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Probability
• Space of events X

• server working; slow response; server broken
• income of the user (e.g. $95,000)
• query text for search (e.g. “statistics tutorial”)

• Probability axioms (Kolmogorov) 
 

• Example queries
• P(server working) = 0.999
• P(90,000 < income < 100,000) = 0.1

Pr(X) 2 [0, 1], Pr(X ) = 1
Pr([iXi) =

P
i Pr(Xi) if Xi \Xj = ;



All events

Venn Diagram
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All events

X

X 0

Venn Diagram

X \X 0

Pr(X [X 0) = Pr(X) + Pr(X 0)� Pr(X \X 0)



(In)dependence
• Independence

• Login behavior of two users (approximately)
• Disk crash in different colos (approximately)

• Dependent events
• Emails
• Queries
• News stream / Buzz / Tweets
• IM communication
• Russian Roulette

Pr(x, y) = Pr(x) · Pr(y)

Pr(x, y) 6= Pr(x) · Pr(y)
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(In)dependence
• Independence

• Login behavior of two users (approximately)
• Disk crash in different colos (approximately)

• Dependent events
• Emails
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• News stream / Buzz / Tweets
• IM communication
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Everywhere!



A Graphical Model

Spam Mail

p(spam,mail) = p(spam)p(mail|spam)



Bayes Rule

• Joint Probability 

• Bayes Rule  
 
 

• Hypothesis testing
• Reverse conditioning

Pr(X|Y ) =
Pr(Y |X) · Pr(X)

Pr(Y )

Pr(X,Y ) = Pr(X|Y ) Pr(Y ) = Pr(Y |X) Pr(X)



AIDS test (Bayes rule)
• Data

• Approximately 0.1% are infected
• Test detects all infections
• Test reports positive for 1% healthy people

• Probability of having AIDS if test is positive  
 
 
 
 



AIDS test (Bayes rule)
• Data

• Approximately 0.1% are infected
• Test detects all infections
• Test reports positive for 1% healthy people

• Probability of having AIDS if test is positive  
 
 
 
 

Pr(a = 1|t) =
Pr(t|a = 1) · Pr(a = 1)

Pr(t)

=
Pr(t|a = 1) · Pr(a = 1)

Pr(t|a = 1) · Pr(a = 1) + Pr(t|a = 0) · Pr(a = 0)

=
1 · 0.001

1 · 0.001 + 0.01 · 0.999
= 0.091



Improving the diagnosis



Improving the diagnosis
• Use a follow-up test

• Test 2 reports positive for 90% infections
• Test 2 reports positive for 5% healthy people  
  0.01 · 0.05 · 0.999

1 · 0.9 · 0.001 + 0.01 · 0.05 · 0.999
= 0.357
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• Use a follow-up test

• Test 2 reports positive for 90% infections
• Test 2 reports positive for 5% healthy people  
 

• Why can’t we use Test 1 twice?  
Outcomes are not independent but tests 1 and 2 
are conditionally independent 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Improving the diagnosis
• Use a follow-up test

• Test 2 reports positive for 90% infections
• Test 2 reports positive for 5% healthy people  
 

• Why can’t we use Test 1 twice?  
Outcomes are not independent but tests 1 and 2 
are conditionally independent 

0.01 · 0.05 · 0.999
1 · 0.9 · 0.001 + 0.01 · 0.05 · 0.999

= 0.357

p(t1, t2|a) = p(t1|a) · p(t2|a)



Logarithms are good
• Floating point numbers 
 
 

• Probabilities can be very small. In particular 
products of many probabilities. Underflow!

• Store data in mantissa, not exponent

52 11 1

mantissa
sign

exponent
⇡ = log p

Y

i

pi !
X

i

⇡i

X

i

pi ! max⇡ + log

X

i

exp [⇡i �max⇡]



FILTERING



Naive Bayes Spam Filter



Naive Bayes Spam Filter
• Key assumption  

Words occur independently of each other  
given the label of the document 
 

• Spam classification via Bayes Rule  
 

p(w1, . . . , wn|spam) =
nY

i=1

p(wi|spam)



Naive Bayes Spam Filter
• Key assumption  

Words occur independently of each other  
given the label of the document 
 

• Spam classification via Bayes Rule  
 

• Parameter estimation  
Compute spam probability and word distributions for 
spam and ham 
 

p(w1, . . . , wn|spam) =
nY

i=1

p(wi|spam)

p(spam|w1, . . . , wn) / p(spam)
nY

i=1

p(wi|spam)



Naive Bayes Spam Filter

• Get rich quick. Buy CMU stock.
• Buy Viagra. Make your CMU experience last longer.
• You deserve a PhD from CMU.  

We recognize your expertise. 
 

• Make your rich CMU PhD experience last longer.

Equally likely phrases
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A Graphical Model

spam

w1 w2 . . . wn

p(w1, . . . , wn|spam) =
nY

i=1

p(wi|spam)

spam

wi

i=1..n

how to estimate  
p(w|spam)



Naive Bayes Spam Filter
• Data

• Emails (headers, body, metadata)
• Labels (spam/ham) 

assume that users actually label all mails
• Processing capability

• Billions of e-mails
• 1000s of servers

• Need to estimate p(y), p(xi|y)
• Compute distribution of xi for every y
• Compute distribution of y



• date 
• time 
• recipient path 
• IP number 
• sender 
• encoding 
• many more features

Delivered-To: alex.smola@gmail.com
Received: by 10.216.47.73 with SMTP id s51cs361171web;
        Tue, 3 Jan 2012 14:17:53 -0800 (PST)
Received: by 10.213.17.145 with SMTP id s17mr2519891eba.147.1325629071725;
        Tue, 03 Jan 2012 14:17:51 -0800 (PST)
Return-Path: <alex+caf_=alex.smola=gmail.com@smola.org>
Received: from mail-ey0-f175.google.com (mail-ey0-f175.google.com [209.85.215.175])
        by mx.google.com with ESMTPS id n4si29264232eef.57.2012.01.03.14.17.51
        (version=TLSv1/SSLv3 cipher=OTHER);
        Tue, 03 Jan 2012 14:17:51 -0800 (PST)
Received-SPF: neutral (google.com: 209.85.215.175 is neither permitted nor denied by best 
guess record for domain of alex+caf_=alex.smola=gmail.com@smola.org) client-
ip=209.85.215.175;
Authentication-Results: mx.google.com; spf=neutral (google.com: 209.85.215.175 is neither 
permitted nor denied by best guess record for domain of alex
+caf_=alex.smola=gmail.com@smola.org) smtp.mail=alex+caf_=alex.smola=gmail.com@smola.org; 
dkim=pass (test mode) header.i=@googlemail.com
Received: by eaal1 with SMTP id l1so15092746eaa.6
        for <alex.smola@gmail.com>; Tue, 03 Jan 2012 14:17:51 -0800 (PST)
Received: by 10.205.135.18 with SMTP id ie18mr5325064bkc.72.1325629071362;
        Tue, 03 Jan 2012 14:17:51 -0800 (PST)
X-Forwarded-To: alex.smola@gmail.com
X-Forwarded-For: alex@smola.org alex.smola@gmail.com
Delivered-To: alex@smola.org
Received: by 10.204.65.198 with SMTP id k6cs206093bki;
        Tue, 3 Jan 2012 14:17:50 -0800 (PST)
Received: by 10.52.88.179 with SMTP id bh19mr10729402vdb.38.1325629068795;
        Tue, 03 Jan 2012 14:17:48 -0800 (PST)
Return-Path: <althoff.tim@googlemail.com>
Received: from mail-vx0-f179.google.com (mail-vx0-f179.google.com [209.85.220.179])
        by mx.google.com with ESMTPS id dt4si11767074vdb.93.2012.01.03.14.17.48
        (version=TLSv1/SSLv3 cipher=OTHER);
        Tue, 03 Jan 2012 14:17:48 -0800 (PST)
Received-SPF: pass (google.com: domain of althoff.tim@googlemail.com designates 
209.85.220.179 as permitted sender) client-ip=209.85.220.179;
Received: by vcbf13 with SMTP id f13so11295098vcb.10
        for <alex@smola.org>; Tue, 03 Jan 2012 14:17:48 -0800 (PST)
DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed;
        d=googlemail.com; s=gamma;
        h=mime-version:sender:date:x-google-sender-auth:message-id:subject
         :from:to:content-type;
        bh=WCbdZ5sXac25dpH02XcRyDOdts993hKwsAVXpGrFh0w=;
        b=WK2B2+ExWnf/gvTkw6uUvKuP4XeoKnlJq3USYTm0RARK8dSFjyOQsIHeAP9Yssxp6O
         7ngGoTzYqd+ZsyJfvQcLAWp1PCJhG8AMcnqWkx0NMeoFvIp2HQooZwxSOCx5ZRgY+7qX
         uIbbdna4lUDXj6UFe16SpLDCkptd8OZ3gr7+o=
MIME-Version: 1.0
Received: by 10.220.108.81 with SMTP id e17mr24104004vcp.67.1325629067787;
 Tue, 03 Jan 2012 14:17:47 -0800 (PST)
Sender: althoff.tim@googlemail.com
Received: by 10.220.17.129 with HTTP; Tue, 3 Jan 2012 14:17:47 -0800 (PST)
Date: Tue, 3 Jan 2012 14:17:47 -0800
X-Google-Sender-Auth: 6bwi6D17HjZIkxOEol38NZzyeHs
Message-ID: <CAFJJHDGPBW+SdZg0MdAABiAKydDk9tpeMoDijYGjoGO-WC7osg@mail.gmail.com>
Subject: CS 281B. Advanced Topics in Learning and Decision Making
From: Tim Althoff <althoff@eecs.berkeley.edu>

this is a gross 
simplification

mailto:alex.smola@gmail.com
mailto:gmail.com@smola.org
mailto:gmail.com@smola.org
mailto:gmail.com@smola.org
mailto:gmail.com@smola.org
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Preview - Map Reduce
• 1000s of (faulty) machines
• Lots of jobs are mostly embarrassingly parallel  

(except for a sorting/transpose phase)
• Functional programming origins

• Map(key,value) 
processes each (key,value) pair and outputs a new (key,value) pair

• Reduce(key,value) 
reduces all instances with same key to aggregate

• Example - extremely naive wordcount
• Map(docID, document) 

for each document emit many (wordID, count) pairs
• Reduce(wordID, count) 

sum over all counts for given wordID and emit (wordID, aggregate)
from Ramakrishnan, Sakrejda, Canon, DoE 2011
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spam probability

Naive NaiveBayes Classifier
• Two classes (spam/ham)
• Binary features (e.g. presence of $$$, viagra)
• Simplistic Algorithm

• Count occurrences of feature for spam/ham
• Count number of spam/ham mails

p(xi = TRUE|y) = n(i, y)

n(y)
and p(y) =

n(y)

n

feature probability

p(y|x) ⇥ n(y)

n

Y

i:xi=TRUE

n(i, y)

n(y)

Y

i:xi=FALSE

n(y)� n(i, y)

n(y)



Naive NaiveBayes 

p(y|x) ⇥ n(y)

n

Y

i:xi=TRUE

n(i, y)

n(y)

Y

i:xi=FALSE

n(y)� n(i, y)

n(y)

what if n(i,y)=0?

what if n(i,y)=n(y)?



Naive NaiveBayes 

p(y|x) ⇥ n(y)

n

Y

i:xi=TRUE

n(i, y)

n(y)

Y

i:xi=FALSE

n(y)� n(i, y)

n(y)

what if n(i,y)=0?

what if n(i,y)=n(y)?



• For each document (x,y) do
• Aggregate label counts given y
• For each feature xi in x do

• Aggregate statistic for (xi, y) for each y
• For y estimate distribution p(y)
• For each (xi,y) pair do  

Estimate distribution p(xi|y), e.g. Parzen Windows, 
Exponential family (Gauss, Laplace, Poisson, ...), Mixture

• Given new instance compute  
 
 

Basic Algorithm 

p(y|x) � p(y)
Y

j

p(xj |y)



• For each document (x,y) do
• Aggregate label counts given y
• For each feature xi in x do

• Aggregate statistic for (xi, y) for each y
• For y estimate distribution p(y)
• For each (xi,y) pair do  

Estimate distribution p(xi|y), e.g. Parzen Windows, 
Exponential family (Gauss, Laplace, Poisson, ...), Mixture

• Given new instance compute  
 
 

Basic Algorithm 

p(y|x) � p(y)
Y

j

p(xj |y)

trivially parallel

pass over all data



• Map(document (x,y))
• For each mapper for each feature xi in x do

• Aggregate statistic for (xi, y) for each y
• Send statistics (key = (xi,y), value = counts) to reducer

• Reduce(xi, y)
• Aggregate over all messages from mappers
• Estimate distribution p(xi|y), e.g. Parzen Windows, 

Exponential family (Gauss, Laplace, Poisson, ...), Mixture
• Send coordinate-wise model to global storage

• Given new instance compute  
 
 

MapReduce Variant 

p(y|x) � p(y)
Y

j

p(xj |y)



• Map(document (x,y))
• For each mapper for each feature xi in x do

• Aggregate statistic for (xi, y) for each y
• Send statistics (key = (xi,y), value = counts) to reducer

• Reduce(xi, y)
• Aggregate over all messages from mappers
• Estimate distribution p(xi|y), e.g. Parzen Windows, 

Exponential family (Gauss, Laplace, Poisson, ...), Mixture
• Send coordinate-wise model to global storage

• Given new instance compute  
 
 

MapReduce Variant 

p(y|x) � p(y)
Y

j

p(xj |y)

local per 
mapper

only aggregates 
needed



Estimating Probabilities



Binomial Distribution
• Two outcomes (head, tail); (0,1)
• Data likelihood  

• Maximum Likelihood Estimation
• Constrained optimization problem 
• Incorporate constraint via
• Taking derivatives yields 
 
 

p(X;⇡) = ⇡n1(1� ⇡)n0

� = log

n1

n0 + n1
() p(x = 1) =

n1

n0 + n1

⇡ 2 [0, 1]

p(x; ✓) =
e

x✓

1 + e

✓



... in detail ...
p(X; ✓) =

nY

i=1

p(x

i

; ✓) =

nY

i=1

e

✓xi

1 + e

✓

=) log p(X; ✓) = ✓

nX

i=1

x

i

� n log

⇥
1 + e

✓

⇤

=) @

✓

log p(X; ✓) =

nX

i=1

x

i

� n

e

✓

1 + e

✓

() 1

n

nX

i=1

x

i

=

e

✓

1 + e

✓

= p(x = 1)

empirical probability of x=1



Discrete Distribution
• n outcomes (e.g. USA, Canada, India, UK, NZ)
• Data likelihood  

• Maximum Likelihood Estimation
• Constrained optimization problem ... or ...
• Incorporate constraint via
• Taking derivatives yields 
 
 

p(x; �) =

exp �
xP

x

0 exp �
x

0

p(X;⇡) =
Y

i

⇡ni
i

✓i = log

niP
j nj

() p(x = i) =

niP
j nj



Tossing a Dice
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Key Questions
• Do empirical averages converge?

• Probabilities
• Means / moments

• Rate of convergence and limit distribution
• Worst case guarantees
• Using prior knowledge

drug testing, semiconductor fabs 
computational advertising 
user interface design ...



2.2 Tail Bounds
2 Statistics

Alexander Smola
Introduction to Machine Learning 10-701
http://alex.smola.org/teaching/10-701-15

http://alex.smola.org/teaching/10-701-15


Convergence of 
Estimates



Expectations
• Random variable x with probability measure
• Expected value of f(x)

• Special case - discrete probability mass 
 
 
(same trick works for intervals)

• Draw xi identically and independently from p
• Empirical average

E[f(x)] =

Z
f(x)dp(x)

Pr {x = c} = E[{x = c}] =
Z

{x = c} dp(x)

Eemp[f(x)] =
1

n

nX

i=1

f(xi) and Pr
emp

{x = c} =
1

n

nX

i=1

{xi = c}



Deviations
• Gambler rolls dice 100 times 
 

• ‘6’ only occurs 11 times. Fair number is16.7  
 
IS THE DICE TAINTED?  

• Probability of seeing ‘6’ at most 11 times 
 
 
It’s probably OK ... can we develop general theory?

Pr(X  11) =
11X

i=0

p(i) =
11X

i=0

✓
100

i

◆
1

6

�i 5
6

�100�i

⇡ 7.0%

P̂ (X = 6) =
1

n

nX

i=1

{xi = 6}



Deviations
• Gambler rolls dice 100 times 
 

• ‘6’ only occurs 11 times. Fair number is16.7  
 
IS THE DICE TAINTED?  

• Probability of seeing ‘6’ at most 11 times 
 
 
It’s probably OK ... can we develop general theory?

Pr(X  11) =
11X

i=0

p(i) =
11X

i=0

✓
100

i

◆
1

6

�i 5
6

�100�i

⇡ 7.0%

P̂ (X = 6) =
1

n

nX

i=1

{xi = 6}

ad campaign working 
new page layout better 

drug working



Empirical average for a dice

101 102 103

1

2

3

4

5

6

how quickly does it converge?



• Random variables xi with mean 
• Empirical average  

• Weak Law of Large Numbers 
 

• Strong Law of Large Numbers

Law of Large Numbers
µ = E[xi]

µ̂n :=
1

n

nX

i=1

xi

lim

n!1
Pr (|µ̂n � µ|  ✏) = 1 for any ✏ > 0

Pr
⇣
lim
n!1

µ̂n = µ
⌘
= 1

this means convergence in probability



Empirical average for a dice

• Upper and lower bounds are
• This is an example of the central limit theorem 

101 102 103

1

2

3

4

5

6

5 sample traces

µ±
p
Var(x)/n



Central Limit Theorem
• Independent random variables xi with mean μi 

and standard deviation σi

• The random variable  
 
 
converges to a Normal Distribution

• Special case - IID random variables & average

zn :=

"
nX

i=1

�

2
i

#� 1
2
"

nX

i=1

xi � µi

#

N (0, 1)

p
n

�

"
1

n

nX

i=1

xi � µ

#
! N (0, 1)

convergenceO
⇣
n� 1

2

⌘



Slutsky’s Theorem

• Continuous mapping theorem
• Xi and Yi sequences of random variables
• Xi has as its limit the random variable X
• Yi has as its limit the constant c
• g(x,y) is continuous function for all g(x,c) 

• g(Xi, Yi) converges in distribution to g(X,c)



Delta Method

a�2
n

(g(X
n

)� g(b)) ! N (0, [r
x

g(b)]⌃[r
x

g(b)]>)

a�2
n (Xn � b) ! N (0,⌃) with a2n ! 0 for n ! 1

a�2
n

[g(X
n

)� g(b)] = [r
x

g(⇠
n

)]>a�2
n

(X
n

� b)

• Random variable Xi convergent to b  

• g is a continuously differentiable function for b
• Then g(Xi) inherits convergence properties

• Proof: use Taylor expansion for g(Xn) - g(b)

• g(ξn) is on line segment [Xn, b]
• By Slutsky’s theorem it converges to g(b)
• Hence g(Xi) is asymptotically normal





Fourier Transform
• Fourier transform relations

• Useful identities
• Identity 

• Derivative  

• Convolution (also holds for inverse transform) 
 

F [f ](!) := (2⇡)

� d
2

Z

Rn

f(x) exp(�i h!, xi)dx

F

�1
[g](x) := (2⇡)

� d
2

Z

Rn

g(!) exp(i h!, xi)d!.

F�1 � F = F � F�1 = Id

F [f � g] = (2⇡)
d
2F [f ] · F [g]

F [@
x

f ] = �i!F [f ]



The Characteristic Function Method
• Characteristic function

• For X and Y independent we have
• Joint distribution is convolution

• Characteristic function is product 

• Proof - plug in definition of Fourier transform
• Characteristic function is unique

�X+Y (!) = �X(!) · �Y (!)

pX+Y (z) =

Z
pX(z � y)pY (y)dy = pX � pY

�X(!) := F

�1
[p(x)] =

Z
exp(i h!, xi)dp(x)



Proof - Weak law of large numbers
• Require that expectation exists
• Taylor expansion of exponential  
 
 
(need to assume that we can bound the tail)

• Average of random variables

• Limit is constant distribution  
 

exp(iwx) = 1 + i hw, xi+ o(|w|)
and hence �X(!) = 1 + iwEX [x] + o(|w|).

�µ̂m(!) =

✓
1 +

i

m

wµ+ o(m�1 |w|)
◆m convolution

vanishing higher 
order terms

�µ̂m(!) ! exp i!µ = 1 + i!µ+ . . .
mean



Warning
• Moments may not always exist

• Cauchy distribution  
 
 

• For the mean to exist the following integral 
would have to converge

p(x) =
1

⇡

1

1 + x

2

Z
|x|dp(x) � 2

⇡

Z 1

1

x

1 + x

2
dx � 1

⇡

Z 1

1

1

x

dx = 1



Proof - Central limit theorem
• Require that second order moment exists 

(we assume they’re all identical WLOG)
• Characteristic function  
 
 

• Subtract out mean (centering) 
 
 
This is the FT of a Normal Distribution

exp(iwx) = 1 + iwx� 1

2

w

2
x

2
+ o(|w|2)
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Central Limit Theorem in Practice
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Finite sample tail bounds



Simple tail bounds
• Gauss Markov inequality 

Random variable X with mean μ 
 
Proof - decompose expectation  
 

• Chebyshev inequality 
Random variable X with mean μ and variance σ2  
 
 

Proof - applying Gauss-Markov to Y = (X - μ)2 with 
confidence ε2 yields the result.

Pr(X � ✏)  µ/✏

Pr(X � ✏) =

Z 1

✏
dp(x) 

Z 1

✏

x

✏

dp(x)  ✏

�1

Z 1

0
xdp(x) =

µ

✏

.

Pr(|µ̂m � µk > ✏)  �2m�1✏�2
or equivalently ✏  �/

p
m�



Scaling behavior
• Gauss-Markov 
 
Scales properly in μ but expensive in δ

• Chebyshev 
 
Proper scaling in σ but still bad in δ 
 
Can we get logarithmic scaling in δ?  

✏  �p
m�

✏  µ

�



Chernoff bound
• KL-divergence variant of Chernoff bound  

• n independent tosses from biased coin with p  
 

• Proof

K(p, q) = p log
p

q
+ (1� p) log

1� p

1� q

Pinsker’s inequalityPinsker’s inequality
w.l.o.g.q > p and set k � qn

Pr {
P

i xi = k|q}
Pr {

P
i xi = k|p} =

q

k
(1� q)
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k
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n�k
� q

qn
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qn
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X

k�nq
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i
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)
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xi = k|q
)
exp(�nK(q, p))  exp(�nK(q, p))

Pr

(
X
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xi � nq

)
 exp (�nK(q, p))  exp
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McDiarmid Inequality
• Independent random variables Xi

• Function
• Deviation from expected value  
 
Here C is given by                 where  
 

• Hoeffding’s theorem 
f is average and Xi have bounded range c 
 

f : Xm ! R

Pr (|f(x1, . . . , xm)�EX1,...,Xm [f(x1, . . . , xm)]| > ✏)  2 exp

�
�2✏

2
C

�2
�
.

C2 =
mX

i=1

c2i

|f(x1, . . . , xi, . . . , xm)� f(x1, . . . , x
0
i, . . . , xm)|  ci

Pr (|µ̂m � µ| > ✏)  2 exp

✓
�2m✏2

c2

◆
.



Scaling behavior
• Hoeffding  
 
 
 
 
 
 
This helps when we need to combine several tail 
bounds since we only pay logarithmically in 
terms of their combination.

� := Pr (|µ̂m � µ| > ✏)  2 exp

✓
�2m✏2

c2

◆

=) log �/2  �2m✏2

c2

=) ✏  c

r
log 2� log �

2m



More tail bounds
• Higher order moments

• Bernstein inequality (needs variance bound) 
 
 
here M upper-bounds the random variables Xi

• Proof via Gauss-Markov inequality applied to 
exponential sums (hence exp. inequality)

• See also Azuma, Bennett, Chernoff, ...
• Absolute / relative error bounds
• Bounds for (weakly) dependent random variables

Pr (µm � µ � ✏)  exp

✓
� t2/2P

i E[X2
i ] +Mt/3

◆



Tail bounds in practice



A/B testing
• Two possible webpage layouts
• Which layout is better?

• Experiment
• Half of the users see A
• The other half sees design B

• How many trials do we need to decide which is better

Assume that the probabilities are p(A) = 0.1 and  
p(B) = 0.11 respectively and that p(A) is known



Chebyshev Inequality
• Need to bound for a deviation of 0.01
• Mean is p(B) = 0.11 (we don’t know this yet)
• Want failure probability of 5%

• If we have no prior knowledge, we can only bound the 
variance by σ2 = 0.25  
 

• If we know that the click probability is at most 0.15 we 
can bound the variance at 0.15 * 0.85 = 0.1275. This 
requires at most 25,500 users.

m  �2

✏2�
=

0.25

0.012 · 0.05 = 50, 000



Hoeffding’s bound
• Random variable has bounded range [0, 1] 

(click or no click), hence c=1
• Solve Hoeffding’s inequality for m 
 
 
 
This is slightly better than Chebyshev. 

m  �c2 log �/2

2✏2
= �1 · log 0.025

2 · 0.012 < 18, 445



Normal Approximation 
(Central Limit Theorem)

• Use asymptotic normality
• Gaussian interval containing 0.95 probability 
 
 
is given by ε = 2.96σ.

• Use variance bound of 0.1275 (see Chebyshev) 
 
 
Same rate as Hoeffding bound! 
Better bounds by bounding the variance.

1

2⇡�

2

Z µ+✏

µ�✏
exp

✓
� (x� µ)

2

2�

2

◆
dx = 0.95

m  2.962�2

✏2
=

2.962 · 0.1275
0.012

 11, 172



Beyond
• Many different layouts?
• Combinatorial strategy to generate them 

(aka the Thai Restaurant process)
• What if it depends on the user / time of day
• Stateful user (e.g. query keywords in search)
• What if we have a good prior of the response 

(rather than variance bound)?

• Explore/exploit/reinforcement learning/control



2.3 Kernel Density Estimation
2 Statistics

Alexander Smola
Introduction to Machine Learning 10-701
http://alex.smola.org/teaching/10-701-15

http://alex.smola.org/teaching/10-701-15


Parzen
Windows



Density Estimation
• Observe some data xi

• Want to estimate p(x)
• Find unusual observations (e.g. security)
• Find typical observations (e.g. prototypes)
• Classifier via Bayes Rule

• Need tool for computing p(x) easily

p(y|x) = p(x, y)

p(x)
=

p(x|y)p(y)P
y0 p(x|y0)p(y0)



Bin Counting
• Discrete random variables, e.g.

• English, Chinese, German, French, ...
• Male, Female

• Bin counting (record # of occurrences)

25 English Chinese German French Spanish

male 5 2 3 1 0

female 6 3 2 2 1



Bin Counting
• Discrete random variables, e.g.

• English, Chinese, German, French, ...
• Male, Female

• Bin counting (record # of occurrences)

25 English Chinese German French Spanish

male 0.2 0.08 0.12 0.04 0

female 0.24 0.12 0.08 0.08 0.04



Bin Counting
• Discrete random variables, e.g.

• English, Chinese, German, French, ...
• Male, Female

• Bin counting (record # of occurrences)

25 English Chinese German French Spanish

male 0.2 0.08 0.12 0.04 0

female 0.24 0.12 0.08 0.08 0.04



Bin Counting
• Discrete random variables, e.g.

• English, Chinese, German, French, ...
• Male, Female

• Bin counting (record # of occurrences)

25 English Chinese German French Spanish

male 0.2 0.08 0.12 0.04 0

female 0.24 0.12 0.08 0.08 0.04

not enough data



Curse of dimensionality (lite)
• Discrete random variables, e.g.

• English, Chinese, German, French, ...
• Male, Female
• ZIP code
• Day of the week
• Operating system
• ...

• Continuous random variables
• Income
• Bandwidth
• Time

#bins grows 
exponentially

need many bins 
per dimension



Curse of dimensionality (lite)
• Discrete random variables, e.g.

• English, Chinese, German, French, ...
• Male, Female
• ZIP code
• Day of the week
• Operating system
• ...

• Continuous random variables
• Income
• Bandwidth
• Time

#bins grows 
exponentially

need many bins 
per dimension



Density Estimation

• Continuous domain = infinite number of bins 
• Curse of dimensionality 

• 10 bins on [0, 1] is probably good 
• 10

10
 bins on [0, 1]

10
 requires high accuracy in estimate: 

probability mass per cell also decreases by 10
10

.
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Bin Counting



Bin Counting



Bin Counting



Bin Counting

can’t we just go and 
smooth this out?



What is happening?
• Hoeffding’s theorem 
 
 
 
For any average of [0,1] iid random variables.

• Bin counting
• Random variables xi are events in bins
• Apply Hoeffding’s theorem to each bin
• Take the union bound over all bins to 

guarantee that all estimates converge

Pr

(�����E[x]� 1

m

mX

i=1

xi

����� > ✏

)
 2e�2m✏2



Density Estimation
• Hoeffding’s theorem 
 

• Applying the union bound and Hoeffding  
 
 

• Solving for error probability

�

2|A|  exp(�m✏2) =) ✏ 
r

log 2|A|� log �

2m
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✓
sup

a2A
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◆


X

a2A
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2|A| exp
�
�2m✏2

�

good news

Pr
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Density Estimation
• Hoeffding’s theorem 
 

• Applying the union bound and Hoeffding  
 
 

• Solving for error probability
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but not good 
enough



Density Estimation
• Hoeffding’s theorem 
 

• Applying the union bound and Hoeffding  
 
 

• Solving for error probability
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but not good 
enough

bins not 
independent



Bin Counting



Bin Counting

can’t we just go and 
smooth this out?



Parzen Windows
• Naive approach  

Use empirical density (delta distributions) 
 

• This breaks if we see slightly different instances
• Kernel density estimate  

Smear out empirical density with a nonnegative 
smoothing kernel kx(x’) satisfying

pemp(x) =
1

m

mX

i=1

�

xi(x)

Z

X
k

x

(x

0
)dx

0
= 1 for all x



Parzen Windows
• Density estimate  
 

• Smoothing kernels

pemp(x) =
1

m

mX

i=1

�

xi(x)

p̂(x) =
1

m

mX

i=1

k

xi(x)

2.2 Parzen Windows 55
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Fig. 2.5. Left: a naive density estimate given a sample of the weight of 18 persons.
Right: the underlying weight distribution.
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Fig. 2.6. Parzen windows density estimate associated with the 18 observations of
the Figure above. From left to right: Gaussian kernel density estimate with kernel
of width 0.3, 1, 3, and 10 respectively.
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Fig. 2.7. Some kernels for Parzen windows density estimation. From left to right:
Gaussian kernel, Laplace kernel, Epanechikov kernel, and uniform density.

Moreover, there is the issue of choosing a suitable kernel function. The
fact that a large variety of them exists might suggest that this is a crucial
issue. In practice, this turns out not to be the case and instead, the choice
of a suitable kernel width is much more vital for good estimates. In other
words, size matters, shape is secondary.

The problem is that we do not know which kernel width is best for the
data. If the problem is one-dimensional, we might hope to be able to eyeball
the size of r. Obviously, in higher dimensions this approach fails. A second
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Smoothing



Smoothing

dist = norm(X - x * ones(1,m),'columns'); 
p = (1/m) * ((2 * pi)**(-d/2)) * sum(exp(-0.5 * dist.**2))



Smoothing



Smoothing



Size matters

2.2 Parzen Windows 55
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Moreover, there is the issue of choosing a suitable kernel function. The
fact that a large variety of them exists might suggest that this is a crucial
issue. In practice, this turns out not to be the case and instead, the choice
of a suitable kernel width is much more vital for good estimates. In other
words, size matters, shape is secondary.

The problem is that we do not know which kernel width is best for the
data. If the problem is one-dimensional, we might hope to be able to eyeball
the size of r. Obviously, in higher dimensions this approach fails. A second
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Size matters 
Shape matters mostly in theory

• Kernel width
• Too narrow overfits 
• Too wide smoothes with constant distribution

• How to choose it?

2.2 Parzen Windows 55
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Fig. 2.5. Left: a naive density estimate given a sample of the weight of 18 persons.
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Moreover, there is the issue of choosing a suitable kernel function. The
fact that a large variety of them exists might suggest that this is a crucial
issue. In practice, this turns out not to be the case and instead, the choice
of a suitable kernel width is much more vital for good estimates. In other
words, size matters, shape is secondary.

The problem is that we do not know which kernel width is best for the
data. If the problem is one-dimensional, we might hope to be able to eyeball
the size of r. Obviously, in higher dimensions this approach fails. A second
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Model
Selection



Maximum Likelihood
• Need to measure how well we do
• For density estimation we care about

• Finding a that maximizes P(X) will peak at 
all data points since xi explains xi best ...

• Maxima are delta functions on data.
• Overfitting! 

Pr {X} =
mY

i=1

p(xi)
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Moreover, there is the issue of choosing a suitable kernel function. The
fact that a large variety of them exists might suggest that this is a crucial
issue. In practice, this turns out not to be the case and instead, the choice
of a suitable kernel width is much more vital for good estimates. In other
words, size matters, shape is secondary.

The problem is that we do not know which kernel width is best for the
data. If the problem is one-dimensional, we might hope to be able to eyeball
the size of r. Obviously, in higher dimensions this approach fails. A second

Overfitting

Likelihood on 
training set is 
much higher 
than typical.
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Moreover, there is the issue of choosing a suitable kernel function. The
fact that a large variety of them exists might suggest that this is a crucial
issue. In practice, this turns out not to be the case and instead, the choice
of a suitable kernel width is much more vital for good estimates. In other
words, size matters, shape is secondary.

The problem is that we do not know which kernel width is best for the
data. If the problem is one-dimensional, we might hope to be able to eyeball
the size of r. Obviously, in higher dimensions this approach fails. A second

Overfitting

Likelihood on 
training set is 
much higher 
than typical.

density 0

density ≫ 0
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the Figure above. From left to right: Gaussian kernel density estimate with kernel
of width 0.3, 1, 3, and 10 respectively.

-2 -1 0 1 2
0.0

0.5

1.0

-2 -1 0 1 2
0.0

0.5

1.0

-2 -1 0 1 2
0.0

0.5

1.0

-2 -1 0 1 2
0.0

0.5

1.0

Fig. 2.7. Some kernels for Parzen windows density estimation. From left to right:
Gaussian kernel, Laplace kernel, Epanechikov kernel, and uniform density.

Moreover, there is the issue of choosing a suitable kernel function. The
fact that a large variety of them exists might suggest that this is a crucial
issue. In practice, this turns out not to be the case and instead, the choice
of a suitable kernel width is much more vital for good estimates. In other
words, size matters, shape is secondary.

The problem is that we do not know which kernel width is best for the
data. If the problem is one-dimensional, we might hope to be able to eyeball
the size of r. Obviously, in higher dimensions this approach fails. A second

Underfitting

Likelihood on 
training set is 
very similar to 
typical one. 

Too simple.



Model Selection
• Validation

• Use some of the data to estimate density.
• Use other part to evaluate how well it works
• Pick the parameter that works best 
 

• Learning Theory
• Use data to build model
• Measure complexity and use this to bound  
 
 

L(X 0|X) :=
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Model Selection
• Validation

• Use some of the data to estimate density.
• Use other part to evaluate how well it works
• Pick the parameter that works best 
 

• Learning Theory
• Use data to build model
• Measure complexity and use this to bound  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Model Selection
• Validation

• Use some of the data to estimate density.
• Use other part to evaluate how well it works
• Pick the parameter that works best 
 

• Learning Theory
• Use data to build model
• Measure complexity and use this to bound  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Model Selection
• Leave-one-out Crossvalidation

• Use almost all data to estimate density.
• Use single instance to estimate how well it works 
 

• This has huge variance
• Average over estimates for all training data
• Pick the parameter that works best

• Simple implementation  
 
 

log p(xi|X\xi) = log

1

n� 1

X

j 6=i

k(xi, xj)

1

n

nX

i=1

log


n

n� 1

p(xi)�
1

n� 1

k(xi, xi)

�
where p(x) =

1

n

nX

i=1

k(xi, x)



Leave-one out estimate



Optimal estimate



Model Selection
• k-fold Crossvalidation

• Partition data into k blocks (typically 10)
• Use all but one block to compute estimate
• Use remaining block as validation set
• Average over all validation estimates 
 
 

• Almost unbiased, e.g. via Luntz and Brailovski, 1969  
(the error is estimated for a (k-1)/k sized set)

• Pick best parameter (why must we not check too many?)

1

k

kX

i=1

l(p(Xi|X\Xi))



Geoff Watson

Watson
Nadaraya
Estimator



From density estimation to 
classification

• Binary classification
• Estimate
• Use Bayes rule

• Decision boundary 

p(x|y = 1) and p(x|y = �1)

p(y|x) = p(x|y)p(y)
p(x)

=
1

my

P
yi=y k(xi, x) · my

m
1
m

P
i k(xi, x)

local weights

p(y = 1|x)� p(y = �1|x) =
P

j yjk(xj , x)P
i k(xi, x)

=
X

j

yj
k(xj , x)P
i k(xi, x)





Watson-Nadaraya Classifier



Watson-Nadaraya Classifier

dist = norm(X - x * ones(1,m),'columns'); 
f = sum(y .* exp(-0.5 * dist.**2));



Watson Nadaraya Regression
• Binary classification  

• Regression - use same weighted expansion

labels local 
weights

p(y = 1|x)� p(y = �1|x) =
P

j yjk(xj , x)P
i k(xi, x)

=
X

j

yj
k(xj , x)P
i k(xi, x)

ŷ(x) =
X

j

yj
k(xj , x)P
i k(xi, x)





Watson-Nadaraya regression estimate



Silverman’s rule
• Chicken and egg problem

• Want wide kernel for low density region
• Want narrow kernel where we have much data
• Need density estimate to estimate density

• Simple hack 
Use average distance from k nearest neighbors

• Nonuniform bandwidth for smoother.

r

i

=
r

k

X

x2NN(xi,k)

kx
i

� xk



Densitytrue density



non adaptive estimate



adaptive estimate



distance distribution



Nearest Neighbor
Recap



Nearest Neighbors
• Table lookup  

For previously seen instance remember label
• Nearest neighbor

• Pick label of most similar neighbor
• Slight improvement - use k-nearest neighbors
• For regression average
• Really useful baseline!
• Easy to implement for 

small amounts of data. Why?



Relation to Watson Nadaraya
• Watson Nadaraya estimator

• Nearest neighbor estimator 
 
 
Neighborhood function is hard threshold.

ŷ(x) =
X

j

yj
k(xi, x)P
i k(xi, x)

=
X

j

yjwj(x)

ŷ(x) =
X

j

yj
k(xj , x)P
i k(xi, x)

=
X

j

yjwj(x)



1-Nearest Neighbor



4-Nearest Neighbors



4-Nearest Neighbors Sign



If we get more data

• 1 Nearest Neighbor
• Converges to perfect solution if clear separation
• Twice the minimal error rate 2p(1-p) for noisy problems

• k-Nearest Neighbor
• Converges to perfect solution if clear separation (but needs more data)
• Converges to minimal error min(p, 1-p) for noisy problems if k increases



1 Nearest Neighbor

• For given point x take ϵ neighborhood N with probability mass > d/n
• Probability that at least one point of n is in this neighborhood is 1-e-d 

so we can make this small
• Assume that probability mass doesn’t change much in neighborhood
• Probability that labels of query and point do not match is 2p(1-p)   

(up to some approximation error in neighborhood)



k Nearest Neighbor

• For given point x take ϵ neighborhood N with probability mass > dk/n
• Small probability that we don’t have at least k points in 

neighborhood.
• Assume that probability mass doesn’t change much in neighborhood
• Bound probability that majority of points doesn’t match majority for p  

(e.g. via Hoeffding’s theorem for tail). Show that it vanishes
• Error is therefore min(p, 1-p), i.e. Bayes optimal error.



Fast lookup
• KD trees (Moore et al.)

• Partition space (one dimension at a time)
• Only search for subset that contains point

• Cover trees (Beygelzimer et al.)
• Hierarchically partition space with distance 

guarantees
• No need for nonoverlapping sets
• Bounded number of paths to follow  

(logarithmic time lookup)



2.4 Exponential Families
2 Statistics

Alexander Smola
Introduction to Machine Learning 10-701
http://alex.smola.org/teaching/10-701-15

http://alex.smola.org/teaching/10-701-15


Exponential
Families



Exponential Families



Exponential Families
• Density function  
 
 

p(x; �) = exp (h⇥(x), �i � g(�))

where g(�) = log

X

x

0

exp (h⇥(x0
), �i)



Exponential Families
• Density function  
 
 

• Log partition function generates cumulants 
 

p(x; �) = exp (h⇥(x), �i � g(�))

where g(�) = log

X

x

0

exp (h⇥(x0
), �i)

@✓g(✓) = E [�(x)]

@

2
✓g(✓) = Var [�(x)]



Exponential Families
• Density function  
 
 

• Log partition function generates cumulants 
 

• g is convex (second derivative is p.s.d.)

p(x; �) = exp (h⇥(x), �i � g(�))

where g(�) = log

X

x

0

exp (h⇥(x0
), �i)

@✓g(✓) = E [�(x)]

@

2
✓g(✓) = Var [�(x)]



Examples

• Binomial Distribution
• Discrete Distribution  

(ex is unit vector for x)
• Gaussian
• Poisson (counting measure 1/x!)
• Dirichlet, Beta, Gamma, 

Wishart, ...

�(x) = x

�(x) = e

x

�(x) =
✓

x,

1
2
xx

>
◆

�(x) = x



Binomial Distribution
• Features
• Domain is {-1, 1}
• Normalization

• Probability

�(x) = x

g(✓) = log

⇥
e�1·✓

+ e1·✓
⇤
= log 2 cosh ✓

p(x|✓) = exp(x · ✓ � g(✓)) =

e

x✓

e

�✓

+ e

✓

=

1

1 + e

�2x✓

Logistic function



Logistic function

p(x|✓) = 1

1 + e

�x✓



Normal Distribution



Poisson Distribution

p(x;�) =
�

x

e

��

x!



Beta Distribution

p(x;↵,�) =
x

↵�1(1� x)��1

B(↵,�)



Dirichlet Distribution

... this is a distribution over distributions ...



Inference in
Exponential Families

Exponential Family Tree



Maximum Likelihood



Maximum Likelihood
• Negative log-likelihood  
 
  � log p(X; ✓) =

nX

i=1

g(✓) � h�(xi), ✓i



Maximum Likelihood
• Negative log-likelihood  
 
 

• Taking derivatives 
 
 
 
We pick the parameter such that the distribution 
matches the empirical average.

� log p(X; ✓) =

nX

i=1

g(✓) � h�(xi), ✓i

�@✓ log p(X; ✓) = m

"
E[�(x)]� 1

m

nX

i=1

�(xi)

#

empirical
average

mean



Conjugate Priors
• Unless we have lots of data estimates are weak
• Usually we have an idea of what to expect 
 
we might even have ‘seen’ such data before

• Solution: add ‘fake’ observations  

• Inference (generalized Laplace smoothing)

p(✓|X) / p(X|✓) · p(✓)

1
n

nX

i=1

�(xi) �!
1

n + m

nX

i=1

�(xi) +
m

n + m

µ0

p(�) � p(Xfake|�) hence p(�|X) � p(X|�)p(Xfake|�) = p(X ⇥Xfake|�)

fake mean

fake count



Example: Gaussian Estimation
• Sufficient statistics: 
• Mean and variance given by

• Maximum Likelihood Estimate  
 

• Maximum a Posteriori Estimate

x, x

2

µ = E
x

[x] and �2 = E
x

[x2]�E2
x

[x]

µ̂ =
1

n

nX

i=1

xi and �2 =
1

n

nX

i=1

x2
i � µ̂2

µ̂ =
1

n+ n0

nX

i=1

xi and �2 =
1

n+ n0

nX

i=1

x2
i +

n0

n+ n0
1� µ̂2

smoother

smoother



Collapsing
• Conjugate priors 
 
Hence we know how to compute normalization

• Prediction

p(�) � p(Xfake|�)

p(x|X) =

Z
p(x|�)p(�|X)d�

�
Z

p(x|�)p(X|�)p(Xfake|�)d�

=

Z
p({x} ⇥X ⇥Xfake|�)d�

look up closed 
form expansions

(Beta, binomial) 
(Dirichlet, multinomial) 

(Gamma, Poisson) 
(Wishart, Gauss)

http://en.wikipedia.org/wiki/Exponential_family

http://en.wikipedia.org/wiki/Exponential_family


Conjugate Prior in action

p(x = i) =
ni

n

�! p(x = i) =
ni + mi

n + m

Outcome 1 2 3 4 5 6
Counts 3 6 2 1 4 4
MLE 0.15 0.30 0.10 0.05 0.20 0.20
MAP (m0 = 6) 0.15 0.27 0.12 0.08 0.19 0.19
MAP (m0 = 100) 0.16 0.19 0.16 0.15 0.17 0.17

mi = m · [µ0]i



Conjugate Prior in action
• Discrete Distribution  

• Tossing a dice  
 
 
 
 

p(x = i) =
ni

n

�! p(x = i) =
ni + mi

n + m

Outcome 1 2 3 4 5 6
Counts 3 6 2 1 4 4
MLE 0.15 0.30 0.10 0.05 0.20 0.20
MAP (m0 = 6) 0.15 0.27 0.12 0.08 0.19 0.19
MAP (m0 = 100) 0.16 0.19 0.16 0.15 0.17 0.17

mi = m · [µ0]i



Conjugate Prior in action
• Discrete Distribution  

• Tossing a dice  
 
 
 
 

• Rule of thumb  
need 10 data points (or prior) per parameter

p(x = i) =
ni

n

�! p(x = i) =
ni + mi

n + m

Outcome 1 2 3 4 5 6
Counts 3 6 2 1 4 4
MLE 0.15 0.30 0.10 0.05 0.20 0.20
MAP (m0 = 6) 0.15 0.27 0.12 0.08 0.19 0.19
MAP (m0 = 100) 0.16 0.19 0.16 0.15 0.17 0.17

mi = m · [µ0]i



Honest dice

MLE

MAP



Tainted dice

MLE

MAP



Priors (part deux)
• Parameter smoothing

• Posterior

• Convex optimization problem (MAP estimation)

p(�|x) ⇥
mY

i=1

p(xi|�)p(�)

⇥ exp

 
mX

i=1

⇤⇤(xi), �⌅ �mg(�)� 1

2⇥2
⇧�⇧22

!

minimize
�

g(�)�
*

1

m

mX

i=1

⇤(xi), �

+
+

1

2m⇥2
k�k22

p(✓) / exp(�� k✓k1) or p(✓) / exp(�� k✓k22)



Further Reading
• Cover tree homepage (paper & code) 

http://hunch.net/~jl/projects/cover_tree/cover_tree.html
• http://doi.acm.org/10.1145/361002.361007 (kd trees, original paper)
• http://www.autonlab.org/autonweb/14665/version/2/part/5/data/moore-tutorial.pdf 

(Andrew Moore’s tutorial from his PhD thesis)
• Nadaraya’s regression estimator (1964) 

http://dx.doi.org/10.1137/1109020
• Watson’s regression estimator (1964) 

http://www.jstor.org/stable/25049340
• Watson-Nadaraya regression package in R  

http://cran.r-project.org/web/packages/np/index.html
• Stone’s k-NN regression consistency proof 

http://projecteuclid.org/euclid.aos/1176343886
• Cover and Hart’s k-NN classification consistency proof 

http://www-isl.stanford.edu/people/cover/papers/transIT/0021cove.pdf
• Tom Cover’s rate analysis for k-NN  

Rates of Convergence for Nearest Neighbor Procedures.
• Sanjoy Dasgupta’s analysis for k-NN estimation with selective sampling  

http://cseweb.ucsd.edu/~dasgupta/papers/nnactive.pdf
• Multiedit & Condense (Dasarathy, Sanchez, Townsend) 

http://cgm.cs.mcgill.ca/~godfried/teaching/pr-notes/dasarathy.pdf
• Geometric approximation via core sets 

http://valis.cs.uiuc.edu/~sariel/papers/04/survey/survey.pdf

http://hunch.net/~jl/projects/cover_tree/cover_tree.html
http://doi.acm.org/10.1145/361002.361007
http://www.autonlab.org/autonweb/14665/version/2/part/5/data/moore-tutorial.pdf
http://dx.doi.org/10.1137/1109020
http://www.jstor.org/stable/25049340
http://cran.r-project.org/web/packages/np/index.html
http://projecteuclid.org/euclid.aos/1176343886
http://www-isl.stanford.edu/people/cover/papers/transIT/0021cove.pdf
http://www-isl.stanford.edu/people/cover/papers/paper009.pdf
http://cseweb.ucsd.edu/~dasgupta/papers/nnactive.pdf
http://cgm.cs.mcgill.ca/~godfried/teaching/pr-notes/dasarathy.pdf
http://valis.cs.uiuc.edu/~sariel/papers/04/survey/survey.pdf

