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1 Novelty Detection [Manzil; 60 points]

1.1 Simple Minimum Enclosing Balls

m )

To begin with suppose, we want to find the minimum enclosing ball for the
given data of n points 1, ..., 7, € R% That is, find the centre z € RY and
the smallest radius R > 0 satisfying

Vi: ||z — z||* < R? 1)

Your goal is to state this in the form of a convex optimization problem and
explain why this is a convex problem.

Let us now relax the constraint to pack all the points in the ball. How will
we modify the optimization problem by introducing slack variables?
Hint: It is similar to SVM with slack variables.

. J

’m h

The minimum enclosing ball problem is just

minimizer? subjectto 0 <r, ||z; —c|| < 7. (2)
r,c
This is literally a direct translation of “the smallest radius ball that encloses all points” into
mathematics notation. It is quadratic in r and with linear constraints; hence convex. The
constraint 0 < r is redundant as it is guaranteed by the other constraint.
Relaxing constraints, we can solve the problem

minimizer? + C' Y & subjectto 0 <7, [|z; —c|* <r®+§;, & > 0. (3)
T,

This is the same problem as before, but with some constraints allowed to be not met; the
second term in the objective serves as an ¢; penalty on the number of constraints not met.
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1.2 Minimum Enclosing Balls in Feature Space

Given n points 21, ..., 7, € R%, we want to find enclosing ball of the data
in the feature space. That is, find the centre z € R/ and the smallest radius
R > 0 satisfying

Vi: ||®(z;) —2||> < R®+ &, 4)

where & > 0. Also derive the dual of the optimization problem.

miningizer2 + CZ& subject to 7 >0, 72 + & > || ®(x;) — ¢, & > 0. (5)
We obtain
L(r,c,& a,m) =72 +CZ§1 20417" —|®(z:) — |l + &) — Zm@ (6)
with a, 7 > 0. Derivatives in r, ¢, £ need to vanish:
oL
or| . :2R—QZO@R:O:>ZQ¢ =1
oL o; @ (z;
% ZOAZ *Z —Oi Zzaz Zaz xz (7)
oL
85, :C—ai—m:Oém:C’—ai.

By the last equality, we can eliminate 7 and conclude that a € [0, C]. Notice that substituting this constraint
eliminates ¢ from the Lagrangian. Since Y a; = 1, the r? terms cancel. We obtain

max(ilmize Z%’H‘p(%‘) — Zaﬁb(@)”
i J

= Z [ai (@(z4), 2(z4)) — 204 <‘I>(ffi)azaj‘1’($j)> + o <Z aj<I>(xj),Zaj<I>(x]—)>]
=D (2(e), 2(@) = 3 Zazaj ®(x;)) ®)
= Zaik( ZZO@OAJ (@i, ;)

subjectto «; € [O,C],Zai =1.
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1.3 Finding Maximum Distance Separating Hyperplane

Now let us take a detour and focus on one of the method covered in the class for novelty detection, namely
the method prescribed in unit 4 Linear Methods, slide 191. It is built on an idea which appears to be bizarre
at first sight, i.e. finding a hyperplane in the feature, given by f(z) = (w, ®(x)) = p that has maximum
distance from origin yet is still closer to the origin than the observations. Then we classify novelty for a
point x, by determining which side of the hyperplane (w, ®(z)) = p does the point falls on. In this problem
we will try to demystify this idea.

w )

Given n points z1, ..., , € R? lying in a orthant, we want to find a hyper-
plane (w,z) = p that has maximum distance from origin and separating
most of the points from the origin. That is, find the normal vector w € R?
to the plane satisfying

Vi (w, ;) > p— &, 9)

where &; > 0. Your goal is to state this in the form of a convex optimization
problem and explain why this is a convex problem. What if the points were
mapped to feature space through (), ?

. J

’m h

To separate the data set from the origin, we solve the following quadratic program:
min LplP —p+ 03 e
w,p,&; 2 = (10)
subjectto  (w,z;) > p — & where & > 0Vi € [n]
It is convex because:
e Quadratic objective with positive definite matrix and linear terms
e Linear constraints
In case of mapping to a feature space, we have only minimal change:
min LplP —pt 03 e
w,p,& 2 i—1 (11)
subjectto  (w, ®(z;)) > p — & where &; > 0 Vi € [n]
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1.4 Establishing the Equivalence

Now we show that actually both of these problems are actually the same through some nice geometric
properties of Reproducing Kernel Hilbert Space.

Question 4

Let (-, -) be a RBF Mercer kernel, i.e. k(z, 2") = k(x—z'). Then show that in
the feature space, any dataset of n points z1, ..., z, € R? will lie on surface
of a hypersphere in the same orthant.

m )

First, observe that
1@ () — O] = [|® (@)
= (®(zi), ©(z:))
= K(z4, ;)
= k(0)
which is constant; hence all points are of the same distance from the origin. This shows that
all points are on the surface of a hypersphere. To show that all points in feature space are in

the same orthant, it suffices to show that the angle between any two points in feature space
is acute; that is, their inner product is nonnegative. To that end, note that for all 4, j:

(12)

(@(x:), @(5)) = K (24, 2)
> 0.

Hence all points lie in the same orthant. Note that this is not necessarily a “natural” orthant
of the feature space.
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Derive the dual of the problem (11) and thus verify that indeed finding
maximum distance separating hyperplane in the feature space is indeed

equivalent to finding the minimum enclosing ball.
L(w, p,& 0,v) = ||w||2 —prCy G- Zaz [(w, () + & — Zm@ (14)
—w =w — ;az@(xi) =0=w= ;aﬁ)(xi)
oL
ap:—1+;ai:0:>;ai:1 (15)

OL
9&i

=C-a;—n=0=2mn=C—-0qo

from the Lagrangian. We then obtain the dual problem

max1mlze — <E a;P(x;), EO‘J mj>
:—fE E a0 K (4, 25)

subject to Zai =1,a€]0,C].

As before, a;,n; > 0 implies a; € [0,C], and also as before, this substitution eliminates ¢

(16)

Notice that this objective differs from (8) only by a constant positive factor and the term
>, @;k(0), which is constant (equal to k£(0)) by the second constraint. Hence, these two
problems are equivalent optimization problems.
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2 Quantile Regression [Jay-Yoon; 30 points]

In this problem we consider a very similar, but a more general task to novelty detection in the setting of
regression. Generally, in a typical regression setting, the prediction of y at a given x is through conditional
mean. Au contraire, the desired estimate of y|z is not always the conditional mean, as sometimes one may
want to obtain a good estimate that satisfies the property that a proportion, 7, of y|z, will be below the
estimate (somewhat similar to novelty detection definition). For 7 = 0.5 this is an estimate of the median.
What might be called median regression, is subsumed under the term quantile regression (QR) where the
definition of the quantile is given below.

Definition 1 (Quantile) Denote by y € R a random variable and let 7 € (0, 1). Then the T-quantile of y, denoted by
W is given by the infimum over p for which Pr{y < u} = 7. Likewise, the conditional quantile yi..(x) for a pair of
random variables (x,y) € X x R is defined as the functionp, : X — R for which pointwise i, is the infimum over
w for which Pr{y < plz} = 7.

0.2 L training data -« 0.2 L training data
. mean .

0.1 quantile
0.2 quantile ——
0.3 quantile ——
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(a) Conditional mean analysis (b) Conditional quantile analysis

Figure 1: Comparsion between mean and quantile regression

There exist a large area of problems where estimating quantile, rather than mean, could be helpful and
following are few of the motivating examples:

e A device manufacturer may wish to know what are the 10%and 90% quantiles for some feature of the
production process, so as to tailor the process to cover 80% of the devices produced.

e For risk management and regulatory reporting purposes, a bank may need to estimate a lower bound
on the changes in the value of its portfolio which will hold with high probability.

e A pediatrician requires a growth chart for children given their age and perhaps even medical back-
ground, to help determine whether medical interventions are required, e.g. while monitoring the
progress of a premature infant.
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2.1 Quantile Estimator
e ife€>0
0 = {(7’ —1)¢ if€ <0, {17

«

Prove the following properties about the minizier ., of >\ | I (y; — fur)
1. The number of terms, m_, with y; < . is bounded from above by
m.

2. The number of terms, m,, with y; > p, is bounded from above by
(1 —71)m.

3. For m — oo, the fraction “~, converges to 7 if Pr(y) does not contain
discrete components.

. J

1. Suppose on the contrary that m_ > 7m. Without loss of generality suppose that the
y; are indexed in increasing order. Denote Y., = Y[, and note that y,,, < i

) = S0 =Y =)t > 7= tor)
i=1 i=m_+1

m m_
= (m- —mT)Mr+ZTyi _Zyi
i=1 i=1

> (m— - mT)mi + Z TYi — Z Yi
i=1 i=1

> (lrm) = Tm)yem + > T — > vi
=1 1=1

This is a contradiction; it implies y is not the minimizer.
2. This follows from applying part 1 to the y; _, of Y.

3. If Pr(y) is not discrete, then Vi Pr(y; = u7) is almost surely 0, and hence % —1

almost surely as m — oo. Combining this with == < 7 and % < (1 —7) from above,
we obtain 7 > Z= ~ 1 — £ > 7. Hence for large enough m, “~ = 7 almost surely.
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2.2 Quantile Risk Optimization

The T-quantile regression function can be found by solving the following optimization problem

1T & D N
%f?a;lf(yz_f(xl))+§”w”2' (19)

’m )

Show that the minimization problem (19) is equivaelent to the following
minimization problem (20):

1 & ) A
q * 2
L 52 (s (- ngl”) ¢ il

subjectto y; — (P(z;),w) —b <& and
(®(2;), w) + b —y; < £ where &, >0

(20)

Also derive the dual of the problem (20). Use K (z;,x;) = (®(z;), ®(x;)) for
notation.
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(Equivalence.) We will argue the following arguement which guarantees the equivalence between (19) and
(20):

for&; e E,{Z(*) e =0, T7&+ (1= T)fl-(*) =1 (y; — f(x;)) (21)

— (%)

where 5;, ;" signify the given constraints in the (20). When the following condition on ¢; and & holds, it

is trivial that (21) holds.
¢ = yi — flxg) yi — f(xl) >0 and £ = 0 otherwise 22)
0 otherwise flz) —yi vi— f(z;) <O.

Now, we want to connect above fact to the actual optimization function, namely let’s focus on the first part
of (20),

m
min e Z (T&- +(1- T)§£*)) (23)
b e Nexx M

We will show that above optimization function is equivalent to original one when &;, £; follows constraints
E, 2*). First, 2, 2*) can be easily satisfied by setting —¢ < 0, & > 0 as the minimum, maximum value of
yi — f(x;), respectively, i.e. =& <y, — f(z;) < &.

Second, to observe, §; = y; — f(z;) and & = —(y; — f(=z;)) has to be satisfied in the optimal solution, let’s
examine the optimization function (23). As the objective function is affine and as we are optimizing over
&, when y; — f(z;) > 0, & will become y; — f(z;) at the optimal solution as it is the minimum value it can
take. Likewise, £¥ = f(x;) — y; at the optimal solution on the feasible space.

The proof completes as we have proven that under the constraints =, ZE®),

min, . cz e ez i 27;1 (sz + (1 - T)fz(*)) =ming, ¢ ecz=0) % Z:il (7'51' + (1 - T)fz(*)) 0

Thus, at the optimum &; = y; — f(z;) if positive and zero otherwise, and fi(*) = —(yi — flzy)) if y; — f(x)
is negative and zero otherwise. The combination of these piecewise functions in (21) is the pinball loss
function.

(Continued on next page.)
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M )

(Dual.) The Lagrangian can be written as:
1 m
L(w,b,¢, €9, a, 8,,7) fz{f& (1= e + auys — (B(a:),w) — b= &)
m
=i (24)
* 5 A
+6i(® (i), w) +b —yi — €)= mii — 7€ } + 3 llwll?
where «;, B, 7i,7i > 0.
The derivatives of the Lagrangian are
L
ggv =T—o;—1n,=0=>n=7T—q;, a; €[0,7]
L
78(*): —T—ﬁi—7i20:>'7i:1_7_ﬁi7 ﬁi€[071_7]
= (25)
oL 1
5’7_>\ w+ — Zﬁz— ;) z—O:W—mZ<ai_ﬁi>q>($i)
oL
8() (ﬁ b =0= Z Bz Z Q;
Substituting these constraints into the Langrangian yields the dual problem:
- Ay 1
maximize —||wl|*— — Z:(ﬂZ — ;) [(D(x;), w) — yi] - (26)
o, 2 m
As f;, a; always appear together, if we replace them with {; = - (a; — 3;), the problem
simplifies to
a_g 4 2 .
maxzmlze ||w|| Z Gi [(P () Yil
= ol ~ w,w) + ¢y
\ (27)
_5 <w7 w> + CTy
= — minicmize %CTKC — Ty
subject to ¢ € [5=, Z-], ("1 =0.

10
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