
and m be the total number of server nodes, then the range
vector clock will generate at most nm ranges for a node.3

3Ranges can be also merged to reduce the number of fragment. How-

6

via task processing engine on client/controller
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Guinea pig - logistic regression

• Implementation on Parameter Server

Each key segment is then duplicated into the k anti-
clockwise neighbor server nodes for fault tolerance. If
k = 1, then the segment with the mark in the example will
be duplicated at Server 3. A new node comes is first ran-
domly (via a hash function) inserted into the ring, and then
takes the key segments from its clockwise neighbors. On
the other hand, if a node is removed or if it fails, its seg-
ments will be served by its nearest anticlockwise neigh-
bors, who already own a duplicated copy if k > 0. To
recover a failed node, we just insert a node back into the
failed node’s previous positions and then request the seg-
ment data from its anticlockwise neighbors.

4.5 Node Join and Leave

5 Evaluation
5.1 Sparse Logistic Regression
Sparse logistic regression is a linear binary classifier,
which combines a logit loss with a sparse regularizer:

min

w2Rp

nX

i=1

log(1 + exp(�yi hxi, wi)) + �kwk1,

where the regularizer kwk1 has a desirable property to
control the number of non-zero entries in the optimal solu-
tion w

⇤, but its non-smooth property makes this objective
function hard to be solved.

We compared parameter server with two specific-
purpose systems developed by an Internet company. For
privacy purpose, we name them System-A, and System-
B respectively. The former uses an variant of the well-
known L-BFGS [21, 5], while the latter runs an variant
of block proximal gradient method [24], which updates a
block of parameters at each iteration according to the first-
order and diagonal second-order gradients. Both systems
use sequential consistency model, but are well optimized
in both computation and communication.

We re-implemented the algorithm used by System-B on
parameter server. Besides, we made two modifications.
One is that we relax the consistency model to bounded
delay. The other one is a KKT filter to avoid sending gra-
dients which may do not affect the parameters.

Specifically, let gk be the global (first-order) gradient
on feature k at iteration t. Then, the according parameter
wk will not be changed at this iteration if wk = 0 and
��  gk  � due to the update rule. Therefore it is not
necessary for workers to send gk at this iteration. But a
worker does not know the global gk without communica-
tion, instead, we let a worker i approximate gk based on
its local gradient gik by g̃k = ckg
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k, where ck is the

global number of nonzero entries on feature k and c
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k is

the local count, which are constants and can be obtained
before iterating. Then, the worker skips sending gk if

wk = 0 and � �+�  g̃k  ���,

where � 2 [0,�] is user defined constant.

Method Consistency LOC
System-A L-BFGS Sequential 10,000
System-B Block PG Sequential 30,000
Parameter Block PG Bounded Delay 300Server KKT Filter

Table 3: xx

These there systems are compared in Table 3. Notably,
both System-A and System-B consist of more than 10K
lines of code, but parameter server only uses less than 300.

To demonstrate the efficiency of parameter server, we
collected a computational advertisement dataset with 170
Billions of examples and 65 Billions of unique features.
The raw text data size is 636 TB, and the compressed for-
mat is 141 TB. We run these systems on 1000 machines,
each one has 16 cores, 192GB memory, and are connected
by 10GB Ethernet. For parameter server, we use 800 ma-
chines to form the worker group. Each worker caches
around 1 billions of parameters. The rest 200 machines
make the server group, where each machine runs 10 (vir-
tual) server nodes.
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Figure 8: Convergence results of sparse logistic regres-
sion, the goal is to achieve small objective value using
less time.

We run these three systems to achieve the same objec-
tive value, the less time used the better. Both system-B
and parameter server use 500 blocks. In addition, param-
eter server fix ⌧ = 4 for the bounded delay, which means
each worker can parallel executes 4 blocks.
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known L-BFGS [21, 5], while the latter runs an variant
of block proximal gradient method [24], which updates a
block of parameters at each iteration according to the first-
order and diagonal second-order gradients. Both systems
use sequential consistency model, but are well optimized
in both computation and communication.

We re-implemented the algorithm used by System-B on
parameter server. Besides, we made two modifications.
One is that we relax the consistency model to bounded
delay. The other one is a KKT filter to avoid sending gra-
dients which may do not affect the parameters.
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Billions of examples and 65 Billions of unique features.
The raw text data size is 636 TB, and the compressed for-
mat is 141 TB. We run these systems on 1000 machines,
each one has 16 cores, 192GB memory, and are connected
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Figure 10: time decomposition of a worker node.

We show the convergence results in Figure 8. As
can be seen, baseline-B outperforms baseline-A, because
block proxmial gradient method converges faster than L-
BFGS on this dataset. Parameter server further improves
baseline-B even by using the same algorithms, because of
the relaxed consistency model parameter server adopted.
The KKT filter significantly reduced the network traffic.
It skipped 93.4% of gradients should be sent, which are
shown in Figure 9. The bounded delay consistency allow
to start updating the next block without waiting the data
communication finished in previous blocks. With ⌧ = 4,
it affects the convergence speed little, but further hide the
communication cost.

The benefit of relaxed consistency model can be clearer
seen in Figure 10, which shows the time decomposition
of a worker nodes. As can be seen, System-A has around
32% idle time, while this number goes to 53% for system-
B due to the barrier placed in each block. However, the
parameter server reduces this cost under 2%. But also
note that parameter server uses more computational time

than system-B. The reason are two-fold. On one hand,
system-B optimizes its gradient calculating on this dataset
by careful data transformation. On the other hand, the
asynchronous updates of parameter server needs more it-
erations to achieve the same objective value as system-B.
However, due to the significant gain on reducing commu-
nication cost, parameter server reduces the total time into
half.

6 Related Works
There exist several general purpose distributed machine
learning systems. Mahout [6], based on Hadoop [1] and
MLI [28], based on Spark [30], adopt the iterative MapRe-
duce [15] framework. While Spark is substantially su-
perior to Hadoop MapReduce due to its preservation of
state and optimized execution strategy, both of these ap-
proaches use a synchronous iterative communication pat-
tern. This makes them vulnerable to nonuniform per-
formance distributions for iterative machine learning al-
gorithms, i.e. machines that might happen to be slow at
any given time. To overcome this limitation, distributed
GraphLab [22] asynchronously schedules communication
using a graph abstraction. It, however, lacks the elastic
scalability of the map/reduce-based frameworks, and re-
lies on coarse-grained snapshots for recovery. Moreover,
global variables synchronization is not a first-class prim-
itive. Of course, beyond these general frameworks, nu-
merous systems have been developed that target specific
applications, such as [3, 14, 25, 23, 29, 12, 16].

We found that many inference problems have a rather
restricted structure in terms of their parametrization where
considerable gains can be made by exploiting this design.
For instance, generalized linear models typically use a sin-
gle massive parameter vector, or topic models use an ar-
ray of sparse vectors. In general, many relevant large-
scale graphical models consist largely of a small num-
ber of plates, thus allowing for a repeated structure of a
small number of components which are shared between
observations and machines. This offers considerable effi-
ciencies by performing these operations in bulk and by
specializing synchronization primitives for the specific
datatypes.

7 Conclusion
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Further reading
• Consistent hashing (Karger et al.) 

http://www.akamai.com/dl/technical_publications/
ConsistenHashingandRandomTreesDistributedCachingprotocolsforrelievingHotSpotsontheworldwideweb.pdf

• Stateless Proportional Caching (Chawla et al.) 
http://www.usenix.org/event/atc11/tech/final_files/Chawla.pdf 
http://www.usenix.org/event/atc11/tech/slides/chawla.pdf

• Pastry P2P routing (Rowstron and Druschel) 
http://research.microsoft.com/en-us/um/people/antr/PAST/pastry.pdf 
http://research.microsoft.com/en-us/um/people/antr/pastry/

• MapReduce (Dean and Ghemawat) 
http://labs.google.com/papers/mapreduce.html

• Google File System (Ghemawat, Gobioff, Leung) 
http://labs.google.com/papers/gfs.html

• Amazon Dynamo (deCandia et al.) 
http://cs.nyu.edu/srg/talks/Dynamo.ppt 
http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf

• BigTable (Chang et al.) 
http://labs.google.com/papers/bigtable.html

• CEPH filesystem (proportional hashing, file system) 
http://ceph.newdream.net/ 
http://ceph.newdream.net/papers/weil-crush-sc06.pdf
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Further reading
• CPUS 

http://www.anandtech.com/show/3922/intels-sandy-bridge-architecture-exposed 
http://www.anandtech.com/show/4991/arms-cortex-a7-bringing-cheaper-dualcore-more-power-efficient-highend-
devices

• NVIDIA CUDA 
http://www.nvidia.com/object/cuda_home_new.html

• ATI Stream Computing  
http://www.amd.com/US/PRODUCTS/TECHNOLOGIES/STREAM-TECHNOLOGY/Pages/stream-technology.aspx

• Microsoft Dryad (Isard et al.) 
http://connect.microsoft.com/Dryad

• Yahoo S4 (Neumayer et al.) 
http://s4.io/ 
http://slidesha.re/uSdSjL (slides) 
http://4lunas.org/pub/2010-s4.pdf (paper)

• Memcached  
http://memcached.org/

• Linked.In Voldemort (key,value) storage  
http://project-voldemort.com/design.php

• PNUTS distributed storage (Cooper et al.)  
http://www.brianfrankcooper.net/pubs/pnuts.pdf

• SSDs (solid state drives) 
http://www.anandtech.com/bench/SSD/65
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