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Homework 5 Solutions

START HERE: Instructions

Thanks a lot to John A.W.B. Constanzo and Shi Zong for providing and allowing to use the latex
source files for quick preparation of the HW solution.

The homework was due at 9:00am on Feb 23, 2015. Anything that is received after that time will not
be considered.

Answers to every theory questions will be also submitted electronically on Autolab (PDF: Latex or
handwritten and scanned). Make sure you prepare the answers to each question separately.
Collaboration on solving the homework is allowed (after you have thought about the problems on
your own). However, when you do collaborate, you should list your collaborators! You might also
have gotten some inspiration from resources (books or online etc...). This might be OK only after you
have tried to solve the problem, and couldn’t. In such a case, you should cite your resources.

If you do collaborate with someone or use a book or website, you are expected to write up your
solution independently. That is, close the book and all of your notes before starting to write up your
solution.

Latex source of this homework: http://alex.smola.org/teaching/10-701-15/homework/
hwb_latex.tar

1 Exponential Family [Zhou, Manzil]

In this problem we will review the exponential family, its significance in Bayesian statistics and work out a
detailed example for the commonly encountered Multivariate Normal distribution and its conjugate prior
Normal Inverse Wishart Distribution.

1.1

Review

Exponential family is a set of probability distributions whose probability density function for € R? can
be expressed in the form:

p(]0) = exp({p(z),0) — 17 g(6)) )

where

¢(z) is a sufficient statistic of the distribution. For exponential families, the sufficient statistic is a
function of the data that fully summarizes the data = within the density function. The sufficient statis-
tic of a set of independent identically distributed data observations is simply the sum of individual
sufficient statistics, and encapsulates all the information needed to describe the posterior distribu-
tion of the parameters, given the data and hence to derive any desired estimate of the parameters.
We will explore this important property in detail below.

g is called the natural parameter. The set of values of 8 for which the function p(z|6) is finite is called
the natural parameter space. It can be shown that the natural parameter space is always convex.
(First show that log-partition function ¢(f) is a convex function, then you can show this from first
principles.)

g(0) is called the log-partition function because it is the logarithm of a normalization factor, without
which p(x|0) would not be a probability distribution (“partition function” is often used as a synonym
of "normalization factor” for historical reasons arising from Statistical Physics).
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1.2 Conjugate Priors [10+10+10]

Exponential families are very important in Bayesian statistics. In Bayesian statistics a prior distribution is
multiplied by a likelihood function and then normalised to produce a posterior distribution. In the case of
a likelihood which belongs to the exponential family there always exists a conjugate prior, which is also in
the exponential family.

Consider the distribution:

p(0;mo, ¢o) = exp ({bo, 0) — (Mo, g(#)) — h(mo, ¢o)) 2)

where mg > 0 and ¢ € R?. These are called hyperparameters (parameters controlling parameters).

Show that this distribution, i.e. (2) is a member of the Exponential Family.

’m h

There is not much to show. Note
o0, 00) =exp ({ () (10 )) = htmo. o) ). ®
3.4 T 0
o The sufficient statistic is (—g(@))

o The natural parameter is (:;())
0

o The log-partition function is h(mo, ¢o).
There exist infinitely many splitting into § for which h = 17§
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Suppose we obtain the data X = (z1,...,2,), where x; ~ p(-|0), i.e. each single observation follows
some distribution from the exponential family.

First of all write out the likelihood p(X|0). Then use (2) as the prior and
derive the posterior p(6|X) exactly, i.e. with proper normalization constant.

’m h

The likelihood turns out to be simply

n

p(x16) = [[ pleil6) = [ [ exp((6(a2), 0) — 9(6))
=1

=1
(Zw(xi), 0) — Zg(&) (4)
¢<$z)a 0
1

=exp |, _
= exp < Z > - n]ng(0)>

Now observe that h is defined so that for all (z, y) in the hyperparameter space,

[ (()C)) roa)ar

Keeping this in mind, we proceed to compute the posterior as

p(0 | X) o< p(X | 8)p(0;m0, ¢o)

x exp <<Z ¢<xi>,9> -0+ (%) (o) >> ©
“oo ({0 ()

By (5), normalizing yields

p(0] X) = exp K <¢o +m§%ﬁ(xi)> 7 (_ 99(9)> > —h <m0 +n1, g + Zn: qb(xi))] Y

i=1
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If you got Question 2 correct (hopefully you did), observe that the posterior has the same form as the
prior, thus (2) is a conjugate prior. The difference between the prior, i.e. (2) and your answer to Question 2
lies only in the parameters.

’M )

Let m,, and ¢,, be parameters of the posterior p(f|X ), then show that:

m, = mgy+nl

" 8
b =0+ B(s) &
=1

We call this update equations.

. J

’M h

This is obvious from (7). Specifically, comparing equation (7) with prior distribution, we
can see that posses the same form and having only the following difference in parameters:

my, = mg+nl

G = o+ Y ;)

=1

©)

\ J

This shows that the update equations can be written simply in terms of the number of data points and
the sufficient statistic of the data. Also, it provides meaning to the hyperparameters. In particular, my
corresponds to the effective number of “fake” observations that the prior distribution contributes, and ¢
corresponds to the total amount that these “fake” observations contribute to the sufficient statistic over all
observations and “fake” observations.
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1.3 Multivariate Normal Distribution [10+20+20]

The Multivariate Normal NV (p, ¥) is a distribution that is encountered very often. The distribution is given
by:

plali B) = e (30— e ) (10)

where 4 € RY and ¥ > 0 is a symmetric positive definite d x d matrix. We claim that it belongs to the
Exponential Family.

w

Identify the natural parameters 6 in terms of y and ¥. Also derive the
sufficient statistics ¢(z) and log partition function g(¢) in terms of y and X.
Hint: Design a two dimensional g(0), where first dimension is % J7AD ey

" v
’M h

We will use the notation (A, B) = (vec(A),vec(B)) = tr(AB) when A and B are matrices.

Note that
Tyl = tr(zTE2)
= tr(zzTY1) (11)
= (zzT,T71).
Now

1
p(z | 41, %) = exp (—2 (z"2z - 22T+ TR e + 10g[(27f)d|2|])>

pTE

= exp <—; (mT, > — (2,28 Ty + 1T [log[(%)dlEl]D) (12)

—ep ({ (o) (5)) - 17 Loty ]) -

The natural parameters, sufficient statistics and log partition function are obtained by in-
spection as: So we get to know that the natural parameter is,

1o—
—i% 1

The sufficient statistics is,

The log-partition function is,

(3 )
21og(2m) + 1 log |2|
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The conjugate prior for Multivariate Normal Distribution can be parametrized as the Normal Inverse
Wishart Distribution NZW (o, ko, X0, ). The distribution is given by:

(i, 5 po, Ko, So, v0) = N (plpo, /k0)WH(S|X0, vo)
d vg _ vgtd+2
K [Zol 2 |2 2
= (ot D4

27 wily()

(13)

e B (u=p0) =T (u—po)— 3 tr(SoX ")

where kg, > 0, 1o € R¢ and ¥y > 0 is a symmetric positive definite d x d matrix., and I'y(-) is the
multivariate gamma function.

Notice that Normal Inverse Wishart Distribution will fit into the form of (2).
Find the mapping between (uo, 0, X0, %) and (mg, ¢o) and the function
h(mg, ¢o) in terms of (po, ko, 2o, Vo). Hint: mg and g(0) is two dimensional.

A bit of algebra shows that:

—K _ _ K _ 1 _
p(, X) = exp (—OMTE Yt mopg B = g B o — 5 tr(SeS T+

2
V0+d+2 (V0+].)d d 1Z0)
T TIOgQ §log7r long (3)

o Koo El‘lu B Ko ; suTE N
Kopoptg + o) "\ =327 vo+d+2)\ §log(2m) + 3 log|Z]

d
§logno+%log\20|— log |X| —

vo+d+2 o vo+1 4 d d Vo v
—1 2 — ———log2¢— =1 —1 — log || —log'y | —
S log[(2m)"] — “— log 2" — Zlogm + 5 log o + = log [So| — log Tu ()
Comparing terms with (2), we obtain
_ Ko
o= vo+d+2
_ KoHo (14)
%o (Eo I HOM0M0T>
- d(d+ ].) l/od d 140) 40
h(mg, o) = — 5 log(2m) — e log(m) — 5 log(ko) — 5 log |Xo| + log Ty (5> .



http://alex.smola.org/teaching/10-701-15

Machine Learning 10-701

http

://alex.smola.org/teaching/10-701-15

Carnegie Mellon University

Homework 5 Solutions

Feb 16, 2015
due on Feb 23, 2015

Equipped with these, results we move on to tackle the problem of finding posterior for y, 3. One can
follow brute force approach to find it be using (10) and (13), but things can get really messy. We will adopt a
more elegant and easy approach exploiting the fact that these distribution belong to the exponential family.

\.

Question 6

Using the update equations described in Question 3 and your answers to
Question 4 and 5, directly write down the posterior for p(u, X|X). (Just
providing appropriate update equations would suffice.)

Applying update equations (8) in Question 3, first considering m,,

m, = o = ~o +nl
" Uy +d+2 vog+d-+2

Similarly for ¢,, we have

by = Finbin _ Koko n Z;?:l b
"\ + Kt pd Yo + Kooy iy Tiw]

Thus, we obtain the following update equations in terms of (i, ko, X0, V0):

Kn =Ko+ n
_ KoMo +nT
" Ko +n

Vp =1y +n

Sn =30+ > @] + Koo/ — Fnbinfi
=1

= __ i n .
wherez = =" | x;.

(15)

(16)

(17)

J

This is one of the remarkable cases where working out the general case saves you effort than working
out the special case! The algebra can become very complicated, e.g. see http://www.cs.ubc.ca/
~murphyk/Papers/bayesGauss.pdf where they have explicitly done complicated math! We hope that

after solving this homework, you can take advantage of this neat short-cut :)
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If we want the same expression as Wikipedia for ¥,,, we need to the following rearrange-
ments:

Yp =30+ Z%%T + KOUOM) — Kk bl
=1

=Y+C+ ZxﬁT + Za‘:xZT = Z:T:JZT aF nououOT = nnunuf
i=1 i=1 i=1
= Yo+ C+nZT" + Kopoty — Fnbinlly
where C = Y"" | (z; — Z)(x; — 7)T. Now further expanding j,,, we obtain:
S =0+ C +nZE" + Kopopy — Knfintls
= Yo + C + kopopg + +nzzt — ( > (Koo + nZ) (Koo + nZ)T
Ko +n
T T T T (19)
=Y+ C+ P (nnouo,uo — NROUOT — NKoTUy + NKEZT )
0
nKo _ _ T
=%+C — —
o4O (22 @ - o) (@ = o)
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1.4 Posterior Predictive - Bonus [10+10]

Another quantify, which is often of interest in Bayesian Statistics, is the posterior predictive. The poste-
rior predictive distribution is the distribution of unobserved observations (prediction) conditional on the
observed data. Specifically, it is computed by marginalising over the parameters, using the posterior distri-
bution:

p(@lX) = [ plale) (6IX) a0 20)
The posterior predictive distribution for a distribution in exponential family has a rather nice form.

Show that the posterior predictive for the distribution (1) with prior (2) is
given by:

p(Z|1X) = exp {h (mn + 1, on + ¢(Z)) = h (mn, $n)} (21)

. J

’m h

p(@ [ X) = /@eXp [(6(2),0) = 179(0) + (¢n, 0) — (mn, g(0)) — h(mn, én))] dO

= /@eXp [(¢(Z) + én, 0) = (mn +1,9(0)) — h(mn, $n)] df (22)

— exp [~h(imn, 6n)] /@ exp [($(F) + bn, 0) — (mn + 1, 9(6))] db.

Since

€Xp [<¢(57) + (bn, 0> - <mn + 1, 9(0» - h(mn + 1, ¢n + ¢(57))] =P (03 My, + 13 ¢n + d)(j)) (23)

is a probability distribution, we have

1= /@ exp [{$(E) + b, 0) — (i + 1, (8)) — h (i + 1, 80 + $(2))] d

(24)
1= explh (2, + 1,60+ S(@)] | expl(0() + bn,6) = (e + 1, 9(0)] 00,
leading to
[ U@ + 60.0) — (o + 190N a0 = explp(mn + L0+ 0] (25)
Combining this result with (22) yields the desired result:
P(EIX) = exp{h (mn + L, 6 + 6()) = h (s 60)} 26)
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The result of previous problem can be specialized for the Multivariate Normal case.

~

Find the predictive posterior for the case of Multivariate Normal Dis-
tribution with Normal Inverse Wishart Distribution, having parameters
as described in 1.3 by using Question 7. Hint: The matrix determinant
lemma might come handy http://en.wikipedia.org/wiki/Matrix_
determinant_lemma.

. J

The adding of new point Z leads to following update:

. . Rpln +2
= Kn ]_ =
RS b et 1
v=v,+1
o ~ ~ ~ ~ Kn ~ .
S =3 +FF" + infinfiy, — KT =T+ — +1($—un)(m—ﬂn)T

Now by substituting (14) into (21),

_d(d+1) _ (vntl)d
2 T 2

(kn + 1)~ (2|5 Ty (252)

exp(h(mn + 1, én + ¢(2)) _ (27) 5

exp(h(mn, 6n)) T (2m) R ()38 T ()
F(—u—”'+1) |2n|”7"

vt 1

2
= —
F(yﬂ—zd-i-l)ﬂ_g (1_|_L)2 %] 72

Kn

Next rewrite |X| using matrix determinant lemma,

= Kn - - T
1= |20+ 26— )6~ )|
K ~ =1l j
— [1+ @ - mm e - )| 124

Putting all together, we get
I (252)

p(Z]X)= /2
I (Ya=dtl) nd/2 (—”2:1) || 1/2 (1 + 7 (T = ) TSR (E — )

)(Vn+l)/2 .

Further using student ¢ distribution formula, one can show that p(z|X)

=~ nt1)E,
tun—d-‘rl <$|/”'TL7 HE:{(VH—)UH-].))

(27)

(28)

(29)

(30)

10
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