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Homework 7

START HERE: Instructions

• The homework is due at 9:00am on Mar 24, 2015. Anything that is received after that time will not be
considered.

• Answers to every theory questions will be also submitted electronically on Autolab (PDF: Latex or
handwritten and scanned). Make sure you prepare the answers to each question separately.

• Collaboration on solving the homework is allowed (after you have thought about the problems on
your own). However, when you do collaborate, you should list your collaborators! You might also
have gotten some inspiration from resources (books or online etc...). This might be OK only after you
have tried to solve the problem, and couldn’t. In such a case, you should cite your resources.

• If you do collaborate with someone or use a book or website, you are expected to write up your
solution independently. That is, close the book and all of your notes before starting to write up your
solution.

• Latex source of this homework: http://alex.smola.org/teaching/10-701-15/homework/
hw7_latex.zip

1 Novelty Detection [Manzil; 60 points]

In this problem we will look into the task of novelty detection. Novelty detection is an unsupervised task
where one is interested in flagging a small fraction of the input dataset as atypical or novel. It can be
viewed as a special case of the quantile estimation task, where we are interested in estimating a simple set
C such that Pr(x ∈ C) ≥ µ for some µ ∈ [0, 1]. One way to measure simplicity is to use the volume of
the set. Formally, if |C| denotes the volume of a set, then the novelty detection or quantile estimation task
is to estimate arginf{|C|s.t.C) ≥ µ}. The importance of anomaly detection is due to the fact that novelty
in data translate to significant (and often critical) actionable information in a wide variety of application
domains. For example, some atypical traffic pattern in a computer network could mean that a hacked
computer is sending out sensitive data to an unauthorized destination. An anomalous MRI image may
indicate presence of malignant tumors. Anomalies in credit card transaction data could indicate credit card
or identity theft or anomalous readings from a space craft sensor could signify a fault in some component
of the space craft.

1.1 Simple Minimum Enclosing Balls

Figure 1: A simple dataset with outliers

Consider a data setX = {x1, ..., xn} of n observations from the
same distribution described by d features. We want to learn a
function f(·) which can classify if the new observation so dif-
ferent from the others that we can doubt it is regular? Or on
the contrary, is it so similar to the other that we cannot distin-
guish it from the original observations? This is the question
addressed by the novelty detection tools and methods.
A simple idea to find novel points would be to learn a ball
which packs most of the points, or in general a rough, close
frontier delimiting contour which packs most of the points.
Now, if the observations lay within the frontier-delimited sub-
space, then are considered as typical observations. Otherwise,
if they lie outside the frontier, we can say that they are abnor-
mal with a given confidence in our assessment.

1

http://alex.smola.org/teaching/10-701-15
http://alex.smola.org/teaching/10-701-15/homework/hw7_latex.zip
http://alex.smola.org/teaching/10-701-15/homework/hw7_latex.zip


Machine Learning 10-701 Mar 16, 2015
http://alex.smola.org/teaching/10-701-15 due on Mar 24, 2015

Carnegie Mellon University

Homework 7

To begin with suppose, we want to find the minimum enclosing ball for the
given data of n points x1, ..., xn ∈ Rd. That is, find the centre z ∈ Rd and
the smallest radius R ≥ 0 satisfying

∀i : ‖xi − z‖2 ≤ R2 (1)

Your goal is to state this in the form of a convex optimization problem and
explain why this is a convex problem.

Let us now relax the constraint to pack all the points in the ball. How will
we modify the optimization problem by introducing slack variables?
Hint: It is similar to SVM with slack variables.

Question 1

Then the points left out of the ball by solving the optimization problem can be considered as the novel
points and the fraction of novel points is controlled by the regularization constant on the slack variables.

1.2 Minimum Enclosing Balls in Feature Space

Figure 2: A complex dataset with outliers

While such single minimum enclosing balls may
seem rather restrictive. For example consider the
dataset shown in figure 2, it has two different blobs
where data is concentrated. In such cases the idea
of finding a simple enclosing ball may not be suffi-
cient. Remember that the kernel trick can be used
to map data into a high-dimensional space and sim-
ple decision boundaries in the mapped space corre-
spond to highly non-linear decision boundaries in
the input space.
Thus, we map to a high dimensional feature space
to handle such cases. Suppose we use a RBF Mercer
Kernel k(x, x′) = 〈Φ(x),Φ(x′)〉 and instead try to
find a minimum enclosing ball in the feature space.
By RBF (radial basis function) Mercer Kernel, we re-
fer to kernels which only depend on x − x′, i.e.
k(x, x′) = k(x− x′) and k(x, x) is constant.

Given n points x1, ..., xn ∈ Rd, we want to find enclosing ball of the data
in the feature space. That is, find the centre z ∈ Rf and the smallest radius
R ≥ 0 satisfying

∀i : ‖Φ(xi)− z‖2 ≤ R2 + ξi, (2)

where ξi ≥ 0. Also derive the dual of the optimization problem.

Question 2
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1.3 Finding Maximum Distance Separating Hyperplane

Now let us take a detour and focus on one of the method covered in the class for novelty detection, namely
the method prescribed in unit 4 Linear Methods, slide 191. It is built on an idea which appears to be bizarre
at first sight, i.e. finding a hyperplane in the feature, given by f(x) = 〈w,Φ(x)〉 = ρ that has maximum
distance from origin yet is still closer to the origin than the observations. Then we classify novelty for a
point x, by determining which side of the hyperplane 〈w,Φ(x)〉 = ρ does the point falls on. In this problem
we will try to demystify this idea.

Given n points x1, ..., xn ∈ Rd lying in a orthant, we want to find a hyper-
plane 〈w, x〉 = ρ that has maximum distance from origin and separating
most of the points from the origin. That is, find the normal vector w ∈ Rd
to the plane satisfying

∀i : 〈w, xi〉 ≥ ρ− ξi, (3)

where ξi ≥ 0. Your goal is to state this in the form of a convex optimization
problem and explain why this is a convex problem. What if the points were
mapped to feature space through Φ(·), ?

Question 3

To separate the data set from the origin, we solve the following quadratic program:

min
w,ρ,ξi

1

2
||w||2 − ρ+ C

n∑

i=1

ξi

subject to 〈w, xi〉 ≥ ρ− ξi where ξi ≥ 0 ∀i ∈ [n]

(4)

It is convex because:
• Quadratic objective with positive definite matrix and linear terms
• Linear constraints

In case of mapping to a feature space, we have only minimal change:

min
w,ρ,ξi

1

2
||w||2 − ρ+ C

n∑

i=1

ξi

subject to 〈w,Φ(xi)〉 ≥ ρ− ξi where ξi ≥ 0 ∀i ∈ [n]

(5)

Answer
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1.4 Establishing the Equivalence

Now we show that actually both of these problems are actually the same through some nice geometric
properties of Reproducing Kernel Hilbert Space.

Let k(·, ·) be a RBF Mercer kernel, i.e. k(x, x′) = k(x−x′). Then show that in
the feature space, any dataset of n points x1, ..., xn ∈ Rd will lie on surface
of a hypersphere in the same orthant.

Question 4

Figure 3: Finding enclosing ball and max
distance plane are equivalent

So no matter how badly the data is distributed in orig-
inal space upon transforming to the higher dimensional
feature space using a RBF Mercer Kernel, the mapped
points are always confined to an octant. Therefore, in fea-
ture space finding the smallest sphere (containing the map-
ping of the points) really amounts to finding the small-
est segment of the sphere that the data live on. The
segment, however, can be found in a straightforward
way by simply intersecting the data sphere with a hyper-
plane. The hyperplane with maximum margin of sep-
aration to the origin will cut off the smallest segment,
thus giving rise to the single class ν-SVM formulation
based on finding the maximum distance separating hyper-
plane.

Derive the dual of the problem (5) and thus verify that indeed finding max-
imum distance separating hyperplane in the feature space is indeed equiv-
alent to finding the minimum enclosing ball.

Question 5

Hopefully this provides an intuition why single class SVM tries to find Maximum Distance Separating Hy-
perplace in anomaly detection. With proper parametrization of the regularization constant we can also
obtain famous ν property which can be used to control fraction of novel points as can be found in proposi-
tion 1 of http://alex.smola.org/papers/2000/SchWilSmoShaetal00.pdf.
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2 Quantile Regression [Jay-Yoon; 30 points]

In this problem we consider a very similar, but a more general task to novelty detection in the setting of
regression. Generally, in a typical regression setting, the prediction of y at a given x is through conditional
mean. Au contraire, the desired estimate of y|x is not always the conditional mean, as sometimes one may
want to obtain a good estimate that satisfies the property that a proportion, τ , of y|x, will be below the
estimate (somewhat similar to novelty detection definition). For τ = 0.5 this is an estimate of the median.
What might be called median regression, is subsumed under the term quantile regression (QR) where the
definition of the quantile is given below.

Definition 1 (Quantile) Denote by y ∈ R a random variable and let τ ∈ (0, 1). Then the τ -quantile of y, denoted by
µτ is given by the infimum over µ for which Pr {y ≤ µ} = τ . Likewise, the conditional quantile µτ (x) for a pair of
random variables (x, y) ∈ X ×R is defined as the functionµτ : X −→ R for which pointwise µτ is the infimum over
µ for which Pr {y ≤ µ|x} = τ .

TAKEUCHI, LE, SEARS AND SMOLA

the conditional distribution, while apparently the entire distribution of BMD changes according to age. The
conditional quantile analysis (b) gives us more detailed description of these changes. For example, we can
see that the variance of the BMD changes with the age (heteroscedastic) and that the conditional distribution
is slightly positively skewed.

(a) Conditional mean analysis (b) Conditional quantile analysis

Figure 2: An illustration of (a) conditional mean analysis and (b) conditional quantile analysis for a data set
on bone mineral density (BMD) in adolescents. In (a) the conditional mean curve is estimated by
regression spline with least square criterion. In (b) the nine curves are the estimated conditional
quantile curves at orders 0.1, 0.2, . . . , 0.9. The set of conditional quantile curves provides more
informative description of the relationship among variables such as non-constant variance or non-
normality of the noise (error) distribution. In this paper, we are concerned with the problem of
estimating these conditional quantiles.

2. Quantile Estimation
Given the definition of q⌧ (x) and knowledge of support vector machines we might be tempted to use version
of the ✏-insensitive tube regression to estimate q⌧ (x). More specifically one might try to estimate quantiles
nonparametrically using an extension of the ⌫-trick, as outlined in Schölkopf et al. (2000). However this ap-
proach carries the disadvantage of requiring us to estimate both an upper and lower quantile simultaneously.2

While this can be achieved by quadratic programming, in doing so we estimate “too many” parameters si-
multaneously. More to the point, if we are interested in finding an upper bound on y which holds with 0.95
probability we may not want to use information about the 0.05 probability bound in the estimation. Fol-
lowing Vapnik’s paradigm of estimating only the relevant parameters directly (Vapnik, 1982) we attack the
problem by estimating each quantile separately. For completeness and comparison, we provide a detailed
description of a symmetric quantile regression in Appendix A.

2. Schölkopf et al. (2000) does, in fact, contain a suggestion that a choice of different upper bounds on the dual problem would
lead to estimators which weigh errors for positive and negative excess differently, that is, which would lead to quantile regression
estimators.

1004

Figure 4: Comparsion between mean and quantile regression

There exist a large area of problems where estimating quantile, rather than mean, could be helpful and
following are few of the motivating examples:

• A device manufacturer may wish to know what are the 10%and 90% quantiles for some feature of the
production process, so as to tailor the process to cover 80% of the devices produced.

• For risk management and regulatory reporting purposes, a bank may need to estimate a lower bound
on the changes in the value of its portfolio which will hold with high probability.

• A pediatrician requires a growth chart for children given their age and perhaps even medical back-
ground, to help determine whether medical interventions are required, e.g. while monitoring the
progress of a premature infant.
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2.1 Quantile Estimator

NONPARAMTERIC QUANTILE ESTIMATION

2.1 Loss Function

The basic strategy behind quantile estimation arises from the observation that minimizing the `1-loss func-
tion for a location estimator yields the median. Observe that to minimize

Pm
i=1 |yi � µ| by choice of µ, an

equal number of terms yi � µ have to lie on either side of zero in order for the derivative wrt. µ to vanish.
Koenker and Bassett (1978) generalizes this idea to obtain a regression estimate for any quantile by tilting
the loss function in a suitable fashion. More specifically one may show that the following “pinball” loss
leads to estimates of the ⌧ -quantile:

l⌧ (⇠) =

(
⌧⇠ if ⇠ � 0

(⌧ � 1)⇠ if ⇠ < 0
(2)

Lemma 2 (Quantile Estimator) Let Y = {y1, . . . , ym} ⇢ R and let ⌧ 2 (0, 1) then the minimizer µ⌧ ofPm
i=1 l⌧ (yi � µ) with respect to µ satisfies:

1. The number of terms, m�, with yi < µ⌧ is bounded from above by ⌧m.

2. The number of terms, m+, with yi > µ⌧ is bounded from above by (1 � ⌧)m.

3. For m ! 1, the fraction m�
m , converges to ⌧ if Pr(y) does not contain discrete components.

Proof Assume that we are at an optimal solution. Then, increasing the minimizer µ by �µ changes the ob-
jective by [(1 � m+)(1 � ⌧) � m+⌧ ] �µ. Likewise, decreasing the minimizer µ by �µ changes the objective
by [�m�(1 � ⌧) + (1 � m�)⌧ ] �µ. Requiring that both terms are nonnegative at optimality in conjunction
with the fact that m� + m+  m proves the first two claims. To see the last claim, simply note that the
event yi = yj for i 6= j has probability measure zero for distributions not containing discrete components.
Taking the limit m ! 1 shows the claim.

The idea is to use the same loss function for functions, f(x), rather than just constants in order to obtain
quantile estimates conditional on x. Koenker (2005) uses this approach to obtain linear estimates and certain
nonlinear spline models. In the following we will use kernels for the same purpose.

2.2 Optimization Problem

Based on l⌧ (⇠) we define the expected quantile risk as

R[f ] := Ep(x,y) [l⌧ (y � f(x))] . (3)

By the same reasoning as in Lemma 2 it follows that for f : X ! R the minimizer of R[f ] is the quantile
µ⌧ (x). Since p(x, y) is unknown and we only have X, Y at our disposal we resort to minimizing the
empirical risk plus a regularizer:

Rreg[f ] :=
1

m

mX

i=1

l⌧ (yi � f(xi)) +
�

2
kgk2

H where f = g + b and b 2 R. (4)
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Figure 5: Outline of ”pinball” loss lτ (ξ).

Let Y = y1, . . . , ym ⊂ R, µ ∈ R and let τ ∈
(0, 1). Observe that minizing `1-loss function ,i.e.∑m
i=1 |yi − µ|, over µ for a an estimator yields the

median. To obtain the τ -quantile in a similar fash-
ion, we define qunatile the ”pinball” loss lτ (ξ).

lτ (ξ) =

{
τξ if ξ ≥ 0

(τ − 1)ξ if ξ < 0,
(6)

Prove the following properties about the minizier µτ of
∑m
i=1 lτ (yi − µτ ) :

1. The number of terms, m−, with yi < µτ is bounded from above by
τm.

2. The number of terms, m+, with yi > µτ is bounded from above by
(1− τ)m.

3. For m→∞, the fraction m−
m , converges to τ if Pr(y) does not contain

discrete components.

Question 6

These properties about the the loss function lτ (ξ) indicates that it is a good candidate for QR. We will
explore its use in QR in the next sub-problem.
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2.2 Quantile Risk Optimization

Based on lτ (ξ), we define the expected quantile risk as

R[f ] ≡ Ep(x,y)[lτ (y − f(x))].

For f : X −→ R, the minimizer of R[f ] is the quantile µτ (x). As we are unaware of he true distribution
p(x, y), we define empirical risk function with additional regularizer function:

Rreg[f ] ≡ 1

m

m∑

i=1

lτ (yi − f(xi)) +
λ

2
||w||22

where f(xi) = 〈Φ(xi), w〉+ b

(7)

where f(xi) = 〈Φ(xi), w〉 + b denotes general linear models we dealt in class with some mapping function
Φ(xi). Using this empirical risk, the τ -quantile regression function can be found by solving the following
optimization problem

min
w,b

1

m

m∑

i=1

lτ (yi − f(xi)) +
λ

2
||w||22. (8)

Show that the minimization problem (8) is equivaelent to the following
minimization problem (9):

min
w,b,ξi,ξ

(∗)
i

1

m

m∑

i=1

(
τξi + (1− τ)ξ

(∗)
i

)
+
λ

2
||w||2

subject to yi − 〈Φ(xi), w〉 − b ≤ ξi and

〈Φ(xi), w〉+ b− yi ≤ ξ(∗)i where ξi, ξ
(∗)
i ≥ 0

(9)

Also derive the dual of the problem (9). Use K(xi, xj) = 〈Φ(xi),Φ(xj)〉 for
notation.

Question 7

If you solved problem 1 and 2 correctly, you should find the optimization problem is very similar.
Also note the similarity of quantile regression to that of an ε insensitive support vector regression (ε-SVR)
estimator. The key difference between the two estimation problems is that in (ε-SVR) we have an additional
ε‖α‖1 penalty in the objective function. This ensures that observations with deviations from the estimate, i.e.
with |yif(xi)| < ε do not appear in the support vector expansion. Moreover the upper and lower constraints
on the Lagrange multipliers αi are matched. This means that we balance excess in both directions. The
latter is useful for a regression estimator. In our case, however, we obtain an estimate which penalizes
loss unevenly, depending on whether f(x) exceeds y or vice versa. This is exactly what we want from
a quantile estimator: by this procedure errors in one direction have a larger influence than those in the
converse direction, which leads to the shifted estimate we expect from QR. The practical advantage of the
QR method discussed in this problem is that it can be solved directly with standard quadratic programming
code rather than using pivoting, as is needed in ε-SVR.
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