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Homework 9 Solutions

START HERE: Instructions

• Thanks a lot to John A.W.B. Constanzo for providing and allowing to use the latex source files for
quick preparation of the HW solution.

• The homework is due at 9:00am on April 20, 2015. Anything that is received after that time will not
be considered.

• Answers to every theory questions will be also submitted electronically on Autolab (PDF: Latex or
handwritten and scanned). Make sure you prepare the answers to each question separately.

• Collaboration on solving the homework is allowed (after you have thought about the problems on
your own). However, when you do collaborate, you should list your collaborators! You might also
have gotten some inspiration from resources (books or online etc...). This might be OK only after you
have tried to solve the problem, and couldn’t. In such a case, you should cite your resources.

• If you do collaborate with someone or use a book or website, you are expected to write up your
solution independently. That is, close the book and all of your notes before starting to write up your
solution.

• Latex source of this homework: http://alex.smola.org/teaching/10-701-15/homework/
hw9_latex.zip.

Mixtures of Exponential Family

In this problem we will study approximate inference on a general Bayesian Mixture Model. In particular,
we will derive both Expectation-Maximization (EM) algorithm and Gibbs Sampling for the mixture model.

A typical finite-dimensional mixture model is a hierarchical model consisting of the following components:

• N random variables xi, i = 1, . . . , N corresponding to observations, each assumed to be distributed
according to a mixture of K components, with each component belonging to the same exponential
family of distributions (e.g., all normal, all multinomial, etc.) but with different parameters

p(xi|θ) = exp(〈φ(xi), θ〉 − g(θ)). (1)

• N corresponding random latent variables zi specifying the identity of the mixture component of each
observation, each distributed according to a K-dimensional categorical distribution.

• A set of K mixture weights πk, k = 1, . . . ,K, each of which is a probability (a real number between 0
and 1 inclusive), all of which sum to 1.

• A Dirichlet prior on the mixture weights having hyper-parameters α.

• A set of K parameters θk, k = 1, . . . ,K, each specifying the parameter of the corresponding mix-
ture component. For example, observations distributed according to a mixture of one-dimensional
Gaussian distributions will have a mean and variance for each component. Observations distributed
according to a mixture of V-dimensional categorical distributions (e.g., when each observation is a
word from a vocabulary of size V ) will have a vector of V probabilities, collectively summing to 1.
Moreover, we put a shared conjugate prior on these parameters:

p(θ;m0, φ0) = exp (〈φ0, θ〉 −m0g(θ)− h(m0, φ0)) . (2)
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This model can be represented graphically as:

for all i for all k

α π zi xi θk φ0

m0

The generative model is given as follows:

1. For each topic k ∈ {1, ...,K}

• Draw θk ∼ p(·|m0, φ0)

2. Draw mixture weights π ∼ Dirichlet(α)

3. For each observation i ∈ {1, ..., N}

• Draw a component index zi ∼ Categorical(π)

• Draw a datum xi ∼ p(·|θzi)

1 Expectation-Maximization on Mixture Models

Expectation-Maximization (EM) is an iterative algorithm for finding MLE or MAP estimates of parameters
when the model depends on unobserved latent variables Z. When the variables are fully observed except
the model parameter θ, then we can simply run maximize the likeihood defined as L(θ;X,Z) = p(X,Z|θ)
where X = {xi, i = 1, . . . , N} and Z = {zi ∈ {1, . . . ,K}, i = 1, . . . , N}. However, when Z is not observed,
we have to integrate out (or sum out) Z and maximize over the collapsed likelihood i.e. L(θ;X) = p(X|θ) =∑

Z p(X,Z|θ).
The EM iteration alternates between performing an expectation (E) step, which creates a function for

the expectation of the log-likelihood (`) evaluated using the current estimate for the parameters (initially,
random values), and a maximization (M) step, which computes parameters maximizing the expected log-
likelihood found on the E step. These parameter-estimates are then used to determine the distribution of
the latent variables in the next E step.

E-step
Write down E-step in terms of πk, the mixture component weight, and θk,
the parameter for k-th component, for every component k = 1, . . . ,K.

1. Write down the maximization function of posterior given πk, θk.

2. Solve nik = E [δ(zi = k)] that maximizes the posterior from previous
question.

Question 1
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The posterior is

P (θ, π | X,α, φ0,m0) ∝ P (X | θ, π,���
��: (irrelevant)

α, φ0,m0)P (θ, π | α, φ0,m0)

= P (θ, π | α, φ0,m0)
∏
i

P (xi | θ, π).
(3)

It is easier to deal with sums than products, so we can instead maximize the logarithm of (3) to obtain

log
[
P (θ, π | α,φ0,m0)

∏
i

P (xi | θ, π)
]

= logP (θ, π | α, φ0,m0) +
∑
i

log
∑
k

P (xi, zi = k | θ, π)

= logP (θ, π | α, φ0,m0) +
∑
i

log
∑
k

Q(zi = k | xi)
P (xi, zi = k | θ, π)

Q(zi = k | xi)

≥ logP (θ, π | α, φ0,m0) +
∑
i

∑
k

Q(zi = k | xi) log
P (xi, zi = k | θ, π)

Q(zi = k | xi)

, F (Q, θ, π)

(4)

where the inequality above is given by Jensen’s inequality. Note that, since

P (xi, zi = k | θ, π) = P (zi = k | xi, θ, π)P (xi | θ, π)

we have

F (Q, θ, π) =
���

���
���

�: (no Q dependence)

logP (θ, π | α, φ0,m0) +
∑
i

∑
k

Q(zi = k | xi)
[
log

P (zi = k | xi, θ, π)

Q(zi = k | xi)
+ logP (xi | θ, π)

]
= −DKL (Q(zi = k | xi)‖P (zi = k | xi, θ, π)) +

∑
i

logP (xi | θ, π)
���

���
���:

1∑
k

Q(zi = k | xi)

(5)
which is maximized over Q when DKL = 0, that is, when Q(zi = k | xi) = P (zi = k | xi, θ, π).
We have

Q
(t)
ik = P (zi = k | xi, π(t), θ(t))

=
P (xi | zi = k, π(t), θ(t))P (zi = k | π(t), θ(t))∑K
j=1 P (xi | zi = j, π(t), θ(t))P (zi = j | π(t), θ(t))

=
exp

[
〈φ(xi), θ

(t)
k 〉 − g(θ

(t)
k )
]
π

(t)
k∑K

j=1 exp
[
〈φ(xi), θ

(t)
j 〉 − g(θ

(t)
j )
]
π

(t)
j

.

(6)

Answer
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M-step
1. Write down M-step as an optimization problem in terms of X and
g(·), φ0, m0, α and nik for every component k = 1, . . . ,K.

2. Prove the convexity of the optimization problem.

3. Obtain closed form solution for M-step. Express it in terms of η−1(·)
and use the fact that η(θ) = Oθg(θ) is an invertible function.

Question 2

The optimization problem is

θ(t+1), π(t+1) = maximize
θ,π

F (Q(t), θ, π)

subject to
∑
k

πk = 1.
(7)

The objective functional can be rewritten (ignoring terms of the form −Q logQ),

logP (θ, π | α, φ0,m0) +
∑
i,k

Q
(t)
ik logP (xi, zi = k | θ, π) =

= logP (θ, π | α, φ0,m0) +
∑
i,k

Q
(t)
ik [logP (xi | zi = k, θ, π) + logP (zi = k | θ, π)]

=
∑
k

logP (θk | φ0,m0) +
∑
k

logP (πk | α) +
∑
i,k

Q
(t)
ik

[
〈φ(xi), θk〉 − 1>g(θk) + log πk

]

∝
∑
k

(
αk − 1 +

∑
i

Q
(t)
ik

)
log πk +

∑
k

〈φ0 +
∑
i

Q
(t)
ik φ(xi), θk

〉
−

(
m0 + 1

∑
i

Q
(t)
ik

)>
g(θk)


, F̃ .

(8)
We can see that in θk, the objective is the difference between a linear function and a convex function
(recall g(·) is convex because its second derivative is the variance), so the objective is concave in θk
(which is what is desired for maximization). By the same token, log πk is also concave, so the objective
is concave in πk provided αk − 1 +

∑
iQ

(t)
ik > 0, though there seems to be no guarantee of this unless

we include the assumption that α ≥ 1.
The Lagrangian is

L(F ; θ, π, β) = F (Q(t), θ, π)− β

(∑
k

πk − 1

)
. (9)

(continued)

Answer
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(continued from previous page)
Denote q(t)

k =
∑
iQ

(t)
ik . Notice that this quantity is the current estimate of the number of xi drawn

from distribution k.
Setting all partial derivatives equal to zero, we obtain

∂F

∂πk
=
αk − 1 + qk

πk
= β

∂F

∂θkj
= (φ0 +

∑
i

Q
(t)
ik φ(xi))j − (m0 + 1q

(t)
k )>

∂g(θk)

∂θkj
= 0

∂F

∂β
=
∑
k

πk − 1 = 0

(10)

and hence
θ

(t+1)
k = η−1 (Z) , where m>nkZ = φnk

π
(t+1)
k =

αk − 1 + q
(t)
k

β

where β =
∑
k

(αk − 1 + qk)

(11)

where η(θ) = ∇g(θ) and η−1(·) denotes its functional inverse; mnk = m0 + 1q
(t)
k and φnk = φ0 +∑

iQ
(t)
ik φ(xi).

The θ update can be rewritten using the Kronecker triple product formula

AXB = C ⇔ (B> ⊗A) vec(X) = vec(C)

to obtain
θ

(t+1)
k = η−1

(
(Ip ⊗m>nk)+φnk

)
(12)

where p is the dimension of θ and X+ is the pseudoinverse of X .

Answer

Recall the Multivariate Normal distributionfrom homework 5 (http://alex.smola.org/teaching/
10-701-15/homework/hw5_sol.pdf ). The distribution of Multivariate Normal N (µ,Σ) is given by

p(x|µ,Σ) =
1√

(2π)d|Σ|
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(13)

where µ ∈ Rd and Σ � 0 is a symmetric positive definite d× d matrix.
The conjugate prior for Multivariate Normal Distribution can be parametrized as the Normal Inverse

Wishart Distribution NIW(µ0, κ0,Σ0, ν0). The distribution is given by:

p(µ,Σ; µ0, κ0,Σ0, ν0) = N (µ|µ0,Σ/κ0)W−1(Σ|Σ0, ν0)

=
κ
d
2
0 |Σ0|

ν0
2 |Σ|−

ν0+d+2
2

2
(ν0+1)d

2 π
d
2 Γd(

ν0
2 )

e−
κ0
2 (µ−µ0)TΣ−1(µ−µ0)− 1

2 tr(Σ0Σ−1)
(14)
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Now, derive the Expectation-Maximiazation rules for the mixture of Mutivariate Normal,N (µk,Σk) for
k = 1, . . . ,K and with the shared prior NIW(µ0, κ0,Σ0, ν0).

Multivariate Normal
Write down update rules on E-step and M-step respectively for the Mul-
tivariate Gaussian with mixture parameters θk = (µk,Σk). You can use
the solutions from Question 1 and Question 2 and please refer to HW5 for
Multivariate Guassians.

Question 3

E step:

Q
(t)
ik =

exp
[
− 1

2 (xi − µ(t)
k )>Σ

(t)−1
k (xi − µ(t)

k )
]
π

(t)
k∑k

j=1 exp
[
− 1

2 (xi − µ(t)
j )>Σ

(t)−1
j (xi − µ(t)

j )
]
π

(t)
j

(15)

M step: First,

π
(t+1)
k =

αk − 1 +
∑
iQ

(t)
ik∑k

j=1

[
αj − 1 +

∑
iQ

(t)
ij

] . (16)

Now, in natural parameter space, θ1 = Σ−1µ and θ2 = − 1
2Σ−1. Thus,

Σ = −1

2
θ−1

2

µ = −1

2
θ−1

2 θ1

(17)

and

g(θ) =

[
− 1

4θ
>
1 θ
−1
2 θ1

d
2 log(2π)− 1

2 log | − 2θ2|

]
. (18)

So
∂g

∂θ1
=

[
− 1

2θ
−1
2 θ1

0

]
=

[
µ
0

]
∂g

∂θ2
=

[
1
4θ
−1
2 θ1θ

>
1 θ
−1
2

− 1
2θ
−1
2

]
=

[
µµ>

Σ

]
. (19)

The derivative ∂g1
∂θ2

comes from the identity ∂tr(X−1A)
∂X = −(X−1)>A(X−1)> and the invari-

ance of the trace operator under cyclic permutation; see ’Wikipedia/Matrix calculus’. Also
recall that

φ0 =

(
κ0µ0

Σ0 + κ0µ0µ
>
0

)
m0 =

(
κ0

ν0 + d+ 2

)
φ(x) =

(
x
xx>

)
. (20)

(continued)

Answer
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(continued from previous page)
Combining all of this with (11) we see that

∂F

∂θ1
= κ0µ0 +

∑
i

Q
(t)
ik xi −

(
κ0 + q

(t)
k

)
µ

(t+1)
k = 0

∂F

∂θ2
= Σ0 + κ0µ0µ

>
0 +

∑
i

Q
(t)
ik xix

>
i −

(
κ0 + q

(t)
k

)
µ

(t+1)
k µ

(t+1)>
k −

(
ν0 + d+ 2 + q

(t)
k

)
Σ

(t+1)
k = 0

(21)
and hence

µ
(t+1)
k =

κ0µ0 +
∑
iQ

(t)
ik xi

κ0 + q
(t)
k

Σ
(t+1)
k =

Σ0 + κ0µ0µ
>
0 +

∑
iQ

(t)
ik xix

>
i −

(
κ0 + q

(t)
k

)
µ

(t+1)
k µ

(t+1)>
k

ν0 + d+ 2 + q
(t)
k

.

(22)

Answer
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2 Gibbs Sampling

In the last sub-problem we used EM for inference and now we turn to Gibbs Sampling, another popular
method. Gibbs sampling is a variety of MCMC sampling in which we cycle through all our latent random
variables, resampling each conditioned on the currently sampled values of all other random variables.

Write out the simple Gibbs sampler for the mixture model, i.e. derive the
following conditional probabilities:
• p(zi|rest)
• p(θk|rest)
• p(π|rest)

in terms of α,m0, φ0, φ(·), g(·), h(·, ·). An useful notation would be nk =
|{i : zi = k}| and φk = φ0 +

∑
i:zi=k

φ(xi). Hint: Update equations from HW5
might come in handy!

Question 4

P (zi | xi, x−i, z−i, π, θ) =
P (xi | zi,(((((z−i, x−i, π, θ)P (zi |���

��x−i, z−i, θ, π)

P (xi |((((x−i, z−i, π, θ)

=
f(xi; θzi)πzi∑
k f(xi; θk)πk

(23)

where f(x; θ) = exp(〈φ(x), θ〉 − g(θ));

P (θk | X,Z, π, φ0,m0, α) = P (θk | {xi : zi = k}, φ0,m0)

= exp

[〈(
φk
mk

)
,

(
θ

−g(θ)

)〉
− h(mk, φk)

] (24)

where mk = m0 + |{i : zi = k}| = m0 + nk;

P (π | X,Z, θ, φ0,m0, α) = P (π | Z, α)

∝ P (Z | π)P (π | α)

= exp


〈

...
|{i : zi = k}|

...


k=1...K

, log π

〉 exp[〈α− 1, log π〉 − logB(α)]

∝ exp
[〈(

n1 − 1 . . . nK − 1
)>
, log π

〉]
∝ Dirichlet

(
[. . . nk . . . ]

>)
(25)

and because proportional distributions are equal,

P (π | rest) = exp[〈 ~nk − 1, log π〉 −B( ~nk)]. (26)

Answer
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However, we can do a better job by collapsing out θk and π. In general also, collapsing helps the chain
mix faster (a consequence of Rao-Blackwell theorem).

1. After collapsing out θk and π, what would be the Markov blanket for
a given zi?

2. Using this information derive the conditional probability p(zi|rest).
Hint: HW5 Posterior predictive might come in handy!

Question 5

The Markov blanket for zi becomes x−i, z−i, xi, φ0,m0, and α in this case. We obtain

P (zi | rest) =
P (xi | zi, {xj : zj = zi},m0, φ0)P (zi | z−i, α)

P (xi | x−i,m0, φ0)

=
exp[h(mzi , φzi)− h(mzi − 1, φzi − φ(xi))] exp[logB( ~nk)− logB( ~nk − ~ezi)]∑K
j=1 exp[h(mj , φj)− h(mj − 1, φj − φ(xi))] exp[logB( ~nk)− logB( ~nk − ~ej)]

=
exp[h(mzi , φzi)− h(mzi − 1, φzi − φ(xi))]

nzi−1

(
∑
k nk)−1∑K

j=1 exp[h(mj , φj)− h(mj − 1, φj − φ(xi))]
nj−1

(
∑
k nk)−1

=
exp[h(mzi , φzi)− h(mzi − 1, φzi − φ(xi))](nzi − 1)∑K
j=1 exp[h(mj , φj)− h(mj − 1, φj − φ(xi))](nj − 1)

(27)
Note that mk −m0 = nk − αk. From here on out, ñk = |{i : zi = k}| so that mk = m0 + ñk
and nk = ñk + α.

Answer
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Thus, we need to take care of only two invariants, namely nk and φk per component in the inference
procedure and a neat program can be written.

Your task is to complete the generic program given in Algorithm 1 for Gibbs
sampling of mixture models for T iterations.

Question 6

Algorithm 1 Collapsed Gibbs sampling for mixture models
1: Initialize z randomly and evaluate initial counts ñk and statistics φk.
2: t← 0
3: while t ≤ T do
4: for i = 1→ N do
5: Remove datum from current component and update statistics: ñzi ← ñzi − 1, φzi ← φzi − φ(xi)
6: Sample zi using the PMF stored in

p[k]← (α+ ñk − 1) exp (h(m0 + ñk + 1, φk + φ(xi))− h(m0 + ñk, φk)); p← p/sum(p);
7: Add datum to the new component and update statistics: ñzi ← ñzi + 1, φzi ← φzi + φ(xi)
8: end for
9: t← t+ 1

10: end while

10
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Last but not the least, we derive Gibbs sampler for the Multivariate Gaussian with a Normal Inverse
Wishart. Follow the notations of previous sub-problem or HW5.

Write out the Gibbs Sampler, i.e. p(zi|rest) explicitly in terms of data and
hyper-parameters α, µ0, κ0,Σ0, ν0. What would be the posterior means of
mixture parameters θk ⇒ {muk,Σk} given a sample Z obtained from our
favourite collapsed Gibbs sampling algorithm?

Question 7

First, apply the downdate equations in the following order:

κzi ← κzi − 1, νzi ← νzi − 1

µzi ←
(κzi − 1)µzi

κzi
− xi

Σzi ← Σzi −
κzi

κzi − 1
(xi − µzi)(xi − µzi)>

(28)

Directly using Q8 from HW 5, update zi by smpling from the distribution:

P (zi = k | rest) =
P (xi | zi = k, x−i)(nk − 1)∑
j P (xi | zi = j, x−i)(nj − 1)

=
tνk−d+1

(
xi

∣∣∣ µk, (κk+1)Σk
κk(νk−d+1)

)
(nk − 1)∑K

j=1 tνj−d+1

(
xi

∣∣∣ µj , (κj+1)Σj
κj(νj−d+1)

)
(nj − 1)

(29)

then apply the update equations in the following order:

Σzi ← Σzi +
κzi

κzi − 1
(xi − µzi)(xi − µzi)>

µzi ←
κziµzi + xi
κzi + 1

νzi ← νzi + 1, κzi ← κzi + 1

(30)

At the end of the procedure, we obtain

µ̂k =
κ0µ0 +

∑
i:zi=k

xi

κ0 + ñk

Σ̂k =
Σ0 +

∑
i:zi=k

xix
>
i + κ0µ0µ

>
0 − (κ0 + ñk)µkµ

>
k

ν0 + ñk − d− 1

(31)

where again ñk = |{i : zi = k}|.

Answer
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Hopefully, this homework threw light on the commonly used finite mixture models. In all our examples
so far, we have chosen some fixed K to be the dimension of π, which effectively enforces a fixed number
of clusters. However, we would like to point out a major drawback of this model: the number of clusters
present in the data needs to be known apriori, which is not the case often in practice. A novel workaround
is to allow unboundedly many clusters, i.e. take K → ∞. This yields a Bayesian nonparametric model
known as the Dirichlet Process mixture. Extending our samplers to sample from a mixture of potentially
infinitely many components requires only minor changes to the code; see e.g. section 3 of this nice paper
http://www.stat.columbia.edu/npbayes/papers/neal_sampling.pdf.

12
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