MACHINE LEARNING DEPARTMENT

2.1 Probabilities

 2 Statistics

 2 Statistics}

Alexander Smola

Introduction to Machine Learning 10-701 http://alex.smola.org/teaching/10-701-15

SOUNDS LIKE THE CLASS HELPED.

Basics

Probability

- Space of events X
- server working; slow response; server broken
- income of the user (e.g. \$95,000)
- query text for search (e.g. "statistics tutorial")
- Probability axioms (Kolmogorov)

$$
\begin{aligned}
& \operatorname{Pr}(X) \in[0,1], \operatorname{Pr}(\mathcal{X})=1 \\
& \operatorname{Pr}\left(\cup_{i} X_{i}\right)=\sum_{i} \operatorname{Pr}\left(X_{i}\right) \text { if } X_{i} \cap X_{j}=\emptyset
\end{aligned}
$$

- Example queries
- $P($ server working $)=0.999$
- $P(90,000<$ income $<100,000)=0.1$

Venn Diagram

Carnegie Mellon University

Venn Diagram

 X
$X \cap X^{\prime}$

All events

Carnegie Mellon University

Venn Diagram

X

$X \cap X^{\prime}$

All events

$\operatorname{Pr}\left(X \cup X^{\prime}\right)=\operatorname{Pr}(X)+\operatorname{Pr}\left(X^{\prime}\right)-\operatorname{Pr}\left(X \cap X^{\prime}\right)$
Carnegie Mellon University

(In)dependence

- Independence $\operatorname{Pr}(x, y)=\operatorname{Pr}(x) \cdot \operatorname{Pr}(y)$
- Login behavior of two users (approximately)
- Disk crash in different colos (approximately)

(In)dependence

- Independence $\operatorname{Pr}(x, y)=\operatorname{Pr}(x) \cdot \operatorname{Pr}(y)$
- Login behavior of two users (approximately)
- Disk crash in different colos (approximately)

Dependent events

- Emails
- Queries

$$
\operatorname{Pr}(x, y) \neq \operatorname{Pr}(x) \cdot \operatorname{Pr}(y)
$$

- News stream / Buzz / Tweets
- IM communication
- Russian Roulette

(In)dependence

- Independence $\operatorname{Pr}(x, y)=\operatorname{Pr}(x) \cdot \operatorname{Pr}(y)$
- Login behavior of two users (approximately)
- Disk crash in different colos (approximately)

Dependent events

- Emails
- Queries

$$
\operatorname{Pr}(x, y) \neq \operatorname{Pr}(x) \wedge \operatorname{Pr}(y)
$$

- News stream / Buzz / Tweets
- IM communication
- Russian Roulette

Everywhere!

A Graphical Model

$$
p(\text { spam }, \text { mail })=p(\text { spam }) p(\text { mail } \mid \text { spam })
$$

Carnegie Mellon University

Bayes Rule

- Joint Probability

$$
\operatorname{Pr}(X, Y)=\operatorname{Pr}(X \mid Y) \operatorname{Pr}(Y)=\operatorname{Pr}(Y \mid X) \operatorname{Pr}(X)
$$

- Bayes Rule

$$
\operatorname{Pr}(X \mid Y)=\frac{\operatorname{Pr}(Y \mid X) \cdot \operatorname{Pr}(X)}{\operatorname{Pr}(Y)}
$$

- Hypothesis testing
- Reverse conditioning

AIDS test (Bayes rule)

- Data
- Approximately 0.1% are infected
- Test detects all infections
- Test reports positive for 1\% healthy people
- Probability of having AIDS if test is positive

AIDS test (Bayes rule)

- Data
- Approximately 0.1% are infected
- Test detects all infections
- Test reports positive for 1\% healthy people
- Probability of having AIDS if test is positive

$$
\begin{aligned}
\operatorname{Pr}(a=1 \mid t) & =\frac{\operatorname{Pr}(t \mid a=1) \cdot \operatorname{Pr}(a=1)}{\operatorname{Pr}(t)} \\
& =\frac{\operatorname{Pr}(t \mid a=1) \cdot \operatorname{Pr}(a=1)}{\operatorname{Pr}(t \mid a=1) \cdot \operatorname{Pr}(a=1)+\operatorname{Pr}(t \mid a=0) \cdot \operatorname{Pr}(a=0)} \\
& =\frac{1 \cdot 0.001}{1 \cdot 0.001+0.01 \cdot 0.999}=0.091
\end{aligned}
$$

Improving the diagnosis

Carnegie Mellon University

Improving the diagnosis

- Use a follow-up test
- Test 2 reports positive for 90% infections
- Test 2 reports positive for 5% healthy people

$$
\frac{0.01 \cdot 0.05 \cdot 0.999}{1 \cdot 0.9 \cdot 0.001+0.01 \cdot 0.05 \cdot 0.999}=0.357
$$

Improving the diagnosis

- Use a follow-up test
- Test 2 reports positive for 90% infections
- Test 2 reports positive for 5% healthy people

$$
\frac{0.01 \cdot 0.05 \cdot 0.999}{1 \cdot 0.9 \cdot 0.001+0.01 \cdot 0.05 \cdot 0.999}=0.357
$$

- Why can't we use Test 1 twice?

Outcomes are not independent but tests 1 and 2 are conditionally independent

Improving the diagnosis

- Use a follow-up test
- Test 2 reports positive for 90% infections
- Test 2 reports positive for 5% healthy people

$$
\frac{0.01 \cdot 0.05 \cdot 0.999}{1 \cdot 0.9 \cdot 0.001+0.01 \cdot 0.05 \cdot 0.999}=0.357
$$

- Why can't we use Test 1 twice?

Outcomes are not independent but tests 1 and 2 are conditionally independent

$$
p\left(t_{1}, t_{2} \mid a\right)=p\left(t_{1} \mid a\right) \cdot p\left(t_{2} \mid a\right)
$$

Logarithms are good

- Floating point numbers

mantissa

exponent

- Probabilities can be very small. In particular products of many probabilities. Underflow!
- Store data in mantissa, not exponent

$$
\prod_{1} p_{i}>\sum_{C_{i}} \pi_{i}
$$

$$
\sum_{i} p_{i} \rightarrow \max \pi+\log \sum_{i} \exp \left[\pi_{i}-\max \pi\right]
$$

Naive Bayes Spam Filter

Carnegie Mellon University

Naive Bayes Spam Filter

- Key assumption

Words occur independently of each other given the label of the document

$$
p\left(w_{1}, \ldots, w_{n} \mid \mathrm{spam}\right)=\prod_{i=1}^{n} p\left(w_{i} \mid \text { spam }\right)
$$

- Spam classification via Bayes Rule

Naive Bayes Spam Filter

- Key assumption

Words occur independently of each other given the label of the document

$$
p\left(w_{1}, \ldots, w_{n} \mid \text { spam }\right)=\prod_{i=1}^{n} p\left(w_{i} \mid \operatorname{spam}\right)
$$

- Spam classification via Bayes Rule

$$
p\left(\operatorname{spam} \mid w_{1}, \ldots, w_{n}\right) \propto p(\operatorname{spam}) \prod_{i=1}^{n} p\left(w_{i} \mid \operatorname{spam}\right)
$$

- Parameter estimation

Compute spam probability and word distributions for spam and ham

Naive Bayes Spam Filter

Equally likely phrases

- Get rich quick. Buy CMU stock.
- Buy Viagra. Make your CMU experience last longer.
- You deserve a PhD from CMU. We recognize your expertise.

Naive Bayes Spam Filter

Equally likely phrases

- Get rich quick. Buy CMU stock.
- Buy Viagra. Make your CMU experience last longer.
- You deserve a PhD from CMU. We recognize your expertise.
- Make your rich CMU PhD experience last longer.

A Graphical Model

Carnegie Mellon University

A Graphical Model

$$
p\left(w_{1}, \ldots, w_{n} \mid \operatorname{spam}\right)=\prod_{i=1}^{n} p\left(w_{i} \mid \text { spam }\right)
$$

A Graphical Model

spam

Carnegie Mellon University

A Graphical Model

Carnegie Mellon University

Naive Bayes Spam Filter

- Data
- Emails (headers, body, metadata)
- Labels (spam/ham)
assume that users actually label all mails
- Processing capability
- Billions of e-mails
- 1000s of servers
- Need to estimate $p(y), p\left(x_{i} l y\right)$
- Compute distribution of x_{i} for every y
- Compute distribution of y

Delivered-To: alex.smola@gmail.com
Received: by 10.216.47.73 with SMTP id s51cs361171web;
Tue, 3 Jan 2012 14:17:53-0800 (PST)
Received: by 10.213.17.145 with SMTP id s17mr2519891eba.147.1325629071725; Tue, 03 Jan 2012 14:17:51-0800 (PST)
Return-Path: alex+caf_=alex.smola=gmail.com@smola.org
Received: from mail-ey0-f175.google.com (mail-ey0-f175.google.com [209.85.215.175]) by mx.google.com with ESMTPS id n4si29264232eef.57.2012.01.03.14.17.51 (version=TLSv1/SSLv3 cipher=0THER);
Tue, 03 Jan 2012 14:17:51-0800 (PST)
Received-SPF: neutral (google.com: 209.85.215.175 is neither permitted nor denied by best guess record for domain of alex+caf_=alex.smola=gmail.com@smola.org) client-
ip=209.85.215.175;
Authentication-Results: mx.google.com; spf=neutral (google.com: 209.85.215.175 is neither permitted nor denied by best guess record for domain of alex
+caf_=alex.smola=gmail.com@smola.org) smtp.mail=alex+caf_=alex.smola=gmail.com@smola.org;
dkim=pass (test mode) header.i=@googlemail.com
Received: by eaal1 with SMTP id 11so15092746eaa. 6
for alex.smola@gmail.com; Tue, 03 Jan 2012 14:17:51-0800 (PST)
Received: by 10.205.135.18 with SMTP id ie18mr5325064bkc.72.1325629071362;
Tue, 03 Jan 2012 14:17:51-0800 (PST)
X-Forwarded-To: alex.smola@gmail.com
X-Forwarded-For: alex@smola.org alex.smola@gmail.com
Delivered-To: alex@smola.org
Received: by 10.204 .65 .198 with SMTP id k6cs206093bki;
Tue, 3 Jan 2012 14:17:50-0800 (PST)
Received: by 10.52.88.179 with SMTP id bh19mr10729402vdb.38.1325629068795;
Tue, 03 Jan 2012 14:17:48-0800 (PST)
Return-Path: althoff.tim@googlemail.com
Received: from mail-vx0-f179.google.com (mail-vx0-f179.google.com [209.85.220.179])
by mx.google.com with ESMTPS id dt4si11767074vdb.93.2012.01.03.14.17.48
(version=TLSv1/SSLv3 cipher=OTHER);
Tue, 03 Jan 2012 14:17:48-0800 (PST)
Received-SPF: pass (google.com: domain of althoff.tim@googlemail.com designates 209.85.220.179 as permitted sender) client-ip=209.85.220.179;

Received: by vcbf13 with SMTP id f13so11295098vcb. 10
for alex@smola.org; Tue, 03 Jan 2012 14:17:48 -0800 (PST)
DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed;
d=googlemail.com; s=gamma;
h=mime-version:sender:date:x-google-sender-auth:message-id:subject :from:to:content-type;
bh=WCbdZ5sXac25dpH02XcRyDOdts993hKwsAVXpGrFh0w=;
b=WK2B2+ExWnf/gvTkw6uUvKuP4XeoKnlJq3USYTm0RARK8dSFjy0QsIHeAP9Yssxp60
7ngGoTzYqd+ZsyJfvQcLAWp1PCJhG8AMcnqWkx0NMeoFvIp2HQooZwxSOCx5ZRgY+7qX
uIbbdna4lUDXj6UFe16SpLDCkptd80Z3gr7+o=
MIME-Version: 1.0
Received: by 10.220 .108 .81 with SMTP id e17mr24104004vcp.67.1325629067787; Tue, 03 Jan 2012 14:17:47-0800 (PST)
Sender: althoff.tim@googlemail.com
Received: by 10.220.17.129 with HTTP; Tue, 3 Jan 2012 14:17:47 -0800 (PST) Date: Tue, 3 Jan 2012 14:17:47-0800
X-Google-Sender-Auth: 6bwi6D17HjZIkxOEol38NZzyeHs
Message-ID: CAFJJHDGPBW+SdZg0MdAABiAKydDk9tpeMoDijYGjoGO-WC7osg@mail.gmail.com
Subject: CS 281B. Advanced Topics in Learning and Decision Making
Erom. Tim 1 thoff solthoff@oors horkolov odu

Preview - Map Reduce

- 1000s of (faulty) machines
- Lots of jobs are mostly embarrassingly parallel (except for a sorting/transpose phase)
- Functional programming origins
- Map(key,value)
processes each (key,value) pair and outputs a new (key,value) pair
- Reduce(key,value)
reduces all instances with same key to aggregate

Preview - Map Reduce

- 1000s of (faulty) machines
- Lots of jobs are mostly embarrassingly parallel (except for a sorting/transpose phase)
- Functional programming origins
- Map(key,value) processes each (key,value) pair and outputs a new (key,value) pair
- Reduce(key,value)
reduces all instances with same key to aggregate
- Example - extremely naive wordcount
- Map(docID, document) for each document emit many (wordID, count) pairs
- Reduce(wordID, count) sum over all counts for given wordID and emit (wordID, aggregate)

Naive NaiveBayes Classifier

- Two classes (spam/ham)
- Binary features (e.g. presence of \$\$\$, viagra)
- Simplistic Algorithm
- Count occurrences of feature for spam/ham
- Count number of spam/ham mails
feature probability
spam probability

$$
\begin{gathered}
p\left(x_{i}=\mathrm{TRUE} \mid y\right)=\frac{n(i, y)}{n(y)} \text { and } p(y)=\frac{n(y)}{n} \\
p(y \mid x) \propto \frac{n(y)}{n} \prod_{i: x_{i}=\text { TRUE }} \frac{n(i, y)}{n(y)} \prod_{i: x_{i}=\text { FALSE }} \frac{n(y)-n(i, y)}{n(y)}
\end{gathered}
$$

Naive NaiveBayes

what if $n(i, y)=n(y)$?

what if $n(i, y)=0$?

$$
p(y \mid x) \propto \frac{n(y)}{n} \prod_{i: x_{i}=\text { TRUE }} \frac{n(i, y)}{n(y)} \prod_{i: x_{i}=\text { FALSE }} \frac{n(y)-n(i, y)}{n(y)}
$$

Naive NaiveBayes

Basic Algorithm

- For each document (x, y) do
- Aggregate label counts given y
- For each feature x_{i} in x do
- Aggregate statistic for $\left(x_{i}, y\right)$ for each y
- For y estimate distribution $p(y)$
- For each ($\mathrm{x}_{\mathrm{i}}, \mathrm{y}$) pair do

Estimate distribution p($\mathrm{x}_{\mathrm{i}} \mathrm{ly}$), e.g. Parzen Windows,
Exponential family (Gauss, Laplace, Poisson, ...), Mixture

- Given new instance compute

$$
p(y \mid x) \propto p(y) \prod_{j} p\left(x_{j} \mid y\right)
$$

Basic Algorithm

- For each document (x,y) do
- Aggregate label counts given y pass over all data
- For each feature x_{i} in x do
- Aggregate statistic for $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}\right)$ for each y
- For y estimate distribution $p(y)$
- For each $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}\right)$ pair do

trivially parallel

Estimate distribution p($\mathrm{x}_{\mathrm{i}} \mathrm{ly}$), e.g. Parzen Windows, Exponential family (Gauss, Laplace, Poisson, ...), Mixture

- Given new instance compute

$$
p(y \mid x) \propto p(y) \prod_{j} p\left(x_{j} \mid y\right)
$$

MapReduce Variant

- Map(document (x,y))
- For each mapper for each feature x_{i} in x do
- Aggregate statistic for $\left(x_{i}, y\right)$ for each y
- Send statistics (key $=\left(x_{i}, y\right)$, value $=$ counts) to reducer
- Reduce($\mathrm{x}_{\mathrm{i}}, \mathrm{y}$)
- Aggregate over all messages from mappers
- Estimate distribution $p\left(x_{i} l y\right)$, e.g. Parzen Windows, Exponential family (Gauss, Laplace, Poisson, ...), Mixture
- Send coordinate-wise model to global storage
- Given new instance compute

$$
p(y \mid x) \propto p(y) \prod p\left(x_{j} \mid y\right)
$$

MapReduce Variant

- Map(document (x,y))
- For each mapper for each feature x_{i} in x do
- Aggregate statistic for $\left(x_{i}, y\right)$ for each y

local per

mapper

- Send statistics $\left(k e y=\left(x_{i}, y\right)\right.$, value $=$ counts) to reducer
- Reduce($\mathrm{x}_{\mathrm{i}}, \mathrm{y}$)
- Aggregate over all messages from mappers needed
- Estimate distribution $p\left(x_{i} l y\right)$, e.g. Parzen Windows, Exponential family (Gauss, Laplace, Poisson, ...), Mixture
- Send coordinate-wise model to global storage
- Given new instance compute

$$
p(y \mid x) \propto p(y) \prod p\left(x_{j} \mid y\right)
$$

Estimating Probabilities

Binomial Distribution

- Two outcomes (head, tail); $(0,1)$
- Data likelihood

$$
p(X ; \pi)=\pi^{n_{1}}(1-\pi)^{n_{0}}
$$

- Maximum Likelihood Estimation

- Constrained optimization problem $\pi \in[0,1]$
- Incorporate constraint via

$$
p(x ; \theta)=\frac{e^{x \theta}}{1+e^{\theta}}
$$

- Taking derivatives yields

$$
\theta=\log \frac{n_{1}}{n_{0}+n_{1}} \Longleftrightarrow p(x=1)=\frac{n_{1}}{n_{0}+n_{1}}
$$

... in detail ...

$$
\begin{aligned}
p(X ; \theta) & =\prod_{i=1}^{n} p\left(x_{i} ; \theta\right)=\prod_{i=1}^{n} \frac{e^{\theta x_{i}}}{1+e^{\theta}} \\
\Longrightarrow \log p(X ; \theta) & =\theta \sum_{i=1}^{n} x_{i}-n \log \left[1+e^{\theta}\right] \\
\Longrightarrow \partial_{\theta} \log p(X ; \theta) & =\sum_{i=1}^{n} x_{i}-n \frac{e^{\theta}}{1+e^{\theta}} \\
\Longleftrightarrow \frac{1}{n} \sum_{i=1}^{n} x_{i} & =\frac{e^{\theta}}{1+e^{\theta}}=p(x=1)
\end{aligned}
$$

Discrete Distribution

- n outcomes (e.g. USA, Canada, India, UK, NZ)
- Data likelihood

$$
p(X ; \pi)=\prod \pi_{i}^{n_{i}}
$$

Maximum Likelihood Estimation

- Constrained optimization problem ... or ...
- Incorporate constraint via
- Taking derivatives yields

$$
p(x ; \theta)=\frac{\exp \theta_{x}}{\sum_{x^{\prime}} \exp \theta_{x^{\prime}}}
$$

$$
\theta_{i}=\log \frac{n_{i}}{\sum_{j} n_{j}} \Longleftrightarrow p(x=i)=\frac{n_{i}}{\sum_{j} n_{j}}
$$

Tossing a Dice

Tossing a Dice

ersity

Key Questions

- Do empirical averages converge?
- Probabilities
- Means / moments
- Rate of convergence and limit distribution
- Worst case guarantees
- Using prior knowledge
drug testing, semiconductor fabs computational advertising user interface design ...

MACHINE LEARNING DEPARTMENT

2.2 Tail Bounds

2 Statistics

Alexander Smola

Introduction to Machine Learning 10-701 http://alex.smola.org/teaching/10-701-15

Cū̃̃l Cream cheese

$+1$
 acab

RED HOT CHILLI CHICKEN

Expectations

- Random variable x with probability measure
- Expected value of $f(x)$

$$
\mathbf{E}[f(x)]=\int f(x) d p(x)
$$

- Special case - discrete probability mass

$$
\operatorname{Pr}\{x=c\}=\mathbf{E}[\{x=c\}]=\int\{x=c\} d p(x)
$$

(same trick works for intervals)

- Draw x_{i} identically and independently from p
- Empirical average

$$
\mathbf{E}_{\text {emp }}[f(x)]=\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right) \text { and } \underset{\text { emp }}{\operatorname{Pr}}\{x=c\}=\frac{1}{n} \sum_{i=1}^{n}\left\{x_{i}=c\right\}
$$

Deviations

- Gambler rolls dice 100 times

$$
\hat{P}(X=6)=\frac{1}{n} \sum_{i=1}^{n}\left\{x_{i}=6\right\}
$$

- ' 6 ' only occurs 11 times. Fair number is16.7

IS THE DICE TAINTED?

- Probability of seeing ' 6 ' at most 11 times

$$
\operatorname{Pr}(X \leq 11)=\sum_{i=0}^{11} p(i)=\sum_{i=0}^{11}\binom{100}{i}\left[\frac{1}{6}\right]^{i}\left[\frac{5}{6}\right]^{100-i} \approx 7.0 \%
$$

It's probably OK ... can we develop general theory?

Deviations

- Gambler rolls dice 100 times

$$
\hat{P}(X=6)=\frac{1}{n} \sum_{i=1}^{n}\left\{x_{i}=6\right\}
$$

- ' 6 ' only occurs 11 times. Fair number is16.7

IS THE DICE TAINTED?

- Probability of seeing ' 6 ' at most 11 times

$$
\operatorname{Pr}(X \leq 11)=\sum_{i=0}^{11} p(i)=\sum_{i=0}^{11}\binom{100}{i}\left[\frac{1}{6}\right]^{i}\left[\frac{5}{6}\right]^{100-i} \approx 7.0 \%
$$

It's probably OK ... can we develop general theory?

Empirical average for a dice

how quickly does it converge?

Law of Large Numbers

- Random variables x_{i} with mean $\mu=\mathbf{E}\left[x_{i}\right]$
- Empirical average $\hat{\mu}_{n}:=\frac{1}{n} \sum_{i=1}^{n} x_{i}$
- Weak Law of Large Numbers

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(\left|\hat{\mu}_{n}-\mu\right| \leq \epsilon\right)=1 \text { for any } \epsilon>0
$$

- Strong Law of Large Numbers

$$
\operatorname{Pr}\left(\lim _{n \rightarrow \infty} \hat{\mu}_{n}=\mu\right)=1
$$

this means convergence in probability

Empirical average for a dice

- Upper and lower bounds are $\mu \pm \sqrt{\operatorname{Var}(x) / n}$
- This is an example of the central limit theorem

Central Limit Theorem

- Independent random variables x_{i} with mean μ_{i} and standard deviation σ_{i}
- The random variable

$$
z_{n}:=\left[\sum_{i=1}^{n} \sigma_{i}^{2}\right]^{-\frac{1}{2}}\left[\sum_{i=1}^{n} x_{i}-\mu_{i}\right]
$$

converges to a Normal Distribution $\mathcal{N}(0,1)$

- Special case - IID random variables \& average

$$
\frac{\sqrt{n}}{\sigma}\left[\frac{1}{n} \sum_{i=1}^{n} x_{i}-\mu\right] \rightarrow \mathcal{N}(0,1)
$$

$O\left(n^{-\frac{1}{2}}\right)$ convergence
Carnegie Mellon University

Slutsky's Theorem

- Continuous mapping theorem
- X_{i} and Y_{i} sequences of random variables
- X_{i} has as its limit the random variable X
- Y_{i} has as its limit the constant c
- $g(x, y)$ is continuous function for all $g(x, c)$
- $g\left(X_{i}, Y_{i}\right)$ converges in distribution to $g(X, c)$

Delta Method

- Random variable X_{i} convergent to b

$$
a_{n}^{-2}\left(X_{n}-b\right) \rightarrow \mathcal{N}(0, \Sigma) \text { with } a_{n}^{2} \rightarrow 0 \text { for } n \rightarrow \infty
$$

- g is a continuously differentiable function for b
- Then $g\left(X_{i}\right)$ inherits convergence properties

$$
a_{n}^{-2}\left(g\left(X_{n}\right)-g(b)\right) \rightarrow \mathcal{N}\left(0,\left[\nabla_{x} g(b)\right] \Sigma\left[\nabla_{x} g(b)\right]^{\top}\right)
$$

- Proof: use Taylor expansion for $\mathrm{g}\left(\mathrm{X}_{\mathrm{n}}\right)-\mathrm{g}(\mathrm{b})$

$$
a_{n}^{-2}\left[g\left(X_{n}\right)-g(b)\right]=\left[\nabla_{x} g\left(\xi_{n}\right)\right]^{\top} a_{n}^{-2}\left(X_{n}-b\right)
$$

- $g\left(\xi_{\mathrm{n}}\right)$ is on line segment $\left[X_{\mathrm{n}}, \mathrm{b}\right]$
- By Slutsky's theorem it converges to g(b)
- Hence $g\left(X_{i}\right)$ is asymptotically normal

Fourier Transform

- Fourier transform relations

$$
\begin{aligned}
F[f](\omega) & :=(2 \pi)^{-\frac{d}{2}} \int_{\mathbb{R}^{n}} f(x) \exp (-i\langle\omega, x\rangle) d x \\
F^{-1}[g](x) & :=(2 \pi)^{-\frac{d}{2}} \int_{\mathbb{R}^{n}} g(\omega) \exp (i\langle\omega, x\rangle) d \omega .
\end{aligned}
$$

- Useful identities
- Identity

$$
F^{-1} \circ F=F \circ F^{-1}=\operatorname{Id}
$$

- Derivative

$$
F\left[\partial_{x} f\right]=-i \omega F[f]
$$

- Convolution (also holds for inverse transform)

$$
F[f \circ g]=(2 \pi)^{\frac{d}{2}} F[f] \cdot F[g]
$$

The Characteristic Function Method

- Characteristic function

$$
\phi_{X}(\omega):=F^{-1}[p(x)]=\int \exp (i\langle\omega, x\rangle) d p(x)
$$

- For X and Y independent we have
- Joint distribution is convolution

$$
p_{X+Y}(z)=\int p_{X}(z-y) p_{Y}(y) d y=p_{X} \circ p_{Y}
$$

- Characteristic function is product

$$
\phi_{X+Y}(\omega)=\phi_{X}(\omega) \cdot \phi_{Y}(\omega)
$$

- Proof - plug in definition of Fourier transform
- Characteristic function is unique

Proof - Weak law of large numbers

- Require that expectation exists
- Taylor expansion of exponential

$$
\begin{aligned}
\exp (i w x) & =1+i\langle w, x\rangle+o(|w|) \\
\text { and hence } \phi_{X}(\omega) & =1+i w \mathbf{E}_{X}[x]+o(|w|) .
\end{aligned}
$$

(need to assume that we can bound the tail)

- Average of random variables

$$
\phi_{\hat{\mu}_{m}}(\omega)=\left(1+\frac{i}{m} w \mu+o\left(m^{-1}|w|\right)\right)^{m}
$$

- Limit is constant distribution
vanishing higher order terms

$$
\phi_{\hat{\mu}_{m}}(\omega) \rightarrow \exp i \omega \mu=1+i \omega \mu+\ldots
$$

Warning

- Moments may not always exist
- Cauchy distribution

$$
p(x)=\frac{1}{\pi} \frac{1}{1+x^{2}}
$$

- For the mean to exist the following integral would have to converge

$$
\int|x| d p(x) \geq \frac{2}{\pi} \int_{1}^{\infty} \frac{x}{1+x^{2}} d x \geq \frac{1}{\pi} \int_{1}^{\infty} \frac{1}{x} d x=\infty
$$

Proof - Central limit theorem

- Require that second order moment exists (we assume they're all identical WLOG)
- Characteristic function

$$
\exp (i w x)=1+i w x-\frac{1}{2} w^{2} x^{2}+o\left(|w|^{2}\right)
$$

and hence $\phi_{X}(\omega)=1+i w \mathbf{E}_{X}[x]-\frac{1}{2} w^{2} \operatorname{var}_{X}[x]+o\left(|w|^{2}\right)$

- Subtract out mean (centering) $z_{n}:=\left[\sum_{i=1}^{n} \sigma_{i}^{\sigma_{i}}\right]^{-\frac{1}{2}}\left[\sum_{i=1}^{n} x_{i}-\mu_{j}\right]$ $\phi_{Z_{m}}(\omega)=\left(1-\frac{1}{2 m} w^{2}+o\left(m^{-1}|w|^{2}\right)\right)^{m} \rightarrow \exp \left(-\frac{1}{2} w^{2}\right)$ for $m \rightarrow \infty$ This is the FT of a Normal Distribution

Central Limit Theorem in Practice

Finite sample tail bounds

Simple tail bounds

- Gauss Markov inequality

Random variable X with mean μ

$$
\operatorname{Pr}(X \geq \epsilon) \leq \mu / \epsilon
$$

Proof - decompose expectation

$$
\operatorname{Pr}(X \geq \epsilon)=\int_{\epsilon}^{\infty} d p(x) \leq \int_{\epsilon}^{\infty} \frac{x}{\epsilon} d p(x) \leq \epsilon^{-1} \int_{0}^{\infty} x d p(x)=\frac{\mu}{\epsilon} .
$$

- Chebyshev inequality

Random variable X with mean μ and variance σ^{2}

$$
\operatorname{Pr}\left(\mid \hat{\mu}_{m}-\mu \|>\epsilon\right) \leq \sigma^{2} m^{-1} \epsilon^{-2} \text { or equivalently } \epsilon \leq \sigma / \sqrt{m \delta}
$$

Proof - applying Gauss-Markov to $Y=(X-\mu)^{2}$ with confidence ε^{2} yields the result.

Scaling behavior

- Gauss-Markov

$$
\epsilon \leq \frac{\mu}{\delta}
$$

Scales properly in μ but expensive in δ

- Chebyshev

$$
\epsilon \leq \frac{\sigma}{\sqrt{m \delta}}
$$

Proper scaling in σ but still bad in δ
Can we get logarithmic scaling in $\bar{\delta}$?

Chernoff bound

- KL-divergence variant of Chernoff bound

$$
K(p, q)=p \log \frac{p}{q}+(1-p) \log \frac{1-p}{1-q}
$$

- n independent tosses from biased coin with p

$$
\operatorname{Pr}\left\{\sum_{i} x_{i} \geq n q\right\} \leq \exp (-n K(q, p)) \leq \exp \left(-2 n(p-q)^{2}\right)
$$

- Proof

Pinsker's inequality

$$
\text { w.l.o.g. } q>p \text { and set } k \geq q n
$$

$$
\frac{\operatorname{Pr}\left\{\sum_{i} x_{i}=k \mid q\right\}}{\operatorname{Pr}\left\{\sum_{i} x_{i}=k \mid p\right\}}=\frac{q^{k}(1-q)^{n-k}}{p^{k}(1-p)^{n-k}} \geq \frac{q^{q n}(1-q)^{n-q n}}{p^{q n}(1-p)^{n-q n}}=\exp (n K(q, p))
$$

$$
\sum_{k \geq n q} \operatorname{Pr}\left\{\sum_{i} x_{i}=k \mid p\right\} \leq \sum_{k \geq n q} \operatorname{Pr}\left\{\sum_{i} x_{i}=k \mid q\right\} \exp (-n K(q, p)) \leq \exp (-n K(q, p))
$$

McDiarmid Inequality

- Independent random variables X_{i}
- Function $f: \mathcal{X}^{m} \rightarrow \mathbb{R}$
- Deviation from expected value $\operatorname{Pr}\left(\left|f\left(x_{1}, \ldots, x_{m}\right)-\mathbf{E}_{X_{1}, \ldots, X_{m}}\left[f\left(x_{1}, \ldots, x_{m}\right)\right]\right|>\epsilon\right) \leq 2 \exp \left(-2 \epsilon^{2} C^{-2}\right)$ Here C is given by $C^{2}=\sum_{i=1}^{m} c_{i}^{2}$ where

$$
\left|f\left(x_{1}, \ldots, x_{i}, \ldots, x_{m}\right)-f\left(x_{1}, \ldots, x_{i}^{\prime}, \ldots, x_{m}\right)\right| \leq c_{i}
$$

- Hoeffding's theorem f is average and X_{i} have bounded range c

$$
\operatorname{Pr}\left(\left|\hat{\mu}_{m}-\mu\right|>\epsilon\right) \leq 2 \exp \left(-\frac{2 m \epsilon^{2}}{c^{2}}\right)
$$

Scaling behavior

- Hoeffding

$$
\begin{aligned}
\delta:=\operatorname{Pr}\left(\left|\hat{\mu}_{m}-\mu\right|>\epsilon\right) & \leq 2 \exp \left(-\frac{2 m \epsilon^{2}}{c^{2}}\right) \\
\Longrightarrow \log \delta / 2 & \leq-\frac{2 m \epsilon^{2}}{c^{2}} \\
\Longrightarrow & \epsilon c \sqrt{\frac{\log 2-\log \delta}{2 m}}
\end{aligned}
$$

This helps when we need to combine several tail bounds since we only pay logarithmically in terms of their combination.

More tail bounds

- Higher order moments
- Bernstein inequality (needs variance bound)

$$
\operatorname{Pr}\left(\mu_{m}-\mu \geq \epsilon\right) \leq \exp \left(-\frac{t^{2} / 2}{\sum_{i} \mathbf{E}\left[X_{i}^{2}\right]+M t / 3}\right)
$$

here M upper-bounds the random variables X_{i}

- Proof via Gauss-Markov inequality applied to exponential sums (hence exp. inequality)
- See also Azuma, Bennett, Chernoff, ...
- Absolute / relative error bounds
- Bounds for (weakly) dependent random variables

Tail bounds in practice

A/B testing

- Two possible webpage layouts
- Which layout is better?
- Experiment
- Half of the users see A
- The other half sees design B

- How many trials do we need to decide which is better Assume that the probabilities are $p(A)=0.1$ and $p(B)=0.11$ respectively and that $p(A)$ is known

Chebyshev Inequality

- Need to bound for a deviation of 0.01
- Mean is $p(B)=0.11$ (we don't know this yet)
- Want failure probability of 5%
- If we have no prior knowledge, we can only bound the variance by $\sigma^{2}=0.25$

$$
m \leq \frac{\sigma^{2}}{\epsilon^{2} \delta}=\frac{0.25}{0.01^{2} \cdot 0.05}=50,000
$$

- If we know that the click probability is at most 0.15 we can bound the variance at 0.15 * $0.85=0.1275$. This requires at most 25,500 users.

Hoeffding's bound

- Random variable has bounded range [0, 1] (click or no click), hence c=1
- Solve Hoeffding's inequality for m

$$
m \leq-\frac{c^{2} \log \delta / 2}{2 \epsilon^{2}}=-\frac{1 \cdot \log 0.025}{2 \cdot 0.01^{2}}<18,445
$$

This is slightly better than Chebyshev.

Normal Approximation (Central Limit Theorem)

- Use asymptotic normality
- Gaussian interval containing 0.95 probability

$$
\frac{1}{2 \pi \sigma^{2}} \int_{\mu-\epsilon}^{\mu+\epsilon} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) d x=0.95
$$

is given by $\varepsilon=2.96 \sigma$.

- Use variance bound of 0.1275 (see Chebyshev)

$$
m \leq \frac{2.96^{2} \sigma^{2}}{\epsilon^{2}}=\frac{2.96^{2} \cdot 0.1275}{0.01^{2}} \leq 11,172
$$

Same rate as Hoeffding bound! Better bounds by bounding the variance.

Beyond

- Many different layouts?
- Combinatorial strategy to generate them (aka the Thai Restaurant process)
- What if it depends on the user / time of day
- Stateful user (e.g. query keywords in search)
- What if we have a good prior of the response (rather than variance bound)?
- Explore/exploit/reinforcement learning/control

MACHINE LEARNING DEPARTMENT

2.3 Kernel Density Estimation

 2 Statistics

 2 Statistics}

Alexander Smola

 Introduction to Machine Learning 10-701 http://alex.smola.org/teaching/10-701-15
(a1)

(b2)

(a3)

(a4)

(b3)

(b4)

(c2)

(c3)

(c4)

Parzen Windows

Density Estimation

- Observe some data x_{i}
- Want to estimate p(x)
- Find unusual observations (e.g. security)
- Find typical observations (e.g. prototypes)
- Classifier via Bayes Rule

$$
p(y \mid x)=\frac{p(x, y)}{p(x)}=\frac{p(x \mid y) p(y)}{\sum_{y^{\prime}} p\left(x \mid y^{\prime}\right) p\left(y^{\prime}\right)}
$$

- Need tool for computing $\mathrm{p}(\mathrm{x})$ easily

Bin Counting

- Discrete random variables, e.g.
- English, Chinese, German, French, ...
- Male, Female
- Bin counting (record \# of occurrences)

25	English	Chinese	German	French	Spanish
male	5	2	3	1	0
female	6	3	2	2	1

Bin Counting

- Discrete random variables, e.g.
- English, Chinese, German, French, ...
- Male, Female
- Bin counting (record \# of occurrences)

25	English	Chinese	German	French	Spanish
male	0.2	0.08	0.12	0.04	0
female	0.24	0.12	0.08	0.08	0.04

Carnegie Mellon University

Bin Counting

- Discrete random variables, e.g.
- English, Chinese, German, French, ...
- Male, Female
- Bin counting (record \# of occurrences)

25	English	Chinese	German	French	Spanish
male	0.2	0.08	0.12	0.04	0
female	0.24	0.12	0.08	0.08	0.04

Carnegie Mellon University

Bin Counting

- Discrete random variables, e.g.
- English, Chinese, German, French,
- Male, Female
not enough data
- Bin counting (record \# of occurrences)

25	English	Chinese	German	French	Spanish
male	0.2	0.08	0.12	0.04	0
female	0.24	0.12	0.08	0.08	0.04

Carnegie Mellon University

Curse of dimensionality (lite)

- Discrete random variables, e.g.
- English, Chinese, German, French, ...
- Male, Female
- ZIP code
- Day of the week
- Operating system

\#bins grows exponentially

Curse of dimensionality (lite)

- Discrete random variables, e.g.
- English, Chinese, German, French, ...
- Male, Female
- ZIP code
- Day of the week
- Operating system

\#bins grows
 exponentially

- Continuous random variables
- Income
- Bandwidth
- Time
need many bins per dimension

Density Estimation

- Continuous domain $=$ infinite number of bins
- Curse of dimensionality
- 10 bins on $[0,1]$ is probably good
- 10 bins on $[0,1]$ requires high accuracy in estimate: probability mass per cell also decreases by 10^{10}. Carnegie Mellon University

Bin Counting

iversity

Bin Counting

iversity

Bin Counting

iversity

Bin Counting

What is happening?

- Hoeffding's theorem

$$
\operatorname{Pr}\left\{\left|\mathbf{E}[x]-\frac{1}{m} \sum_{i=1}^{m} x_{i}\right|>\epsilon\right\} \leq 2 e^{-2 m \epsilon^{2}}
$$

For any average of $[0,1]$ iid random variables.

- Bin counting
- Random variables x_{i} are events in bins
- Apply Hoeffding's theorem to each bin
- Take the union bound over all bins to guarantee that all estimates converge

Density Estimation

- Hoeffding's theorem

$$
\operatorname{Pr}\left\{\left|\mathbf{E}[x]-\frac{1}{m} \sum_{i=1}^{m} x_{i}\right|>\epsilon\right\} \leq 2 e^{-2 m \epsilon^{2}}
$$

- Applying the union bound and Hoeffding

$$
\begin{aligned}
\operatorname{Pr}\left(\sup _{a \in A}|\hat{p}(a)-p(a)| \geq \epsilon\right) & \leq \sum_{a \in A} \operatorname{Pr}(|\hat{p}(a)-p(a)| \geq \epsilon) \\
& \leq 2|A| \exp \left(-2 m \epsilon^{2}\right)
\end{aligned}
$$

- Solving for error probability

good news

$$
\frac{\delta}{2|A|} \leq \exp \left(-m \epsilon^{2}\right) \Longrightarrow \epsilon \leq \sqrt{\frac{\log 2|A|-\log \delta}{2 m}}
$$

Carnegie Mellon University

Density Estimation

- Hoeffding's theorem

$$
\operatorname{Pr}\left\{\left|\mathbf{E}[x]-\frac{1}{m} \sum_{i=1}^{m} x_{i}\right|>\epsilon\right\} \leq 2 e^{-2 m \epsilon^{2}}
$$

- Applying the union bound and Hoeffding

$$
\begin{aligned}
& \qquad \begin{aligned}
& \operatorname{Pr}\left(\sup _{a \in A}|\hat{p}(a)-p(a)| \geq \epsilon\right) \leq \sum_{a \in A} \operatorname{Pr}(|\hat{p}(a)-p(a)| \geq \epsilon) \\
& \leq 2|A| \exp (-2 r \text { but not good } \\
& \text { - Solving for error probabilityre enough }
\end{aligned}
\end{aligned}
$$

$$
\frac{\delta}{2|A|} \leq \exp \left(-m \epsilon^{2}\right) \Longrightarrow \epsilon \leq \sqrt{\frac{\log 2|A|-\log \delta}{2 m}}
$$

Carnegie Mellon University

Density Estimation

- Hoeffding's theorem

$$
\operatorname{Pr}\left\{\left|\mathbf{E}[x]-\frac{1}{m} \sum_{i=1}^{m} x_{i}\right|>\epsilon\right\} \leq 2 e^{-2 m \epsilon^{2}} \text { bins not }
$$

- Applying the union bound and $\mathrm{H}_{(}$independent

$$
\begin{aligned}
& \qquad \begin{aligned}
& \operatorname{Pr}\left(\sup _{a \in A}|\hat{p}(a)-p(a)| \geq \epsilon\right) \leq \sum_{a \in A} \operatorname{Pr}(|\hat{p}(a)-p(a)| \geq \epsilon) \\
& \leq 2|A| \exp (-2 r \text { but not good }
\end{aligned} \\
& \text { - Solving for error probabilityrengh enough }
\end{aligned}
$$

$$
\frac{\delta}{2|A|} \leq \exp \left(-m \epsilon^{2}\right) \Longrightarrow \epsilon \leq \sqrt{\frac{\log 2|A|-\log \delta}{2 m}}
$$

Carnegie Mellon University

Bin Counting

iversity

Bin Counting

Parzen Windows

- Naive approach

Use empirical density (delta distributions)

$$
p_{\text {emp }}(x)=\frac{1}{m} \sum_{i=1}^{m} \delta_{x_{i}}(x)
$$

- This breaks if we see slightly different instances
- Kernel density estimate

Smear out empirical density with a nonnegative smoothing kernel $k_{x}\left(x^{\prime}\right)$ satisfying

$$
\int_{\mathcal{X}} k_{x}\left(x^{\prime}\right) d x^{\prime}=1 \text { for all } x
$$

Parzen Windows

- Density estimate

$$
\begin{aligned}
p_{\mathrm{emp}}(x) & =\frac{1}{m} \sum_{i=1}^{m} \delta_{x_{i}}(x) \\
\hat{p}(x) & =\frac{1}{m} \sum_{i=1}^{m} k_{x_{i}}(x)
\end{aligned}
$$

- Smoothing kernels

$$
(2 \pi)^{-\frac{1}{2}} e^{-\frac{1}{2} x^{2}} \quad \frac{1}{2} e^{-|x|}
$$

$\frac{3}{4} \max \left(0,1-x^{2}\right) \quad \frac{1}{2} \chi_{[-1,1]}(x)$
Carněgie Mellon University

Smoothing

Gaussian Kernel with width $\sigma=1$

iversity

Smoothing

Gaussian Kernel with width $\sigma=1$

iversity

Smoothing

Laplacian Kernel with width $\lambda=1$

iversity

Smoothing

Laplacian Kernel with width $\lambda=10$

iversity

Size matters

Size matters

Shape matters mostly in theory

- Kernel width

$$
\underset{x_{i}}{ }(x)=r^{-d} h\left(\frac{x-x_{i}}{r}\right)
$$

- Too narrow overfits
- Too wide smoothes with constant distribution
- How to choose it?

Model Selection

Maximum Likelihood

- Need to measure how well we do
- For density estimation we care about

$$
\operatorname{Pr}\{X\}=\prod_{i=1}^{m} p\left(x_{i}\right)
$$

- Finding a that maximizes $P(X)$ will peak at all data points since x_{i} explains x_{i} best ...
- Maxima are delta functions on data.
- Overfitting!

Overfitting

Likelihood on training set is much higher than typical.

Carnegie Mellon University

Overfitting

Carnegie Mellon University

Underfitting

Carnegie Mellon University

Model Selection

- Validation
- Use some of the data to estimate density.
- Use other part to evaluate how well it works
- Pick the parameter that works best

$$
\mathcal{L}\left(X^{\prime} \mid X\right):=\frac{1}{n^{\prime}} \sum_{i=1}^{n^{\prime}} \log \hat{p}\left(x_{i}^{\prime}\right)
$$

- Learning Theory
- Use data to build model
- Measure complexity and use this to bound

$$
\frac{1}{n} \sum_{i=1}^{n} \log \hat{p}\left(x_{i}\right)-\mathbf{E}_{x}[\log \hat{p}(x)]
$$

Model Selection

- Validation
- Use some of the data to estimate density.
- Use other part to evaluate how well it works
- Pick the parameter that works best

$$
\mathcal{L}\left(X^{\prime} \mid X\right):=\frac{1}{n^{\prime}} \sum_{i=1}^{n^{\prime}} \log \hat{p}\left(x_{i}^{\prime}\right)
$$

- Learning Theory
- Use data to build model
- Measure complexity and use this to bound

$$
\frac{1}{n} \sum_{i=1}^{n} \log \hat{p}\left(x_{i}\right)-\mathbf{E}_{x}[\log \hat{p}(x)]
$$

Model Selection

- Validation
- Use some of the data to estimate density.
- Use other part to evaluate how well it works
- Pick the parameter that works best

$$
\mathcal{L}\left(X^{\prime} \mid X\right):=\frac{1}{n^{\prime}} \sum_{i=1}^{n^{\prime}} \log \hat{p}\left(x_{i}^{\prime}\right)
$$

- Learning Theory
- Use data to build model
- Measure complexity and use this to bound

$$
\frac{1}{n} \sum_{i=1}^{n} \log \hat{p}\left(x_{i}\right)-\mathbf{E}_{x}[\log \hat{p}(x)]
$$

Model Selection

- Validation
- Use some of the data to estimate density.
- Use other part to evaluate how well it works
- Pick the parameter that works best

$$
\mathcal{L}\left(X^{\prime} \mid X\right):=\frac{1}{n^{\prime}} \sum_{i=1}^{n^{\prime}} \log \hat{p}\left(x_{i}^{\prime}\right)
$$

- Learning Theory
- Use data to build model
- Measure complexity and use this to bound
difficult

$$
-\frac{1}{n} \sum_{i=1}^{n} \log \hat{p}\left(x_{i}\right)-\mathbf{E}_{x}[\log \hat{p}(x)]
$$

Model Selection

- Leave-one-out Crossvalidation
- Use almost all data to estimate density.
- Use single instance to estimate how well it works

$$
\log p\left(x_{i} \mid X \backslash x_{i}\right)=\log \frac{1}{n-1} \sum_{j \neq i} k\left(x_{i}, x_{j}\right)
$$

- This has huge variance
- Average over estimates for all training data
- Pick the parameter that works best
- Simple implementation
$\frac{1}{n} \sum_{i=1}^{n} \log \left[\frac{n}{n-1} p\left(x_{i}\right)-\frac{1}{n-1} k\left(x_{i}, x_{i}\right)\right]$ where $p(x)=\frac{1}{n} \sum_{i=1}^{n} k\left(x_{i}, x\right)$

Leave-one out estimate

niversity

Optimal estimate

Laplacian Kernel with width optimal λ

iversity

Model Selection

- k-fold Crossvalidation
- Partition data into k blocks (typically 10)
- Use all but one block to compute estimate
- Use remaining block as validation set
- Average over all validation estimates

$$
\frac{1}{k} \sum_{i=1}^{k} l\left(p\left(X_{i} \mid X \backslash X_{i}\right)\right)
$$

- Almost unbiased, e.g. via Luntz and Brailovski, 1969 (the error is estimated for a ($k-1$)/k sized set)
- Pick best parameter (why must we not check too many?)

Watson Nadaraya Estimator

Carnegie Mellon University

From density estimation to classification

- Binary classification
- Estimate $p(x \mid y=1)$ and $p(x \mid y=-1)$
- Use Bayes rule

$$
p(y \mid x)=\frac{p(x \mid y) p(y)}{p(x)}=\frac{\frac{1}{m_{y}} \sum_{y_{i}=y} k\left(x_{i}, x\right) \cdot \frac{m_{y}}{m}}{\frac{1}{m} \sum_{i} k\left(x_{i}, x\right)}
$$

- Decision boundary

$$
p(y=1 \mid x)-p(y=-1 \mid x)=\frac{\sum_{j} y_{j} k\left(x_{j}, x\right)}{\sum_{i} k\left(x_{i}, x\right)}=\sum_{j} y_{j} \frac{k\left(x_{j}, x\right)}{\sum_{i} k\left(x_{i}, x\right)}
$$

Watson-Nadaraya Classifier

Watson-Nadaraya Classifier

Watson Nadaraya Regression

- Binary classification

$$
p(y=1 \mid x)-p(y=-1 \mid x)=\frac{\sum_{j} y_{j} k\left(x_{j}, x\right)}{\sum_{i} k\left(x_{i}, x\right)}=\sum_{j} y_{j} \frac{k\left(x_{j}, x\right)}{\sum_{i} k\left(x_{i}, x\right)}
$$

- Regression - use same weighted expansion

Silverman's rule

- Chicken and egg problem
- Want wide kernel for low density region
- Want narrow kernel where we have much data
- Need density estimate to estimate density
- Simple hack

Use average distance from k nearest neighbors

$$
r_{i}=\frac{r}{k} \sum_{x \in \mathrm{NN}\left(x_{i}, k\right)}\left\|x_{i}-x\right\|
$$

- Nonuniform bandwidth for smoother.

Nearest Neighbors

- Table lookup

For previously seen instance remember label

- Nearest neighbor
- Pick label of most similar neighbor
- Slight improvement - use k-nearest neighbors
- For regression average
- Really useful baseline!
- Easy to implement for small amounts of data. Why?

Relation to Watson Nadaraya

- Watson Nadaraya estimator

$$
\hat{y}(x)=\sum_{j} y_{j} \frac{k\left(x_{i}, x\right)}{\sum_{i} k\left(x_{i}, x\right)}=\sum_{j} y_{j} w_{j}(x)
$$

- Nearest neighbor estimator

$$
\begin{aligned}
& \hat{y}(x)=\sum_{j} y_{j} \frac{k\left(x_{j}, x\right)}{\sum_{i} k\left(x_{i}, x\right)}=\sum_{j} y_{j} w_{j}(x) \\
& \text { lborhood function is hard threshold. }
\end{aligned}
$$

1-Nearest Neighbor

4-Nearest Neighbors

4-Nearest Neighbors Sign

If we get more data

- 1 Nearest Neighbor
- Converges to perfect solution if clear separation
- Twice the minimal error rate $2 p(1-p)$ for noisy problems
- k-Nearest Neighbor
- Converges to perfect solution if clear separation (but needs more data)
- Converges to minimal error min(p, 1-p) for noisy problems if k increases

1 Nearest Neighbor

- For given point x take ϵ neighborhood N with probability mass $>d / n$
- Probability that at least one point of n is in this neighborhood is $1-e^{-d}$ so we can make this small
- Assume that probability mass doesn't change much in neighborhood
- Probability that labels of query and point do not match is $2 p(1-p)$ (up to some approximation error in neighborhood)

k Nearest Neighbor

- For given point x take ϵ neighborhood N with probability mass $>d k / n$
- Small probability that we don't have at least k points in neighborhood.
- Assume that probability mass doesn't change much in neighborhood
- Bound probability that majority of points doesn't match majority for p (e.g. via Hoeffding's theorem for tail). Show that it vanishes
- Error is therefore min(p, 1-p), i.e. Bayes optimal error.

Fast lookup

- KD trees (Moore et al.)
- Partition space (one dimension at a time)
- Only search for subset that contains point
- Cover trees (Beygelzimer et al.)
- Hierarchically partition space with distance guarantees
- No need for nonoverlapping sets
- Bounded number of paths to follow (logarithmic time lookup)

MACHINE LEARNING DEPARTMENT

2.4 Exponential Families 2 Statistics

Alexander Smola

Introduction to Machine Learning 10-701 http://alex.smola.org/teaching/10-701-15

Carnegie Mellon University

Exponential Families

Carnegie Mellon University

Exponential Families

- Density function

$$
\begin{aligned}
p(x ; \theta) & =\exp (\langle\phi(x), \theta\rangle-g(\theta)) \\
\text { where } g(\theta) & =\log \sum_{x^{\prime}} \exp \left(\left\langle\phi\left(x^{\prime}\right), \theta\right\rangle\right)
\end{aligned}
$$

Exponential Families

- Density function

$$
\begin{aligned}
p(x ; \theta) & =\exp (\langle\phi(x), \theta\rangle-g(\theta)) \\
\text { where } g(\theta) & =\log \sum_{x^{\prime}} \exp \left(\left\langle\phi\left(x^{\prime}\right), \theta\right\rangle\right)
\end{aligned}
$$

- Log partition function generates cumulants

$$
\begin{aligned}
\partial_{\theta} g(\theta) & =\mathbf{E}[\phi(x)] \\
\partial_{\theta}^{2} g(\theta) & =\operatorname{Var}[\phi(x)]
\end{aligned}
$$

Exponential Families

- Density function

$$
\begin{aligned}
p(x ; \theta) & =\exp (\langle\phi(x), \theta\rangle-g(\theta)) \\
\text { where } g(\theta) & =\log \sum_{x^{\prime}} \exp \left(\left\langle\phi\left(x^{\prime}\right), \theta\right\rangle\right)
\end{aligned}
$$

- Log partition function generates cumulants

$$
\begin{aligned}
\partial_{\theta} g(\theta) & =\mathbf{E}[\phi(x)] \\
\partial_{\theta}^{2} g(\theta) & =\operatorname{Var}[\phi(x)]
\end{aligned}
$$

- g is convex (second derivative is p.s.d.)

Examples

- Binomial Distribution

$$
\phi(x)=x
$$

- Discrete Distribution (e_{x} is unit vector for x)
- Gaussian
- Poisson (counting measure 1/x!)
- Dirichlet, Beta, Gamma, Wishart, ...

$$
\phi(x)=e_{x}
$$

$$
\phi(x)=x
$$

$$
\phi(x)=\left(x, \frac{1}{2} x x^{\top}\right)
$$

Binomial Distribution

- Features $\phi(x)=x$
- Domain is $\{-1,1\}$
- Normalization

$$
g(\theta)=\log \left[e^{-1 \cdot \theta}+e^{1 \cdot \theta}\right]=\log 2 \cosh \theta
$$

- Probability

$$
\begin{gathered}
p(x \mid \theta)=\exp (x \cdot \theta-g(\theta))=\frac{e^{x \theta}}{e^{-\theta}+e^{\theta}}=\frac{1}{1+e^{-2 x \theta}} \\
\text { Logistic function }
\end{gathered}
$$

Logistic function

Normal Distribution

iversity

Poisson Distribution

Beta Distribution

Dirichlet Distribution

... this is a distribution over distributiong

Maximum Likelihood

Carnegie Mellon University

Maximum Likelihood

- Negative log-likelihood

$$
-\log p(X ; \theta)=\sum_{i=1}^{n} g(\theta)-\left\langle\phi\left(x_{i}\right), \theta\right\rangle
$$

Maximum Likelihood

- Negative log-likelihood

$$
-\log p(X ; \theta)=\sum_{i=1}^{n} g(\theta)-\left\langle\phi\left(x_{i}\right), \theta\right\rangle
$$

- Taking derivatives

$$
-\partial_{\theta} \log p(X ; \theta)=m\left[\mathbf{E}[\phi(x)]-\frac{1}{m} \sum_{i=1}^{n} \phi\left(x_{i}\right)\right]
$$

We pick the parameter such that the distribution matches the empirical average.

Conjugate Priors

- Unless we have lots of data estimates are weak
- Usually we have an idea of what to expect

$$
p(\theta \mid X) \propto p(X \mid \theta) \cdot p(\theta)
$$

we might even have 'seen' such data before

- Solution: add 'fake’ observations $p(\theta) \propto p\left(X_{\text {fake }} \mid \theta\right)$ hence $p(\theta \mid X) \propto p(X \mid \theta) p\left(X_{\text {fake }} \mid \theta\right)=p\left(X \cup X_{\text {fake }} \mid \theta\right)$
- Inference (generalized Laplace smoothing)

$$
\frac{1}{n} \sum_{i=1}^{n} \phi\left(x_{i}\right) \longrightarrow \frac{1}{n+m} \sum_{i=1}^{n} \phi\left(x_{i}\right)+\frac{m}{n+m} \mu_{0} \text { fake count }
$$

Example: Gaussian Estimation

- Sufficient statistics: x, x^{2}
- Mean and variance given by

$$
\mu=\mathbf{E}_{x}[x] \text { and } \sigma^{2}=\mathbf{E}_{x}\left[x^{2}\right]-\mathbf{E}_{x}^{2}[x]
$$

- Maximum Likelihood Estimate

$$
\hat{\mu}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \text { and } \sigma^{2}=\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}-\hat{\mu}^{2}
$$

- Maximum a Posteriori Estimate

$$
\hat{\mu}=\frac{1}{n+n_{0}} \sum_{i=1}^{n} x_{i} \text { and } \sigma^{2}=\frac{1}{n+n_{0}} \sum_{i=1}^{n} x_{i}^{2}+\frac{n_{0}}{n+n_{0}} \mathbf{1}-\hat{\mu}^{2}
$$

smoother

Collapsing

- Conjugate priors

$$
p(\theta) \propto p\left(X_{\text {fake }} \mid \theta\right)
$$

Hence we know how to compute normalization

- Prediction

$$
p(x \mid X)=\int p(x \mid \theta) p(\theta \mid X) d \theta
$$

(Beta, binomial)
$\propto \int p(x \mid \theta) p(X \mid \theta) p\left(X_{\text {fake }} \mid \theta\right) d \theta$
(Dirichlet, multinomial)
(Gamma, Poisson)
(Wishart, Gauss)

$$
=\int p\left(\{x\} \cup X \cup X_{\text {fake }} \mid \theta\right) d \theta
$$

http://en.wikipedia.org/wiki/Exponential family

Conjugate Prior in action

$$
m_{i}=m \cdot\left[\mu_{0}\right]_{i}
$$

$$
p(x=i)=\frac{n_{i}}{n} \longrightarrow p(x=i)=\frac{n_{i}+m_{i}}{n+m}
$$

Outcome	1	2	3	4	5	6
Counts	3	6	2	1	4	4
MLE	0.15	0.30	0.10	0.05	0.20	0.20
MAP $\left(m_{0}=6\right)$	0.15	0.27	0.12	0.08	0.19	0.19
MAP $\left(m_{0}=100\right)$	0.16	0.19	0.16	0.15	0.17	0.17

Conjugate Prior in action

- Discrete Distribution

$$
p(x=i)=\frac{n_{i}}{n} \longrightarrow p(x=i)=\frac{n_{i}+m_{i}}{n+m}
$$

- Tossing a dice

Outcome	1	2	3	4	5	6
Counts	3	6	2	1	4	4
MLE	0.15	0.30	0.10	0.05	0.20	0.20
MAP $\left(m_{0}=6\right)$	0.15	0.27	0.12	0.08	0.19	0.19
MAP $\left(m_{0}=100\right)$	0.16	0.19	0.16	0.15	0.17	0.17

Conjugate Prior in action

- Discrete Distribution
$m_{i}=m \cdot\left[\mu_{0}\right]_{i}$

$$
p(x=i)=\frac{n_{i}}{n} \longrightarrow p(x=i)=\frac{n_{i}+m_{i}}{n+m}
$$

- Tossing a dice

Outcome	1	2	3	4	5	6
Counts	3	6	2	1	4	4
MLE	0.15	0.30	0.10	0.05	0.20	0.20
MAP $\left(m_{0}=6\right)$	0.15	0.27	0.12	0.08	0.19	0.19
MAP $\left(m_{0}=100\right)$	0.16	0.19	0.16	0.15	0.17	0.17

- Rule of thumb need 10 data points (or prior) per parameter

Honest dice

Tainted dice

rsity

Priors (part deux)

- Parameter smoothing

$$
p(\theta) \propto \exp \left(-\lambda\|\theta\|_{1}\right) \text { or } p(\theta) \propto \exp \left(-\lambda\|\theta\|_{2}^{2}\right)
$$

- Posterior

$$
\begin{aligned}
p(\theta \mid x) & \propto \prod_{i=1}^{m} p\left(x_{i} \mid \theta\right) p(\theta) \\
& \propto \exp \left(\sum_{i=1}^{m}\left\langle\phi\left(x_{i}\right), \theta\right\rangle-m g(\theta)-\frac{1}{2 \sigma^{2}}\|\theta\|_{2}^{2}\right)
\end{aligned}
$$

- Convex optimization problem (MAP estimation)

$$
\underset{\theta}{\operatorname{minimize}} g(\theta)-\left\langle\frac{1}{m} \sum_{i=1}^{m} \phi\left(x_{i}\right), \theta\right\rangle+\frac{1}{2 m \sigma^{2}}\|\theta\|_{2}^{2}
$$

Further Reading

- Cover tree homepage (paper \& code) http://hunch.net/~jl/projects/cover tree/cover tree.html
- http://doi.acm.org/10.1145/361002.361007 (kd trees, original paper)
- http://www.autonlab.org/autonweb/14665/version/2/part/5/data/moore-tutorial.pdf (Andrew Moore's tutorial from his PhD thesis)
- Nadaraya's regression estimator (1964) http://dx.doi.org/10.1137/1109020
- Watson's regression estimator (1964) http://www.jstor.org/stable/25049340
- Watson-Nadaraya regression package in R http://cran.r-project.org/web/packages/np/index.html
- Stone's k-NN regression consistency proof http://projecteuclid.org/euclid.aos/1176343886
- Cover and Hart's k-NN classification consistency proof http://www-isl.stanford.edu/people/cover/papers/transIT/0021cove.pdf
- Tom Cover's rate analysis for k-NN Rates of Convergence for Nearest Neighbor Procedures.
- Sanjoy Dasgupta's analysis for k-NN estimation with selective sampling http://cseweb.ucsd.edu/~dasgupta/papers/nnactive.pdf
- Multiedit \& Condense (Dasarathy, Sanchez, Townsend) http://cgm.cs.mcgill.ca/~godfried/teaching/pr-notes/dasarathy.pdf
- Geometric approximation via core sets http://valis.cs.uiuc.edu/~sariel/papers/04/survey/survey.pdf

