HW 11 Solutions

ATTRIBUTION: PROBLEM 1.2 CITES PROF. ERIC XING’S LECTURE NOTES FROM HIS
PROBABILISTIC GRAPHIC MODELS CLASS (10-708).
http://www.cs.cmu.edu/~epxing/Class/10708-14/scribe notes/scribe note lecturell.pdf, WHICH
PROVIDES INTRODUCTION AND DETAILED DERIVATIONS OF STATE SPACE
MODELS AND KALMAN FILTERING WITH ILLUSTRATIVE EXAMPLES.

1 Hidden Markov Model (HMM) v.s. Linear Gaussian State Space Models (SSM)
1.1 Forward Inference for HMM

Let the set of all possible states as {S1,S2,..., Sn }-
The initial state distributions 7= = {m;}, where m; = P[X, = S].
Let bi(y:) = by for y, = V.

The forward variable is defined as ay(i) = P(y1.4, x: = S;)-
For t = 1, trivially we have:
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Therefore the induction rule is as follows(just exchange i, j):
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Given «, we have:
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1.2  Kalman Filtering for SSM
State Space Models

A State Space Model (SSM) is a dynamical generalization of the Factor Analysis model. In fact, it is
a collection of factor analysers connected as a chain in the time domain, with one factor analyser model
per time instance. SSMs are structurally identical to Hidden Markov Models - and hence have the same
independence assumptions. The only difference is that the variables in SSM follow continuous (Gaussian)
instead of discrete (Multinomial) distributions as in an HMM. As we will see, despite following continuous
distributions, the derivation for inference under this model does not involve complex calculus, thanks to the
properties of the Gaussian distribution.
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Figure 2: Graph for a State Space Model

In this model, we observe a sequence y = (y1,¥ya2, ..., Yt, ...) Where each y; is a continuous random variable
for an instance of time, £. We assume there is a latent sequence z = (z1,22,...24, ...) that generates this
observation, where each z; is also Gaussian. The graphical model is illustrated in Figure 2.

We introduce a transition matrix that determines the relationship between the latent variables, such that
the mean of the state at time ¢, x; is linear in the mean of the state at time t — 1.

= Az + Guy

Here, w; = N(0,Q) is the Gaussian noise we have introduced into the model. Since a linear combination of
Gaussians is also Gaussian, z; is Gaussian.

To describe the output, we use the Factor Analysis model at each point. The loading matrix, say C' is shared
across all x;, 1y, pairs. We assume that all the data points are in the same low-dimensional space. We have

ye = Cxe + v

where v; = N(0, R) is some Gaussian noise. Note that we do not make any assumptions on the Q and R
matrices, these could either be full rank or low rank.

Finally, we set the starting point, o = N (0,%0).



Kalman Filtering

Given a sequence of observations y,ys, --.,y;, we have to infer the latent state at time ¢. This inference
problem is also known as Kalman Filtering. Historically, Kalman Filtering used to be considered a stand-
alone inference technique. However after graphical models gained popularity, it was clear that it is only a
Gaussian analogue of the forward inference for HMMs (see Figure 4). The following equation shows this
analogy:
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Figure 4: Kalman Filtering as Forward Inference on SSMs

Kalman Filtering for inference is widely applied in psychology. Our observation of the world through wvisual
images, say y, is in two dimensional space even though the truth, = is in three dimensional space. This
means ¥y is a noisy version of the ground truth. However, when our brains recreate this observation, they do
so in three-dimensional space. This happens dynamically in time as the brain cannot look forward in time
before recreating the images. Hence, this is the Kalman Filtering estimation of p(z¢|y1.¢).

Derivation

The key observation in the SSM is that every distribution in it is Gaussian. Therefore, the distribution
of interest p(z¢|y1.¢) is also a Gaussian. The task is then to estimate the mean, p;.+ = E(z¢|y1.¢) and the
covariance, Pp,; = E(x; — Ju.]_:g)T(It — p1.¢) of this distribution.

The estimation is done in two steps to simplify computation.

e Predict step - Compute p(x;y1|y1.¢) from p(z¢|y1.+). This is equivalent to moving one step ahead of the
current observation sequence. It is also called time update.

e Update step - Update the prediction in the previous step by including the new evidence in the data. The
new evidence is computed according to a new observation y;+, and the model parameter p(ys41|zi41)-

The high level idea behind the estimation is the following: We are given two Gaussian vectors z; and zs,
which are distributed as below:
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We shall use z; to generate the joint z;, zo and either marginalize the joint to obtain zo or use the marginal
to compute the conditional distribution, zs|z;.

In the prediction step, we start with p(x¢|y;.:) and use the transition information of the model, z; =
Azy_1 + Guw; to compute p(zy41|y1.)-

In the update step, we obtain p(y;+1|7+1) using the emission information of the model, y; = Cx; + v;. We
use this evidence to obtain a joint p(z;4+1,ys+1|y1.+). Finally, we invert the model to obtain p(zi41|y1.441)-



Predict Step

To calculate the mean, p;,,); and the variance, Py ;) of the joint distribution P(Tet1, Yit1|yr:e) for the
Dynamical Model, we proceed as below:
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To calculate the mean and the variance of the joint distribution P(z;41,ys+1|y1.¢) for the Observation
Model, we proceed as below:

Mean:
E(yes1|yre) = E(Crign + vega|yre) = Crigsaye
Covariance:
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Update Step

From the quantities computed in the previous step, we proceed here to compute the mean and the variance
of the conditional distribution, p(X;41|Yi+1) using the formulae for conditional Gaussian distributions. L)t
and Pj; are the mean and covariance respectively of the distribution p(X,|Y%).

Time Updates:
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Measurement updates:

perjir1 = perrfe + K1 (Yesr = Cpasae)

R‘,+1|t+1 = Pt+l|t - Kt+lcpt+1|f,

where K;=; is the Kalman gain. This quantity calibrates or adjusts the observed y; such that our prediction
for the next state is not biased. Kalman gain provides a trade-off between the prior and any new observation
because in cases where either the prior is unreliable or the observations are noisy. The term (y;41 —Cpyt1))
is called the innovation, because it brings in additional information to the model.

Being independent of the data, the Kalman Gain can be precomputed using the following:

Ki1 = Pt+1|:CT(CPt+1|tCT +R)™!



Complexity

Let x; € ®V= and y; € RVv. Computing the new variance from the old variance takes O(N?2) time:

P = ATPﬂtA + GG

Pre-computing the Kalman Gain takes O(N}) time:

Ky = P:+1|tCT(CPt+1|tCT +R)™

Hence, the overall time complexity is max(O(NZ), O(N;)) This makes Kalman Filtering quite an expensive
inference algorithm for moderately high dimensional problems.

Kalman Filters are not popular these days due to high complexity. For instance, consider signals from
1000 aircraft coming at the same time. We need to consider all of them independent, and predicting each
different trajectory is going to be highly expensive. In such cases, we should consider more complex models
like Switching SSMs, which have multiple sequences of latent variables and a particular observation might
depend on any combination of the latent sequences.



2 Collaborative Filtering

2.1  Cold Start Problem

When new users or items come in, their corresponding rows added to the matrix are extremely sparse,
leading to very poor item-item associations and user-user associations generated using matrix
factorization methods. Some methods that use SVD will fail miserably if no information from the new
user is known. This will become a problem when recommending new items to old users,
recommending old items to new users, or recommending new items to new users, which is a major
issue when starting a whole new recommender system.

2.2  Strategies

Utilizing Meta Information
e Park, Seung-Taek, and Wei Chu. "Pairwise preference regression for cold-start
recommendation.” Proceedings of the third ACM conference on Recommender systems. ACM,
20009.

Content-driven Filtering methods can be used jointly with model based methods.
e Melville, Prem, Raymond J. Mooney, and Ramadass Nagarajan. "Content-boosted collaborative
filtering for improved recommendations.” AAAI/IAAL. 2002.
e Schein, Andrew I., et al. "Methods and metrics for cold-start recommendations."Proceedings of
the 25th annual international ACM SIGIR conference on Research and development in
information retrieval. ACM, 2002.

Customized Aspect Models and Flexible Mixture Models provide smoothed solutions with prior
distributions.
e Si, Luo, and Rong Jin. "Flexible mixture model for collaborative filtering." ICML. Vol. 3. 2003.

Active Learning: solicit ratings from the new users
e Jin, Rong, and Luo Si. "A bayesian approach toward active learning for collaborative
filtering." Proceedings of the 20th conference on Uncertainty in artificial intelligence. AUAI
Press, 2004.



