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FINAL VERSION

Before this final version on January 20th, there was a version uploaded on January 19th. To avoid confusion,
here we list the changes made from the previous version.

• Score distribution has been changed. The course staff decided that the problem 2 is much harder than
problem 1, and downgraded the point of problem 1 to 30 points.

• Previous section 1.1 Expectation has been removed and now section 1.1 is Independence.
• Some more explanations have been added to problem 2.
• The deadline has been extended for a day from January 26th to January 27th.
• Lastly, the following instructions on next section were clarified.

INSTRUCTIONS

• The homework is due at 9:00am on January 27, 2015. Anything that is received after that time will be
considered to be late.

• Answers to every theory questions need to be submitted electronically on Autolab. Only PDF is
acceptable (e.g. LaTeX or handwritten and scanned).

• Make sure you prepare the answers to each question separately. This helps us dispatch the problems
to different graders.

• Collaboration on solving the homework is allowed. Discussions are encouraged but you should think
about the problems on your own.

• When you do collaborate, you should list your collaborators! Also cite your resources, in case you got
some inspiration from other resources (books, websites, papers).

• If you do collaborate with someone or use a book or website, you are expected to write up your
solution independently. That is, close the book and all of your notes before starting to write up your
solution.

1 Probability Review and Bayesian Spam Filter [Zhou; 30pts]

Probability is, in many ways, the most fundamental mathematical technique for machine learning. This
problem will review several basic notions from probability and make sure that you remember how to do
some elementary proofs.

Recall that for a discrete random variable X whose values are integers, we frequently use the notation
P (X = x). If a random variable Y is continuous, we typically use a “density function” f(Y = y). The
conditions for P (X = x) to be a valid probability distribution are that Σ∞−∞P (X = x) = 1 and P (X = x) ≥
0. Similarly for f(Y = y) to be a valid continuous distribution,

∫∞
−∞ f(Y = y)dy = 1 and f(Y = y) ≥ 0.

Sometimes the underlying probability space has more than one variable (for example, the height and
weight of a person). In this case, we may use notation like f(X = x;Y = y) to denote the probability
density function in several dimensions.

1.1 Independence [5 pts]

Intuitively, two random variables X and Y are “independent” if knowledge of the value of one tells you
nothing at all about the value of the other. Precisely, if X and Y are discrete, independence means that
P (X = x;Y = y) = P (X = x)P (Y = y), and if they are continuous, f(X = x;Y = y) = f(X = x)f(Y = y).
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Show the following, for independent random variable X and Y:

E[XY ] = E[X]E[Y ] for discrete and continous cases respectively.

Answer:
Discrete:

E[XY ] = ΣX=xΣY=yxyP (X = x, Y = y)

= ΣX=xxΣY = yxyP (X = x)P (Y = y)

= ΣX=xxP (X = x)(ΣY = yyP (Y = y))

= ΣX=xxP (X = x)E[Y ]

= E[Y ]ΣX=xxP (X = x)

= E[Y ]E[X]

Continuous:

E[XY ] =

∫
x

∫
yxyfXY (x, y)dydx

=

∫
x

∫
yxyfX(x)fY (y)dydx

=

∫
x

fX(x)

(∫
yyfY (y)dy

)
dx

= fxxfX(x)(E[Y ])dx

= E[Y ]

∫
xfX(x)dx

= E[Y ]E[X]

1.2 Spam filtering equation [5 pts]

Naive Bayes classifiers work by correlating the use of tokens (typically words, or sometimes other things),
with spam and non-spam e-mails and then using Bayesian inference to calculate a probability that an email
is or is not spam. Naive Bayes spam filtering is a baseline technique for dealing with spam. Let’s suppose
the suspected message contains the word ”replica”. Most people who are used to receiving e-mail know
that this message is likely to be spam, more precisely a proposal to sell counterfeit copies of well-known
brands of watches. The spam detection software, however, does not “know” such facts; all it can do is
compute probabilities.
Let Pr(S|W ) be the probability that a message is a spam given the word ”replica” appears in it. Express
Pr(S|W ) in terms of the following components we provide:

1. Pr(S) is the overall probability that any given message is spam;

2. Pr(W |S) is the probability that the word “replica” appears in spam messages;

3. Pr(H) is the overall probability that any given message is not spam (is ”ham”);

4. Pr(W |H) is the probability that the word “replica” appears in ham messages.
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Answer:

Pr(S|W ) =
Pr(W |S)Pr(S)

Pr(W |S)Pr(S) + Pr(W |H)Pr(H)
(1)

1.3 I.I.D. assumption in spam filters [10 pts]

Give at least 4 cases how ”Independent and identically distributed random variables (i.i.d.)” assumption
can be violated for spam filtering. Fore each case, please explain why i.i.d. is violated and how spammers
might exploit the situation.
Answer:

• Rare words and symbols are not equally distributed, this is not reflexted in the equation

• The relationship of the adjacent words are not modeled

• Word orders are not considered in the model

• Syntactic structures are not considered in the model

Note: answers are not limited for the above four.

1.4 Poison the Bayesian spam filter [10 pts]

Depending on the implementation, Bayesian spam filtering may be susceptible to Bayesian poisoning, a
technique used by spammers in an attempt to degrade the effectiveness of spam filters that rely on Bayesian
filtering. Think of some ideas to make your spam pass the Bayesian spam filter based on the equation.

Answer:
Spammer tactics include insertion of random innocuous words that are not normally associated with spam,
thereby decreasing the email’s spam score, making it more likely to slip past a Bayesian spam filter. How-
ever with (for example) Paul Graham’s scheme only the most significant probabilities are used, so that
padding the text out with non-spam-related words does not affect the detection probability significantly.
Words that normally appear in large quantities in spam may also be transformed by spammers. For exam-
ple, Viagra would be replaced with Viaagra or V!agra in the spam message. The recipient of the message
can still read the changed words, but each of these words is met more rarely by the Bayesian filter, which
hinders its learning process. As a general rule, this spamming technique does not work very well, because
the derived words end up recognized by the filter just like the normal ones. Another technique used to try
to defeat Bayesian spam filters is to replace text with pictures, either directly included or linked. The whole
text of the message, or some part of it, is replaced with a picture where the same text is ”drawn”. The spam
filter is usually unable to analyze this picture, which would contain the sensitive words like Viagra.

2 Regression [Jay-Yoon; 70pts]

The objective of this problem is to gain knowledge on Linear Regression, Maximum Likelihood Estimation
(MLE), Maximum-a-Posteriori Estimation (MAP) and the variants of Regression problems with introduc-
tion of reularization terms.
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2.1 Linear Regression: MLE and Least Squares [25 pts]

Consider a linear model with some Gaussian noise:

Yi = 〈Xi, w〉+ b+ εi where εi ∼ N (0, σ2), i = 1, . . . , n. (2)

Where Yi ∈ R is a scalar, Xi ∈ Rd is a d-dimensional vector, b ∈ R is a constant, w ∈ Rd is d-dimensional
weight on Xi, and εi is a i.i.d. Gaussian noise with variance σ2. Given the data Xi, i = 1, . . . , n, it is our
goal to estimate w and b which specify the model.

We will show that solving the linear model (2) with MLE method is the same as solving the following
Least Squares problem,

argmin
β

(y −X′β)>(y −X′β), (3)

where Y = (Y1, . . . , Yn)T , X ′i = (1, Xi)
T , X′ = (X ′1, . . . , X

′
n)T and β = (b, w)T .

1. From the model (2), derive the conditional distribution of Yi|Xi, w, b. Again, Xi is a fixed data point.

Answer:
Note that Yi|Xi, w, b ∼ N (< Xi, w > +b, σ2), thus we have pdf of Yi|Xi, w, b in the following form:

f(Yi = yi|Xi, w, b) =
1√
2πσ

e−
(yi−<Xi,w>−b)

2

2σ2 .

2. Assuming i.i.d. between each εi, i = 1, . . . , n, give an explicit expression for the loglikelihood, `(Y |β)
of the data.

Note: Notation Y and β is given on (3). Xi, i = 1, . . . , n is fixed data points. Also given εis are i.i.d.,
so P (Y |β) =

∏
i P (Yi|w, b).

Answer:
Changed the notation of loglikelihood to ` and notation of pdf to f(·) as some of the students were
confused. And also note that we are just omitting Xi for convenience, as the problem explicitly tells
that Xi are fixed points. Given y = (y1, . . . , yn)T , since Yi are independent as εis are i.i.d. and Xi are
given, the likelihood of Y |β is as follows:

f(Y = y|β) =

n∏
i=1

f(yi|w, b)

=

n∏
i=1

1√
2πσ

e−
(yi−<Xi,w>−b)

2

2σ2

=

(
1√
2πσ

)n
e−

∑n
i=1(yi−<Xi,w>−b)

2

2σ2 .

Now, taking the log, loglikelihood of Y |β is as follows:

`(Y = y|β) = −n log
√

2πσ − 1

2σ2

n∑
i=1

(yi− < Xi, w > −b)2 (4)
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3. Now show that solving for β that maximizes the loglikelihood, i.e. MLE, is the same as solving the
Least Square problem of (3).

Answer:
To maximize the loglikelihood `(Y = y|β), we want to focus on the second term as the first term of
the loglikelihood (4) is a constant. In short, to maximize the second term of (4), we want to minimize
the

∑n
i=1 (yi− < Xi, w > −b)2 . Writing in the matrix-vector from:

max
β

`(Y = y|β) = min
β

n∑
i=1

(yi− < Xi, w > −b)2

= min
β

(y −X′β)>(y −X′β),

where again Y = (Y1, . . . , Yn)T , X ′i = (1, Xi)
T , X′ = (X ′1, . . . , X

′
n)T and β = (b, w)T .

4. Derive β that maximizes the loglikelihood.

Assume X′ has full rank on column space.
Hint: This link has some reference to matrix calculus: http://www.cs.nyu.edu/˜roweis/notes/
matrixid.pdf.

Answer:
Setting the objective function J(β) as following:

J(β) ≡ (y −X′β)>(y −X′β)

OβJ(β) = 2X′
T

(X′β − y),

the loglikelihood maximizer β̂ can be found by solving the follwoing optimality condition:

OβJ(β̂) = 0

⇐⇒X′
T

(X′β̂ − y) = 0

⇐⇒X′
T
X′β̂ = X′

T
y

⇐⇒β̂ =
(
X′

T
X′
)−1

X′
T
y

Note that
(
X′

T
X′
)−1

is possible because X′ has full rank on column space.

2.2 Nonlinear Regression and Regularization [15 pts]

Consider higher order term, φ(Xi) = (1, Xi, X
2
i . . . , X

k
i )T , then we can model Y in kth-order model as

following:

Yi = 〈φ(Xi),β
′〉+ εi where εi ∼ N (0, σ2), i = 1, . . . , n. (5)

where all the definitions are from equation (2) except β′ ∈ Rk+1 and for simplicity let d = 1 for Xi ∈ Rd.

1. As we did in section 2.1, show that optimal β′ of (5) is
(
φ(X)

T
φ(X)

)−1
φ(X)

T
Y if we use MLE.
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Note: φ(X) = (φ(X1), φ(X2), . . . , φ(Xn))T and assume φ(X) has full rank on column space.

Hint: You are not expected to write the whole steps again. Foucs on the change from the loglikeli-
hood expressions of 2.1 and derive the optimization problem.

answer:
As the relation betwen Yi and Xi have changed, the conditional pdf and likelihood function changes
as well. The expressions can be just modified by just replacing Xi to φ(Xi) as following:

f(Yi = yi|Xi, w, b) =
1√
2πσ

e−
(yi−<φ(Xi),β

′>)2

2σ2

`(Y = y|β′) = −n log
√

2πσ − 1

2σ2

n∑
i=1

(yi− < φ(Xi),β
′ >)

2
.

As we did before the maximum likelihood method can be expressed as

max
β′

`(Y = y|β′) = min
β′

n∑
i=1

(yi− < φ(Xi),β
′ >)

2

= min
β′

(y − φ(X)β′)>(y − φ(X)β′),

and thus the maximum likelihood estimor β̂ =
(
φ(X)

T
φ(X)

)−1
φ(X)

T
y through similar steps as 2.1.

2. In case φ(X)
T
φ(X) is not invertible, you can add diagnoal term λIk+1 to it so that φ(X)

T
φ(X)+λIk+1

becomes invertible with Ik+1, an identity matrix of size n, and λ > 0. Show that
(
φ(X)

T
φ(X) + λIk+1

)−1
φ(X)

T
Y

is the solution of the optimization problem,

argmin
β′
‖Y − φ(X)β′‖22 + λ‖β′‖22. (6)

answer:
The procedure is almost the same with 2.1.4. First, set the objective function J ′(β) as following:

J ′(β) ≡ (y − φ(X)β)>(y − φ(X′)β) + λ‖β′‖22
=⇒ Oβ′J ′(β′) = 2φ(X′)T (φ(X′)β′ − y) + 2λβ′.

The loglikelihood maximizer β̂′ can be found by solving the follwoing optimality condition:

Oβ′J ′(β̂′) = 0

⇐⇒φ(X′)T (φ(X′)β̂′ − y) + λβ̂′ = 0

⇐⇒
(
φ(X′)Tφ(X′) + λIk+1

)
β̂′ = φ(X′)Ty

⇐⇒β̂′ =
(
φ(X′)Tφ(X′) + λIk+1

)−1
φ(X′)Ty
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2.3 MAP [30 pts]

From (5), now consider a case where β′ has a prior distribution β′ ∼ N (0, η2Ik+1).

1. Write the posterior distribution of β′|Yi given ith sample and β′|Y given whole data, respectively.
Assume independence between β′ and noise εi ∼ N (0, σ2), i = 1, . . . , n.

Hint1: Use Baye’s rule and follow similar steps with 2.1. Pr(β′|Yi) = Pr(β′) Pr(Yi|β′)
Pr(Yi)

Hint2: Sum of two independent Normal variable follows Normal distribution. i.e. X ∼ N (a, b2), Y ∼
N (c, d2), X ⊥ Y → X + Y ∼ N (a+ c, b2 + d2).

answer:

From problem 2.2, we are aware that Yi|Xi, β
′ ∼ N (< φ(Xi), β

′ >, σ2) and from this problem that
β′ ∼ N (0, η2Ik+1). Using Baye’s rule,

h(β′|Yi) ∝ f(Yi|β′)g(β′)

∝ exp

(
− 1

2σ2
(Yi− < φ(Xi), β

′ >)
2
)
· exp

(
− 1

2η2
β′Tβ′

)
where g(·) is the density function for β′ and h(·) is the density function for β′|Yi.
The normalizer for pdf h is defined as Z =

∫∞
−∞ f(Yi|β′)g(β′)dβ′ and rewriting the pdf of h(β′|Yi),

h(β′|Yi) =
1

Z
exp

(
− 1

2σ2
(Yi− < φ(Xi), β

′ >)
2 − 1

2η2
β′Tβ′

)
Likewise, pdf of β′|Y is

h(β′|Y) =
1

Zn
exp

(
− 1

2σ2
(Y − φ(X)β′)

T
(Y − φ(X)β′)− 1

2η2
β′Tβ′

)
=

1

Zn
exp

(
− 1

2σ2
‖Y − φ(X)β′‖22 −

1

2η2
‖β′‖22

)
where Zn is normalization factor defined as Zn =

∫∞
−∞ f(Y|β′)g(β′)dβ′.

2. MAP estimate β′ is defined as β′ that establishes the mode of posterior P (β′|X,Y). Show that solving
for MAP estimate leads to the problem (6) if λ can be expressed in terms σ and η, i.e. λ = g(σ, η). Find
explicit expression for g(σ, η).

answer: From the previous subproblem, it is clear that

max
β′

h(β′|Yi) = min
β′

1

2σ2
‖Y − φ(X)β′‖22 −

1

2η2
‖β′‖22. (7)

If η becomes λ
σ2 , then the minimization problem becomes equivalent to (6),

argmin
β′
‖Y − φ(X)β′‖22 + λ‖β′‖22.

In other words, rearranging the terms, λ = g(σ, η) = σ2

η2 for (6) to become (7).
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3. Describe one potential problem in the absence of regularization term in (6) and how the regularziation
term can alleviate the potential problem.

Note: Let’s skip the case of non-invertible matrix as we already covered the case in section 2.2.

answer: The regularizing term penalizes large components in β′ which leads to shrinking β′ to have
smaller norm. As a consequence, the penalty terms encourage the model to avoid overfitting and thus
prevent adjusting to outlier data points which would otherwise influence β′ drastically.

8

http://alex.smola.org/teaching/10-701-15

	Probability Review and Bayesian Spam Filter [Zhou; 30pts]
	Independence [5 pts]
	Spam filtering equation [5 pts]
	I.I.D. assumption in spam filters [10 pts]
	Poison the Bayesian spam filter [10 pts]

	Regression [Jay-Yoon; 70pts]
	Linear Regression: MLE and Least Squares [25 pts]
	Nonlinear Regression and Regularization [15 pts]
	MAP [30 pts]


